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Abstract— This paper presents shadow detection methods
for vision-based autonomous driving in an urban environment.
Shadows misclassified as objects create problems in autonomous
driving applications. Real-time efficient algorithms in dynamic
background settings are proposed. Without the static back-
ground assumption, which was often used in previous work
to develop fast algorithms, our scheme estimates the varying
background efficiently. A combination of various features clas-
sifies each pixel into one of the following categories: road,
shadow, dark object, or other objects. In addition to pixel
level classification, spatial context is also used to identify the
shadows. Our results show that our methods perform well for
autonomous driving applications and are fast enough to work
in real time.

I. INTRODUCTION

The DARPA Urban Challenge posed a challenging prob-
lem of autonomous driving in an urban environment [1].
Detecting and tracking other cars and obstacles is essential to
make autonomous driving feasible and safe. In conjunction
with many other sensors, color cameras have been used
frequently for this task [17].

However, shadows prevalent in outdoor scenes interfere
with tasks such as the segmentation, tracking, localization
and classification of moving objects [9], [19], [10]. For
instance, the image segmentation algorithms, which are fun-
damental for many high-level tasks, often fail to divide two
objects into two separate segments due to the shadow cast
between them; two cars can be misrecognized as one car.
Also, the moving shadow of a car can be misinterpreted
as a separate moving object; an autonomously driven car
may make an unnecessary attempt to avoid a collision with a
shadow. Another challenge is to make a fast shadow detection
system which can make decisions fast enough to keep up
with the other parts of an autonomous driving system.

Almost all fast shadow detection studies are done in
a static background setting with background subtraction
methods or using a reference image that does not contain
foreground objects [19]. However, in the autonomous driving
setting, the background can quickly change. Some methods
do not require a background estimate, but these methods
use the time-consuming algorithms such as image segmen-
tation [11] and belief propagation [16], and assume an ideal
color generation model [16], [7], which may not be robust
for outdoor scenes.

In this paper, we propose methods to detect the shadows
on an urban road with a fast computation time. First, we
start with a pixel-based method that is well suited for an
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urban driving setting. We choose a sampling region near
the vehicle where we can reliably sample the road pixels
to estimate the characteristics of the road. Based on this
estimate and a machine learning method, each pixel of the
image is classified into one of the following categories: road,
shadow, dark object, and brighter object. The features used
for learning incorporate various characteristics of the pixels
including various color space aspects and spatial relations. In
particular, a Boosting algorithm was used because it has good
generalization performance and fast prediction time. Second,
we introduce an efficient region-based method that uses
spatial context. This method runs on the result of the pixel-
based method and improves the classification performance.
The important spatial context information is that shadow
pixels should neighboring road pixels around boundaries.
Our method utilizes this information without computationally
intensive image segmentation. Finally, we show experimental
results of these methods using real movie data provided by
the MIT DARPA Urban Challenge team. We observed that
our methods perform well even for a non-static background
setting.

II. BACKGROUND

There have been many efforts to detect shadows for
various applications. These efforts include intelligent high-
way systems, automatic surveillance, picture restoration, and
various tracking applications. A good survey on the shadow
detection problem is given in [19], [14].

Most of the shadow detection studies attempt to solve a
static background problem [9], [19], [14]. In this case, the
camera is fixed at a certain location, thus having a static
background. Often, the goal is to detect moving foreground
objects, such as cars and people. Then, shadow detection
algorithms solve a classification problem to separate the
shadowed background pixels, which move along with the
foreground objects, from the actual foreground objects pixels.
In these studies, background subtraction techniques are em-
ployed to estimate the color information of the background
by averaging or learning a color distribution over multiple
frames [8]. Good results of shadow detection have been
achieved by using invariant color features that can compare
the material nature of a pixel in the current frame to the
estimated background and by using other techniques such as
moving edge detection [9], [19], [14]. Unfortunately, for the
vision-guided driving problem, there is no static background
since the car is constantly moving and the scene changes.
This work addresses this case.

