
Sparse Online Model Learning for Robot Control

with Support Vector Regression

Duy Nguyen-Tuong, Bernhard Schölkopf, Jan Peters

Max Planck Institute for Biological Cybernetics, Spemannstraße 38, 72076 Tübingen

Abstract— The increasing complexity of modern robots
makes it prohibitively hard to accurately model such systems as
required by many applications. In such cases, machine learning
methods offer a promising alternative for approximating such
models using measured data. To date, high computational
demands have largely restricted machine learning techniques to
mostly offline applications. However, making the robots adap-
tive to changes in the dynamics and to cope with unexplored
areas of the state space requires online learning. In this paper,
we propose an approximation of the support vector regression
(SVR) by sparsification based on the linear independency of
training data. As a result, we obtain a method which is
applicable in real-time online learning. It exhibits competitive
learning accuracy when compared with standard regression
techniques, such as ν-SVR, Gaussian process regression (GPR)
and locally weighted projection regression (LWPR).

I. INTRODUCTION

In recent years, model learning has become a popular tool

in many robotics applications such as model-based control

[1], [2], terrain modeling [3], sensor modeling [4] and many

other applications. The reason for this rising interest is that

with the increasing complexity in modern robots, hand-

crafted models of such systems are often not sufficiently

accurate. Model learning can be an useful alternative in

such cases, as the model can be obtained directly using

measured data. Unknown nonlinearites are directly taken

in account, while they are neglected either by the standard

modeling techniques, or by hand-crafted approximation using

measurements. However, excessive computational complex-

ity still hinders a widespread application of the more accurate

learning techniques in robotics. Due to high computational

demands, models are mostly approximated offline on pre-

sampled data to date. Models that are learned offline can

only approximate the model correctly in the area of the state

space that is covered by the sampled data. In order to cope

with unknown state space regions, online model learning is

necessary. It also allows the adaption to changes in the robot

dynamics, unforeseen load or time-variant torque generation

of the actuators. However, real-time online model learning

poses three major challenges, i.e., firstly, the learning and

prediction process needs to be sufficiently fast. Secondly,

the learning system needs to deal with very large amounts

of data. And, thirdly, the data arrives as a continuous stream,

thus, the model has to be continuously adapted to new train-

ing examples over time. Previously, several approaches for

real-time model learning for robotics have been introduced,

such as locally weighted projection regression (LWPR) [5]

or local Gaussian process regression [2]. In these methods,

the state space is partitioned in local regions for which local

models are approximated and, thus, these methods will not

make proper use of the global behavior of the embedded

functions. As the proper allocation of relevant areas of

the state space is essential, appropriate online clustering

becomes a central problem of these approaches. For high

dimensional data, partitioning of the state space is well-

known to be a complicated problem [2], [5]. To circumvent

this online clustering [2], an alternative is to find a sparse

representation of the known data [6], [7]. By using the sparse

set for model learning, the computational complexity can be

reduced. However, determining an appropriate sparsification

method applicable for a real-time online learning is a major

challenge tackled here.

In this paper, we propose an online sparsification method

applicable for online model learning with support vector

regression (SVR). Our approach is an extension of the work

in [8]–[10] and we show that it is appropriate for real-time

application. The proposed sparsification is performed using

a test of linear independency to select a sparse subset of

the training data points, often called dictionary. The result-

ing framework allows us to derive criteria for incremental

insertion and deletion of dictionary data points which are

the two essential operations in the online learning scenario.

As evaluation, the proposed approach is applied for online

learning of the inverse dynamics model. The rest of the paper

will be organized as follows: firstly, we review the problem of

learning inverse dynamics for model-based control, secondly,

the SVR method. Subsequently, we present a sparsification

approach enabling online model learning with SVR, called

SOSVR. The efficiency of the proposed approach is exhibited

by a comparison of learning inverse dynamics models with

well-established regression methods, i.e., ν-support vector

regression (ν-SVR) [11], Gaussian process regression (GPR)

[6], locally weighted projection regression (LWPR) [5] and

online Gaussian process regression (OGP) [12].

In Section I-A we will review support vector regression,

and in Section I-B inverse dynamics model for model-based

control.