The shadow classification methods are divided into statisti-
cal and deterministic methods [14]; the former uses a training
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set for the parameter selection and the latter uses manual
selection of the parameters. Both methods can be divided
into two categories: pixel-based methods and region-based
methods. Pixel-based methods use the information of a pixel
or a small neighbor around a pixel, while the region-based
methods utilize the higher-level spatial information such as
geometric constraints between regions [9].

The methods described in [14] are all pixel-based methods
using color and illumination information. Many of them rely
on the Lambertian surface assumption that the perceived
color is the product of the illumination and the spectral
reflectance [19], [14]; shadow pixels have similar reflectance
to that of the background pixels but lower illumination.
However, pixel-based methods often fail to distinguish a dark
pixel from a shadow pixel. This problem can be alleviated to
a certain degree by enforcing spatial smoothness [10], [13].

Many region-based methods attempt to distinguish shadow
boundaries from material boundaries. The shadow boundary
is where the illumination change occurs on the same un-
derlying material due to different illumination. The material
boundary is the boundary between two different materials. A
shadow detection algorithm using the color ratio of neighbor-
ing pixels on boundaries is proposed in [3], while the Support
Vector Machines (SVM) are used to classify the shadow
boundaries among the boundaries obtained by a segmentation
algorithm [11]. The pixels inside the darker region touching
a shadow boundary were classified as the shadow pixels.
In many region-based methods, the image segmentation is
required and the performance of the detection can be greatly
affected by the segmentation [12].

IIT. PIXEL-BASED CLASSIFICATION

We develop three kinds of online pixel-based classifi-
cation methods. First, we address the shadow detection
problem in a dynamic background setting whereas most
previous online pixel-based classification methods assume
a static background and use the background subtraction
techniques [9], [19], [14]. Second, we automatically tune
the relevant feature parameters through a Boosting method.
In many classification tasks, discriminative methods such
as the Boosting method [18] have worked better than the
generative methods used in some previous works [9], [13].
The choice of the Boosting method over other discriminative
methods such as the SVM is explained in Section III-C.
Third, we distinguish between dark objects and other objects.
Previous works acknowledged that most of the classification
errors of their previous methods came from dark pixels
of the foreground objects [13], [9]. We suggest a simple
way to separate the foreground objects into dark or bright
objects using color information and show that this separation
improves the classification and gives a better performance
metric. Additionally, this separation helps the region-based
classification, which is explained in Section IV.

A. Online Background Estimation using Road Sampling

Our goal is to find the shadows on the road plane, cast
by other cars and objects. In other words, roads are the

background and objects on roads are the foreground. The
challenge is to estimate the characteristics of the road,
such as the color, from the constantly changing background.
With the information, we can utilize various background
subtraction techniques to classify shadow pixels.

We describe a method of finding the sampling region
of pixels that represents unshadowed road color with high
probability. First, we ensure that the sampling region is the
road by selecting the regions where it is very unlikely that
an object lies; the region close to the car should be the road
pixels most of the time. This is true, assuming that the other
parts of the autonomous car work properly, since the car will
keep a distance from other cars or obstacles. Fig. 1 shows
the example where the two boxes are not occupied by other
objects. We can configure the camera angle so that a minimal
distance between cars is enough for an image to contain these
void regions. Second, we ensure that the sampling region is
not shadowed by the car itself. The direction of shadow can
be easily found by using the sunlight direction determined
by the local time and the car orientation through using the
on-car compass. We select a region that is not in the direction
of shadow.

On this selected sampling region, we use random sampling
of the pixels to get the sample average, and we use the
running average method [13] to remove the effect of moving
shadows created by other objects like other cars and trees. If
the shadow is not removed by the running average since the
shadow stays for a long time, e.g., in a tunnel, we can just
regard it as the road color; it is equivalent to the situation
where shadow does not exist at all.