A. Support Vector Regression

Support vector regression attempts to find a hyperplane

fitting the data in a high-dimensional feature space [7]. Thus,

the model is given by

f(x) = wT Φ(x) + b , (1)

where x is an input point projected to the feature space by

Φ, w and b denote the weights and bias of the hyperplane in

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 3121

that space, respectively. Given the training data {xi, yi}
n
i=1,

w (and, subsequently, b) can be solved by minimizing the

following constraint optimization problem

min
w

1

2
‖w‖2 +

C

n

n
∑

i=1

(ξi + ξ∗i) , (2)

subject to
(

wT Φ(xi) + b
)

− yi ≤ ǫ + ξi

yi −
(

wT Φ(xi) + b
)

≤ ǫ + ξ∗i
ξ
(∗)
i ≥ 0 ,

where ξ
(∗)
i denote slack variables, C a penalty factor for

the deviation of data points, ǫ represents the width of a

tube around the hyperplane where deviations are tolerated.

Equation (2) can be solved using its dual form [7] yielding

w =
∑n

i=1 (α∗

i − αi)Φ(xi) with the Lagrange multipliers

α
(∗)
i . Thus, the solution for Equation (1) is given by

f(x)=

n
∑

i=1

(α∗

i − αi) k(xi,x) + b , (3)

where the kernel k(xi,x) represents the inner-product of two

feature vectors Φ. A frequently used kernel is a Gaussian

kernel, for example, k(xi,x) = exp(−0.5(xi −x)T W(xi −
x)), with W represents the width of the Gaussian kernel.

For solving the optimization problem in Equation (2), the

parameter ǫ has to be chosen in accordance with the noise

level in the data. A straightforward way to adapt ǫ is

implemented by the ν-SVR that uses an open parameter ν

in order to automatically adjust ǫ [11].

B. Learning Inverse Dynamics for Control

Model-based tracking control [13] has many potential

advantages such as compliance, better performance during

high speed movements, reduced energy consumption and im-

proved tracking accuracy. The model-based tracking control

law determines the joint torques u that are required to follow

a desired trajectory qd, q̇d, q̈d. In computed torque control,

the motor command u consists out of two parts, a feedfor-

ward term uFF to achieve the movement and a feedback term

uFB to ensure stability of the tracking. The feedback term

can be a linear control law such as uFB =Kpe+Kvė, where e

denotes the tracking error with position gain Kp and velocity

gain Kv . The feedforward term uFF is determined using

an inverse dynamics model and, traditionally, the analytical

rigid-body model is employed [13]. If a sufficiently precise

inverse dynamics model can be approximated, the resulting

control law u=uFF (qd, q̇d, q̈d)+uFB will drive the robot

along the desired trajectory accurately.

One possibility to obtain an accurate inverse dynamics

model is to learn it directly from measured data. The

resulting problem is a regression problem which can be

solved by learning the inverse dynamics q, q̇, q̈ → uFF on

sampled data [1], [14] and, subsequently, using the resulting

mapping for determining the feedforward motor commands.

As trajectories and corresponding joint torques are sampled

directly from the real robot, learning the inverse dynamics

will include all nonlinearities of the system.

II. REAL-TIME ONLINE SUPPORT VECTOR REGRESSION

Classical SVR does not support incremental updates of

the model that are necessary for online learning as the data

arrives sequentially over time. The continuously increasing

online data set and the real-time performance requirement

prohibit the straightforward application of standard SVR

in the online mode. There have been many attempts to

develop an online algorithm for SVR, for an overview see

[7]. However, to our best knowledge only few of them are

potentially applicable in a real-time learning system (e.g., for

online learning with model updates at 50 Hz or faster). A

promising approach is given in [8]–[10], where [10] provides

a sequential SVR training procedure and [8] applies a linear

independence test for the sparsification of SVR. However,

the approach given in [8] is not yet suitable for application

in fast real-time learning as the sparse data set is not bounded

and, thus, can become arbitrarily large during online learning.

In this paper, we extend the idea of sparsification using

linear independence tests [8] and develop a framework for

incremental insertion & deletion of data points which can

deal online with constantly arriving new data points.