Fig. 1. A scene taken from the camera mounted on the car. The two white
boxes represent the sampling regions close to the car where other objects
should not lie. The pixels in these regions are randomly sampled.

B. Feature Set

In the literature, various features have been suggested for
the classification task. A few of them, such as the color ratio
between a pixel and the background estimate [15] and texture
information [10], have shown to be quite robust to the differ-
ent lighting conditions and scene environments, given a good
set of parameters which are usually upper and lower bound
thresholds [14]. However, the parameter selection process
was often done through an extensive manual analysis [15].
In addition, the validity of the features depends on some
assumptions such as those in the color generation model [15].
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We choose to utilize all of them by learning a data-driven
model of these features. Though they may be individually
noisy, it would provide a good feature set when they all
are combined. There are two categories of the features in
general: color-based and gradient-based.

The first category is the color-based features. The color
ratio between the color of a pixel P(z,y) and the estimated
background color of the pixel P(x,y) is used in most
previous work [11], [14], [7], [16], [15]. Most studies assume
the Lambertian surface color model

Pc(x,y):Ic(x,y)Rc(x,y),C':{R,G,B}, (1)

where C is one of the three color channels, Pc(z,y) is
the value of the C' channel of the pixel at (z,y), Ic(z,y)
is the illumination from the light sources and R¢(z,y) is
the reflectance, which is the characteristic of the material
at (z,y). This model implies that the color ratios of the
two pixels P, and P, of one material depend only on the
illumination, while they are also affected by the reflectance
if the pixels are from different materials; the shadow pixel
may have reflectance similar to that of the background pixel.
Different works suggested the use of other color spaces rather
than the standard RGB space for improving the classification.
The chromaticity, the normalized RGB color, was used in [6].
[5] suggested the use of the HSV color space.

The second category is the gradient features. The gradient
can be used to achieve texture and edge information [9],
[13], [10]. For instance, the metal surface of a car is smooth
while the road surface is rough, and the reflectivity of the
surfaces is different. We capture this textural information of a
small patch around the pixel by the variations of the gradient
directions and magnitudes in a patch. The gradient angle
variation of two different surfaces is shown in Fig. 2. We
used the horizontal, vertical, block and diagonal windows
of different sizes to capture this information in various
directions and lengths.

Fig. 2. Gradient angles of a car patch (left) and a road patch (right). The
same angles are represented with the same color.

C. The Choice of the Learning Algorithm

Among popular discriminative methods such as the Boost-
ing and the SVM algorithms [2], we choose the Boosting
method. It has advantages over the SVM for online detection
systems. Though SVM gives a sparse solution, the number of
support vectors still grows almost linearly with the number
of samples. When the number of the support vectors is n, the
prediction takes O(n?). In our case, one image has X x Y

pixels, where X = 720 and Y = 480. Using the training
samples from many images will result in a huge number
of support vectors. However, the Boosting algorithm learns
a parameterized model and the prediction only takes O(k)
where k is the number of the weak classifiers used and k
may be similar to the number of features.

Additionally, in the literature, many pixel-based classifi-
cation methods using the background subtraction techniques
have used one or two thresholds (upper and lower) in some
feature space, which is equivalent to using one or two
decision stumps. Thus, the decision stumps are used as the
weak learners for the Boosting with expectation of good
discrimination.

D. The Separation of the Foreground Pixels

The previous works have separated the pixels into three
classes; foreground (F'), background (B), and shadow (5)
pixels. It was noted in many previous works that dark
objects such as windshields and dark cars are most often
misclassified as shadow [13], [9]. However, dark foreground
objects and other foreground objects are put into the same
class F', possibly due to the manual work required to separate
them.

The common metric for the shadow detection performance
is the shadow detection rate 1 and the shadow discrimination
rate £ [14]. Let the number of true positive pixels of a class
X be T Px and the number of the false negative pixels be
FNx. Also, let the number of pixels of class Y which are
not misclassified as class X be TPy (X). Then

__ TR TPe(s) o
"= TPs+FNs °~ TPp+FNrp
where S represents the shadow, and F' represents the fore-

ground.