A. Test of Linear Independency and Training of SVR

At any point in time, our algorithm maintains a dictionary

{xi, yi}
m
i=1. To test whether a new point {xm+1, ym+1}

should be inserted into the dictionary, we firstly need to

ensure that it can not be approximated in the feature space

using the current data set. This test can be performed using

[7], [8]

δ =

w

w

w

w

w

m
∑

i=1

aiΦ(xi) − Φ(xm+1)

w

w

w

w

w

2

, (4)

where the ai denote the coefficients of the linear dependency.

The coefficients ai can be determined by minimizing δ,

which yields the optimal coefficient vector am = K
−1
m km.

Here, Km =k(Xm,Xm) is the kernel matrix evaluated for

the dictionary data set Xm and km = k(Xm,xm+1) is the

kernel vector. After substituting the optimal value am into

Equation (4), δ becomes

δ = k(xm+1,xm+1) − k
T
mam . (5)

The value δ is an independency measure indicating how well

a new data point xm+1 can be approximated by a given data

set in the feature space. Thus, the larger the value δ is, the

more independent is xm+1 from the dictionary set Xm, and

the more informative is xm+1 for the learning procedure.

Using δ we can decide whether to insert new data points

into the dictionary. However, it is necessary to set a budget

for the dictionary in order to cope with the computational

complexity. Thus, we have to delete dictionary points, if

the given limit is reached. The procedure for inserting and

deleting of dictionary points will be discussed in detail in

Sections II-B and II-C. Due to the lack of space, we will

focus on the main results. After updating the dictionary,

the support vector machine can be sequentially trained on

the new dictionary [10], i.e., by re-estimating the Lagrange

multipliers for the prediction step. The training and update

procedure are summarized in Algorithm 1.

3122

Algorithm 1: Independency Test with Online Update of

Dictionary and Sequential Training of SVR.

Input: new point {xm+1, ym+1}, η, MaxNr.
Compute

am =K
−1
m km

km =k(Xm,xm+1)
Compute δ

δ = k(xm+1,xm+1) − k
T
mam

if δ > η then

if number of dictionary points < MaxNr then

Update dictionary according to Algorithm 2

by inserting {xm+1, ym+1}.

else

Update dictionary according to Algorithm 3

by inserting {xm+1, ym+1}
and deleting an old dictionary point.

end if

Sequential Training of SVR

using the new dictionary {xi, yi}
m+1
i=1 .

end if

Compute prediction for a query point x

f(x)=(α∗

i − αi)k(Xm+1,x) + b

B. Insert a New Point to the Dictionary

The independency measure δ can be used as a criterium

for the selection of new data points by defining a threshold

value η. If δ > η, the new point will be included to the

dictionary, otherwise not. The larger η is chosen, the smaller

is the potential number of dictionary points. However, a small

dictionary size may lead to a bad generalization ability. On

the other hand, large dictionary will be prohibitive expensive

in terms of computational complexity. To cope with this

problem, we set η sufficiently small and define an upper

bound on the dictionary size according to the computational

power of the system. If the bound is reached, we delete

old dictionary points depending on their independency from

the remainder of the dictionary. For doing so, we have to

constantly update the independency variable δk for every

dictionary point k after inserting a new data point, as

changing the dictionary implies a change for each δk.

The independency measure δ, as given in Equation (5),

can be incrementally updated for each old dictionary point

after inserting a new point xm+1. This update for an existing

dictionary point xk is done by adjusting the corresponding

coefficient vector a
k
m. However, updating a

k
m implies an

update of (Kk
m)−1 and k

k
m. Here, inserting a new point

will extend K
k
m by a row/column and k

k
m by a value,

respectively, such that

K
k
m+1 =

[

K
k
m k

k

k
kT kmm

]

, k
k
m+1 =

[

k
k
m

kkm

]

, (6)

where k
k = k(Xk

m,xm+1), kmm = k(xm+1,xm+1) and

kkm = k(xm+1,xk). The incremental update of the inverse

matrix (Kk
m+1)

−1 can be given as

Algorithm 2: Update of dictionary by insertion of a new

data point.

Input: new dictionary point {xm+1, ym+1}.

Update dictionary {xi, yi}
m+1
i=1

for k=1 to number of dictionary points do

Get xk and Xk
m

Compute

k
k =k(Xk

m,xm+1)
kmm =k(xm+1,xm+1)
kkm =k(xm+1,xk)

Compute

αk =
(

K
k
m

)

−1

k
k

γk = kmm − k
kT

αk

Update δk as given in Equation (8).

Update (Kk
m+1)

−1 as given in Equation (7).

end for

(

K
k
m+1

)

−1

=
1

γk

[

γk(Kk
m)−1 + αkα

T
k −αk

−α
T
k 1

]

. (7)

This derivation leads to the update rule for the linear inde-

pendency value δk for the k-th dictionary point

δk = k(xk,xk) − k
kT
m+1a

k
m+1 ,

a
k
m+1 =

1

γk

[

γka
k
m + αkα

T
k k

k
m − kkmαk

−α
T
k k

k
m + kkm

]

.
(8)

The variables γk and αk are computed as

αk = (Kk
m)−1

k
k ,

γk = kmm − k
kT

αk .

The procedure for insertion of new data points with δ-update

is summarized in Algorithm 2.

C. Insert a New Point and Delete a Dictionary Point

As the data arrives continuously in an online setting, it

is necessary to limit the number of dictionary points so

that the computational power of the system is not exceeded.

Thus, it is essential to delete old points if the limit is

reached after inserting new data points. The deletion can be

performed straightforwardly by deleting a dictionary point

with a minimal value of δ. The idea is to delete points

which are most dependent on other dictionary points, i.e., the

corresponding δ value is minimal. Insertion and additional

deletion of dictionary points also change the independency

values of other dictionary points which have to be updated.

Insertion of a new point with an additional deletion of

the j-th dictionary point imply a manipulation of the j-th

row/column of K
k
m and the j-th value of k

k
m, i.e., by

K
k
m+1 =







K
k
j−m k

kT
j K

k
j+m

k
k
j kmm k

k
j+m

K
k
j+m k

kT
j+m K

k
j−m






, k

k
m+1 =







k
k
j−m

kkm

k
k
j+m






.

(9)

The values k
k, kmm and kkm are determined as shown in

Section II-B. The incremental update of the independency

3123

Algorithm 3: Update of dictionary by insertion of a new

data point and additional deletion of an old data point.

Input: new dictionary point {xm+1, ym+1}.

Find dictionary point with minimal δ

j =mini δ

Update dictionary by overwriting point j:

{xj , yj}={xm+1, ym+1}
for k=1 to number of dictionary points do

Get xk and Xk
m

Compute

k
k =k(Xk

m,xm+1)
kmm =k(xm+1,xm+1)
kkm =k(xm+1,xk)

Compute

k
k
m+1 =[k

k
j−m kkm k

k
j+m]T

d = k
k−rowj [K

k
m]T

Update δk as given in Equation (10).

Update (Kk
m+1)

−1 =A.

end for

measure δk for every k-th dictionary point can directly be

performed by applying the matrix inversion. Hence,

δk = k(xk,xk) − k
kT
m+1a

k
m+1 ,

a
k
m+1 = A k

k
m+1 ,

(10)

where A is computed as

A = A
∗ −

rowj [A
∗]T d

T
A

∗

1 + d
T rowj [A

∗]T
,

A
∗ = (Kk

m)−1 −
(Kk

m)−1
d rowj [(K

k
m)−1]

1 + d
T rowj [(K

k
m)−1]T

.

Here, d is determined by d = k
k − rowj [K

k
m]T and rowj

denotes the j-th row of a given matrix. The update of

(Kk
m+1)

−1 can be given as (Kk
m+1)

−1 =A. The complete

procedure is summarized in Algorithm 3.

D. Relation to Previous Work

Our algorithm was inspired by the ideas proposed in

[8]. However, there are several important differences which

need to be discussed here. In [8], they introduce the so

called ‘reduced’ variables for the training of the SVR. Here,

all data points which do not belong to the dictionary are

represented as a linear combination of the dictionary points.