We further separate F' into the bright objects O and the
dark objects D. Intuitively, the classification between S and
D will be harder than between S and O, as the hard-to-
classify pixels will be more present in D. In this case, the
discrimination rate £ becomes

¢ = ﬁo(S)ﬂ-ﬁD(S) _ ﬁo(S)-ﬁ-ﬁD(S)
"~ TPo+FNo+TPp+FNp No + Np

3)
where Nx is the total number of pixels from class X. Note
that £ depends on Np and Np. Even when %D(S) is
really low, meaning that an algorithm fails to distinguish
dark objects from shadow, ¢ can be still high if %O(S) is
high and Np < No.

The separation would allow better evaluation of the algo-
rithms. Another advantage is that cascaded classification [18]
is possible with the separation. We may use a small number
of features to classify the pixels into {B,O} and {S, D}.
Then, we use more features to classify the pixels in {5, D}
into S and D. This will reduce the computation time and
improve the classification rate as well.

In this work, we simply choose to use the road color
estimate of the current frame to divide the foreground pixels
of the frame into two separate classes O and D. If a pixel
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in F' is darker than the estimated road color, it is classified
as a D pixel, but otherwise as an O pixel. Note that manual
work to separate the pixels into O and D is not required.

IV. REGION-BASED METHOD

The pixel-based classification has the limitation that it does
not fully utilize the spatial context. The labels of neighbor
pixels should be similar and we have only partly addressed
this problem by using the features generated from a spa-
tial neighborhood. Additionally, the shadowed road regions
should be neighboring the not-shadowed road regions; the
existence of the shadow is geometrically constrained [9].
To address these issues, many post-processing approaches to
the pixel-based classification have been suggested, including
morphological operations, probabilistic relaxation, and image
segmentation [19].

In this section, we describe two region-based methods that
can improve upon the pixel-based classification. First, we ap-
ply probabilistic smoothing to impose the consistency of the
labels in a spatial neighborhood. Our second method further
improves the result by using the geometric information that a
shadowed road region should be neighboring a not-shadowed
road region as in [9], [15], but with special attention to
the dark pixels. We show that the good classification of
dark and shadow pixels are critical in this process. Finally,
we describe a lazy classification approach to improve the
processing speed.

A. Imposing Spatial Consistency

We impose spatial consistency on the pixel-based classi-
fication results using a probabilistic smoothing technique.
Given a pixel z, we use a prior that the labels of the
neighboring pixels {z1,2,...x,} should be equal to the
label of the pixel x. Typically, the pixels in a square window
of small size are chosen as neighbors. However, instead of
using all pixels in a window as in [9], we only consider the
pixels inside a region defined by the surrounding edges. This
will help to choose only the pixels of the same class as the
neighbors, because usually the edges well separate the two
different regions, which contain the pixels of two different
classes, as in Fig. 3.

Given the predicted labels of the neighboring pixels X =
(Z1,Z2, "+ , &), the maximum likelihood estimator of the
label of the center pixel z is given by

x= argmax P(X|lzyi=a2=--- =12, =x)
©=S,D,R,0
= argmax P(2|x)P(d3]z) - P(4,|2)
©=S,D,R,0
using the prior information that the labels should be consis-

tent in the neighborhood. We use the cross-validation error
of the learned model as P(Z|z),z = {S,D, R, O}.

B. Detection of the Shadow Boundary Pixels

The detection process of the shadow boundary pixels is
first initiated with the edge detection that finds both material
boundaries and shadow boundaries. We use the Canny edge

Fig. 3.

The edge detection result of a frame. Three types of boundaries
are shown (blue: shadow and road, red: road and dark, yellow: shadow and
bright).

detector, which is considered to be an ideal edge detection
algorithm due to its robustness [4].

A shadow boundary pixel should have the road pixels on
the brighter side and the shadow pixels on the darker side.
Let a small set of the neighboring pixels at the brighter side
be Kp and the darker side be K p. Then, the probability of
a edge pixel p to be a shadow boundary pixel is given by

P(p is on a shadow boundary) o
[I PGilzi=R) [ PGl =S)

i€EKp JjEKD

If P(p is on a shadow boundary) is higher than a certain
threshold, p will be classified as a shadow boundary pixel.
After the detection of the shadow boundaries, only the
pixels that are connected to a shadow boundary pixel are
finally classified as the shadow pixels. We claim that the
boundary detection process should be very selective, with a
high threshold, as only a few pixels of a boundary have to
be detected. The boundary detection algorithms such as the
one in [15] classify dark pixels as shadow candidate pixels
using the color information alone. This may result in spurious
shadow boundary detection in the case such as the one in
Fig. 3, where the dark car share a boundary with the road.

The above step eliminates the false positives of the shadow
class. Simple morphological processes can be applied to
flip the misclassified pixels inside the shadow regions to
eliminate the false negatives [9].

C. Lazy Classification of the Labels

For the purpose of detecting shadow pixels, we can do
the pixel-based classification for only a subset of all the
pixels in the image once we know that it is required; so we
call this lazy classification. Once an edge is detected by an
edge detection method such as Canny method, it is sufficient
to know the labels of the pixels nearby the edges. Thus,
we need to classify only the pixels nearby the edges. After
detecting the shadow boundary by the method described in
this section, we can do the process of classifying the pixels
that are connected to a pixel on the shadow boundary.
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V. RESULTS

The driving video sequence of a vehicle in a city environ-
ment was provided by the MIT DARPA Urban Challenge
team. We used one sequence for the training and another
sequence, which was taken at a different time on a different
road, for the validation. There are 500 frames per each video
sequence. For training, the pixels in the first sequence are
manually labeled!. The online background estimation algo-
rithm was run on the video sequence to get the road pixels
information of each frame and the features are generated per
each labeled pixel using this information. For the validation,
the same background estimation algorithm gives the road
pixels information per each frame and the pixels in the frame
are classified using this information. For the results shown
in TABLE I and TABLE II, we randomly sampled the same
number of pixels of each class per each frame, to avoid the
temporal and spatial bias in the samples.

The one-versus-one approach was used for the multi-class
classification, where binary classification is done per each
pair of the class and the final class is decided by the votes
from these binary classifications [2]. The number of weak
classifiers used for the Boosting models was selected through
a cross validation in the training set. The use of many features
were helpful for the better classification and the Boosting
algorithm was successful in avoiding overfitting despite the
much increased dimension of the feature space as shown
in Fig. 4. The number of weak classifiers was different for
each classification task as the difficulty of the separation
was expected to be different; D vs. O classifier used only
one weak classifier while R vs. D classifier used 45 weak
classifiers.

The detail of the pixel-based classification using the Boost-
ing method is shown in TABLE I and TABLE II, while
the latter had only three classes without the separation of
the dark and other (not-dark) objects. The simple separation
resulted in better classification. We already explained that
putting O and D in one class can distort the prediction result
because O and S are very easy to separate while D and S are
not. For example, if F' contains many more samples of O , a

Iwe randomly selected objects (shadow, cars, etc.) in each frame and
used a polygon to label an object

J0

Fig. 4. The detection rate and the discrimination rate using the different
subset of the features. Using the color features from all color spaces
combined with the spatial features performed the best.

u

TABLE I
THE CLASSIFICATION RATE OF THE DIFFERENT CLASSES WITH
SEPARATING THE FOREGROUND OBJECTS INTO THE TWO CLASSES

Predicted label
True label R S D @) # samples
R 77.62%  2.25% 5.04% 15.09% 50000
S 1.41% 75.39% 22.85%  0.35% 50000
D 5.01% 29.84% 65.15%  0.00% 50000
(@) 3.12% 0.90% 2.18%  93.80% 50000