The support vector prediction is then computed as f(x) =
(α∗ − α)

T
Λk(X,x) + b, where Λ denotes a n×m matrix

storing n training points and m dictionary points. It turns out

that an update of Λ is necessary, if dictionary points have

to be deleted. Since the number of data points n increases

continuously online, this approach is not appropriate for

online application, as Λ is growing without any bound.

In order to avoid the problems faced by [8], we train the

SVR directly from the dictionary points instead of using

reduced variables. This approach allows us to formulate an

efficient insertion and deletion procedure for the dictionary,

making SVR applicable for fast online learning. However,

0 0.5 1 1.5 2 2.5 3

−1.5

−1

−0.5

0

0.5

1

1.5

X

Y

Test

Full

Dict. 12

Dict. 19

Fig. 1: Prediction performance using the toy data set. The prediction
results for the toy example using the full dictionary (red thick line),
dictionary with a budget of 12 data points (green dashed line) and
dictionary with a budget of 19 data points (blue dashed line). The
dots show the positions of the corresponding dictionary points in
the input space. Using a fix budget, the most relevant regions in
the input space are covered with dictionary points.

our method requires a sufficiently large dictionary for the

training of the SVR. Since the dictionary is permanently

updated for every data point, i.e., by inserting and delet-

ing dictionary points, the algorithm also allows fast model

adaptation for unknown data. Considering the computational

cost we need O(m) for prediction, where m is the number

of dictionary points. For training, we require O(m3), i.e., m

rank-one updates which have a complexity of O(m2).

E. Toy Example

In this section, we will show the learning performance

of the algorithm using a toy data set, in order to highlight

the effects of different dictionary size on the generalization

ability. As a toy example, we generate a noisy data set where

the relation between the target y and the input x is given by

yi = sin(x2
i)+εi. The data consists out of 315 points, εi

is white Gaussian noise with standard deviation 0.2 and xi

ranges from 0 to π.

The prediction results are shown in Figure 1, where η =
0.001 and a Gaussian kernel with width 0.4 is being used.

Figure 1 shows the performance using the full dictionary

(red line), i.e., no dictionary points are deleted. With the

given threshold η, the algorithm finds 23 dictionary points

out of 315 training examples, equally covered the input

space x. Since η directly corresponds to a distance in

input space, dictionary points are sequentially included, if

this distance between sample points in the input space is

exceeded. In practice, the number of dictionary points is

not known beforehand for a given η. The dictionary size

can be arbitrarily large during online learning, if unknown

parts of the state space have to be discovered, and, thus,

has to be limited. The results of prediction performed using

a dictionary with a fix budget are also shown in Figure 1.

Through the incremental deletion and insertion process, the

3124

1 2 3 4 5 6 7
0

0.01

0.02

0.03

0.04

0.05

Degree of Freedom

n
M

S
E

LWPR

OGP

ν−SVR

GPR

SOSVR

(a) Approximation Error on SL data

(SARCOS model)

1 2 3 4 5 6 7
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Degree of Freedom

n
M

S
E

LWPR

OGP

ν−SVR

GPR

SOSVR

(b) Approximation Error on SARCOS

data

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

Degree of Freedom

n
M

S
E

LWPR

OGP

ν−SVR

GPR

SOSVR

(c) Approximation Error on Barrett

WAM data

Fig. 2: The approximation error is represented by the normalized mean squared error (nMSE) for each DoF (1–7) and shown for (a)
simulated data from physically realistic SL simulation, (b) real robot data from an anthropomorphic SARCOS master arm and (c)
measurements from a Barrett WAM. In all cases, SOSVR is competitive to standard global batch regression methods such as ν-SVR and
GPR, state-of-the-art local learning LWPR and sparse Gaussian process approximation OGP. Note that in (c) the small variances of the
output targets in the Barrett data result in a larger nMSE when compared to SARCOS data in (b).

Fig. 3: Barrett Whole-Arm-Manipulator (WAM)

dictionary points are mostly concentrated on the state space

regions which are ‘difficult’ to learn, e.g., 1.5 < x < 2.7. As

shown in the figure, the dictionary size represents a trade-off

between learning accuracy and computational complexity.

III. EVALUATIONS

In this section, we evaluate our sparse online SVR

(SOSVR) in several different experimental settings. Firstly,

we will evaluate our algorithm in the context of learning

inverse dynamics. The learning accuracy of SOSVR will

be compared with other standard regression methods, i.e.,

LWPR, GPR, ν-SVR and the online method OGP. For the

evaluation in inverse dynamics learning, we employ 3 data

sets as described in [1], [2]. These data sets include synthetic

data as well as real robot data generated from the 7 degrees

of freedom (DoF) anthropomorphic SARCOS arm and the

7-DoF Barrett WAM, shown in Figure 3. Finally, SOSVR

is applied for online learning of an inverse dynamics model

for robot computed torque control, following the setting in

[1]. For the robot control task, we use a model of our 7-

DoF Barrett WAM simulated with the real-time simulation

package SL [15].

A. Comparison in Learning Inverse Dynamics

For comparing the learning accuracy in the setting of

learning inverse dynamics, we use three data sets: (i) SL

simulation data for the SARCOS arm model with 14094

training points and 5560 test points [1], (ii) data from the

SARCOS master arm with 13622 training points and 5500

test points [5] as well as (iii) a data set generated from

our Barrett arm containing 13572 training points and 5000

test points [2]. Given samples x = [q, q̇, q̈] as input where

q, q̇, q̈ denote the joint angles, velocity and acceleration,

respectively, and using the corresponding joint torques y=u

as targets, we have a well-defined regression problem. The

considered 7 DoF robot arms result in 21 input dimensions

(i.e., for each joint, we have an angle, a velocity and an

acceleration) and 7 output dimensions (i.e., a single torque

for each joint). The robot inverse dynamics model can be

estimated separately for each DoF employing LWPR, ν-

SVR, GPR, OGP and SOSVR, respectively.

Figure 2 shows the prediction error on the test sets

evaluated using the normalized mean square error (nMSE)

defined as the fraction of mean squared error and the variance

of target. For all three data sets the dictionary size is limited

to 3000. Figure 2 shows the results of the comparison. It can

be seen that SOSVR is competitive in learning accuracy.

B. Model Online Learning in Computed Torque Control

In this section, we apply SOSVR for the online learning of

the inverse dynamics model of our Barrett WAM for torque

prediction as described in [2]. For doing so, the trajectory

q, q̇, q̈ and the corresponding joint torques u are sampled

online. The inverse dynamics model is learned during the

tracking task using the trajectory as input and the joint

torque as target, starting with an empty dictionary. Here,

the dictionary size is set to be 100, η = 0.0001 and a

Gaussian kernel is used. For the experiment, the desired

joint space trajectory is generated such that the robot’s end-

effector follows a 8-figure in the task space, as shown in

3125

−0.2 −0.1 0 0.1 0.2

−0.6

−0.5

−0.4

−0.3

−0.2

X

Y

Desired

SOSVR

PD with G.C.

0.81 0.83

−0.6

−0.5

−0.4

−0.3

−0.2

Z

(a) Tracking Error in Task-space. Left: X-Y view;

Right: Z-Y view

0 2 4 6 8 10
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Time [sec]

A
m

p
li

tu
d

e
 [

r
a

d
]

(b) Tracking Error in Joint-space (3.

DoF) during the first 10 sec

0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

Time [sec]

T
o

r
q

u
e
 [

N
m

]

U
U

 FF

(c) Feedforward Torque (uFF) and

Joint Torque (u) during Learning

Fig. 4: (a) Tracking performance in task space after 20 sec. Computed torque control with model online learning achieves almost perfect
tracking outperforming common PD-controller with gravity compensation. (b) Tracking performance in joint space for the 3. DoF during
the first 10 sec (other DoFs are similar). The result shows that the model converges already after 9 sec with online learning. (c) Predicted
feedforward torque and joint torque of the 3. DoF during the first 10 sec. The predicted torque uFF converges to the joint torque u as
the latter is sampled as target for the model learning – as a result, the controls need to rely significantly less on feedback.