7 =75.39%, £ = 83.54%

TABLE I
THE CLASSIFICATION RATE OF THE DIFFERENT CLASSES WITHOUT
SEPARATING THE FOREGROUND OBJECTS INTO THE TWO CLASSES

Predicted label
True label R S F # samples
R 60.17% 34.75%  5.07% 50000
S 0.01%  75.54% 24.45% 50000
F 3.51%  49.16% 47.33% 100000

7 = 75.54%, € = 50.84%

classifier that misclassifies all D and correctly classifies all O
will have a good overall prediction error. Both the detection
rate and the discrimination rate in TABLE I are comparable
to the best performance reported for the pixel-based methods
in a static background setting [14].

We compared the performance of our sampling-region-
based method as described in Section III-A with that of
an adaptive static background estimation method using the
runtime moving average of the color information per each
pixel. The comparison result is shown in TABLE III. Our
sampling strategy to sample the road colors from the near-
region of the car have a significantly better detection rate.
Especially, if there is busy traffic and the road is occupied
by many cars, the difference should be even greater as the
runtime average of a pixel is the average color of different
cars and not the road.

The ability of the region-based method to remove the false
positives of the shadow is shown in TABLE IV quantitatively
and in Fig. 5 qualitatively. Note that with a reasonable
detection rate it may be possible to detect shadows better
with a post-processing step such as the ones suggested in [9].
However, the discrimination rate can be more important in
the driving application as the car should avoid the risk of
identifying other vehicles as shadow.

We were able to process about 20 images per second with
C implementation on a Pentium 4 2.4 Ghz machine, even

TABLE III
THE SHADOW DETECTION RESULTS WITH DIFFERENT BACKGROUND
ESTIMATION METHODS

Background estimation method \ n 13
Our sampling strategy 6% 84%
Adaptive static background estimation | 48%  86%

TABLE IV
THE COMPARISON OF THE PIXEL-BASED CLASSIFICATION AND THE
REGION-BASED CLASSIFICATION

Classification method | n I3
Pixel-based 6% 84%
Region-based %  91%
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(a) Original

Fig. 5.

without fully applying the speed-up techniques introduced in
this paper. This is much faster than the other methods, not
using a background estimation, such as the belief propagation
algorithm in [16] which reported 5 minutes processing time
per image.

VI. CONCLUSION

We presented a fast shadow detection algorithm for an
urban autonomous driving application. Most, if not all, of the
existing fast shadow detection algorithms rely on the fact that
the background is static. With the background information,
the foreground objects and the shadow pixels were separated
in various feature spaces including the color ratio space,
which is shown to be invariant. We noted the fact that
the background in our problem, the urban road, is rather
uniformly colored and flat though its color gradually shifts
and its shape changes. Then, we introduced the sampling
strategy through which the color information of the road can
be estimated. The color ratio between the color of a pixel and
the estimated road color, combined with the spatial features
that can take into account the characteristics of the different
surfaces, has been proved effective to classify the shadow
pixels on the road accurately.

Instead of manually choosing a few features out of many
useful features for the pixel-based classification, a Boost-
ing algorithm was chosen to learn the parameters of the
classification model automatically. The learning algorithm
succeeded in avoiding overfitting despite the much increased
dimension of the feature space, where a manual parameter
selection would not be feasible. We also have shown that
the separation between the darker and the brighter fore-
ground pixels has enabled better classification as well as fair
evaluation of the classification performance, as the brighter
foreground pixels are easy to classify and the result may look
better with many of them in the validation set. The mistakes
made in the pixel-based classification could be fixed with the
region-based method that enforces spatial consistency and
geometric constraints.