Figures 4 (a). The robot is controlled in joint space and,

thus, large joint space errors indicate large task space errors.

The tracking control task is performed in the SL simulation

environment [15].

The results of the tracking performance are shown in

Figure 4. Here, we compare the computed torque controller

using model online learning with a common PD-controller

with gravity compensation. The tracking control task is

simulated for 20 sec. During this time, the dictionary is first

filled up and, subsequently, updated about 900 times. Figure

4 (a) reports the tracking performance in task space after

20 sec. Figure 4 (b) and 4 (c) show exemplarily the tracking

performance in joint space and the corresponding joint torque

for the 3. DoF during the first 10 sec. As shown by the

results, the tracking performance is improved significantly

after 20 sec online learning while the model learning process

converges already after 9 sec. As seen in Figure 4 (c), the

prediction for the feedforward torque during online learning

consistently converges to the joint torque u – as a result, the

controls need to rely significantly less on feedback .

IV. CONCLUSION AND FUTURE PROSPECTS

In this paper, we propose a sequential sparsification

method enabling a potential application in real-time online

model learning with SVR. Our approach provides a frame-

work for efficient insertion and deletion of dictionary points

taking in account the required fast computation during model

online learning. SOSVR is shown to be competitive in com-

parison with other state-of-the-art nonparametric regression

methods while being sufficiently efficient for an online appli-

cation. The implementation of this approach on a real robot

system is in progress. Our future research will be focused on

further examinations such as the impact of different kernel

types on the prediction and learning performances.

REFERENCES

[1] D. Nguyen-Tuong, J. Peters, and M. Seeger, “Computed torque control
with nonparametric regression models,” Proceedings of the 2008

American Control Conference (ACC 2008), 2008.
[2] D. Nguyen-Tuong, M. Seeger, and J. Peters, “Local gaussian process

regression for real time online model learning and control,” Advances

in Neural Information Processing Systems, 2008.
[3] T. Lang, C. Plagemann, and W. Burgard, “Adaptive non-stationary

kernel regression for terrain modeling,” Robotics: Science and Systems

(RSS), 2007.
[4] C. Plagemann, K. Kersting, P. Pfaff, and W. Burgard, “Heteroscedastic

gaussian process regression for modeling range sensors in mobile
robotics,” Snowbird learning workshop, 2007.

[5] S. Vijayakumar, A. D’Souza, and S. Schaal, “Incremental online
learning in high dimensions,” Neural Computation, 2005.

[6] C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine

Learning. Massachusetts Institute of Technology: MIT-Press, 2006.
[7] B. Schölkopf and A. Smola, Learning with Kernels: Support Vector

Machines, Regularization, Optimization and Beyond. Cambridge,
MA: MIT-Press, 2002.

[8] Y. Engel, S. Mannor, and R. Meir, “Sparse online greedy support
vector regression,” European Conference on Machine Learning, 2002.

[9] B. Schölkopf, S. Mika, C. J. C. Burges, P. Knirsch, K.-R. Müller,
G. Rätsch, and A. J. Smola, “Input space versus feature space
in kernel-based methods,” IEEE Transactions on Neural Networks,
vol. 10, no. 5, pp. 1000–1017, 1999.

[10] S. Vijayakumar and S. Wu, “Sequential support vector classifiers and
regression,” International Conference on Soft Computing, 1999.

[11] B. Schölkopf, A. Smola, R. Williamson, and P. Bartlett, “New support
vector algorithms,” Neural Computation, 2000.

[12] L. Csato and M. Opper, “Sparse online gaussian processes,” Neural

Computation, 2002.
[13] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Dynamics

and Control. New York: John Wiley and Sons, 2006.
[14] E. Burdet and A. Codourey, “Evaluation of parametric and nonpara-

metric nonlinear adaptive controllers,” Robotica, vol. 16, no. 1, pp.
59–73, 1998.

[15] S. Schaal, “The SL simulation and real-time control software
package,” university of southern california, Tech. Rep., 2006.
[Online]. Available: http://www-clmc.usc.edu/publications/S/schaal-
TRSL.pdf

3126