The computation time of the method was shown to be
fast, without careful optimization, as its overall complexity
is O(n) where n is the number of pixels in an image and
the learned model is an efficient parametric model. Further
speed-up techniques for the classification were described,
including cascaded classification and lazy classification. We
also note that the pixel-based classification can be parallel
processed.
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(c) Boundary-based

The step-by-step improvement of the shadow detection.

REFERENCES

http://www.darpa.mil/grandchallenge/index.asp.

E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass
to binary: a unifying approach for margin classifiers. The Journal of
Machine Learning Research, 1:113-141, 2001.

K. Barnard and G. Finlayson. Shadow identification using colour
ratios. IS&T/SID 8th Colour Imaging Conference: Colour Science,
Systems and Appl, pages 97-101, 2000.

J. Canny. A computational approach to edge detection. [EEE
Transactions on Pattern Analysis and Machine Intelligence, 8(6):679—
698, 1986.

R. Cucchiara, C. Grana, M. Piccardi, A. Prati, and S. Sirotti. Im-
proving shadow suppression in moving object detection with hsvcolor
information. [Intelligent Transportation Systems, 2001. Proceedings.
2001 IEEE, pages 334-339, 2001.

A. Elgammal, D. Harwood, and L. Davis. Non-parametric model for
background subtraction. Lecture Notes in Computer Science, pages
751-767, 2000.

G. D. Finlayson, S. D. Hordley, and M. S. Drew. Removing shadows
from images. Lecture Notes in Computer Science, pages 823-836,
2002.

T. Horprasert, D. Harwood, and L. S. Davis. A statistical approach for
real-time robust background subtraction and shadow detection. Proc.
IEEE ICCV, 99:1-19.

A. J. Joshi, S. Atev, O. Masoud, and N. Papanikolopoulos. Moving
shadow detection with low-and mid-level reasoning. Robotics and
Automation, 2007 IEEE International Conference on, pages 4827—
4832, 2007.

A. Leone, C. Distante, and F. Buccolieri. A texture-based approach
for shadow detection. Proceedings. IEEE Conference on Advanced
Video and Signal Based Surveillance, 2005., pages 371-376, 2005.
M. D. Levine and J. Bhattacharyya. Removing shadows. Pattern
Recognition Letters, 26(3):251-265, 2005.

L. Lucchese and S.K. Mitra. Colour Image Segmentation: A State-of-
the-Art Survey. Proceedings. Indian National Science Academy Part
A, 67(2):207-222, 2001.

I. Mikic, P. C. Cosman, G. T. Kogut, and M. M. Trivedi. Moving
shadow and object detection in traffic scenes. Pattern Recognition,
2000. Proceedings. 15th International Conference on, 1, 2000.

A. Prati, I. Mikic, M. M. Trivedi, and R. Cucchiara. Detecting moving
shadows: Algorithms and evaluation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pages 918-923, 2003.

E. Salvador, A. Cavallaro, and T. Ebrahimi. Shadow identification
and classification using invariant colormodels. Acoustics, Speech,
and Signal Processing, 2001. Proceedings.(ICASSP’01). 2001 IEEE
International Conference on, 3, 2001.

M. F. Tappen, W. T. Freeman, and E. H. Adelson. Recovering intrinsic
images from a single image. IEEE Transactions On Pattern Analysis
And Machine Intelligence, pages 1459-1472, 2005.

A. Tsalatsanis, K. Valavanis, and A. Yalcin. Vision based target
tracking and collision avoidance for mobile robots. J. Intell. Robotics
Syst., 48(2):285-304, 2007.

P. Viola and M. Jones. Fast and Robust Classification using Asymmet-
ric AdaBoost and a Detector Cascade. Advances In Neural Information
Processing Systems, 2:1311-1318, 2002.

Li Xu, Feihu Qi, Renjie Jiang, Yunfeng Hao, Guorong Wu, Li Xu,
Feihu Qi, Renjie Jiang, Yunfeng Hao, and Guorong Wu. Shadow
detection and removal in real images: A survey, 2006.



