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Abstract— This paper proposes an adaptive controller for
a fully free-floating space robot with kinematic and dynamic
model uncertainty. In adaptive control design for the space
robot, because of high dynamical coupling between an actively
operated arm and a passively moving end-point, two inherent
difficulties exist, such as non-linear parameterization of the
dynamic equation and both kinematic and dynamic parameter
uncertainties in the coordinate mapping from Cartesian space
to joint space. The proposed method in this study overcomes
the above two issues by paying attention to the coupling
dynamics. The proposed adaptive controller does not involve
any measurement of acceleration; but it is still possible for
the system to be linearly parameterized in terms of uncertain
parameters and a suitable input torque can be generated in
the presence of model uncertainty. A numerical simulation was
carried out to confirm the validity of the proposed adaptive
control.

Index Terms— Adaptive Control, Model Uncertainty, In-
verted Chain Approach, Free-Floating Space Robot

I. INTRODUCTION

Robotics technology has been recently exploited in a vari-
ety of areas and various types of robots have been developed
to accomplish sophisticated tasks in different fields. On-orbit
servicing robots are examples of outer space applications.
The space robots are expected to achieve various tasks,
such as capturing a target, constructing a large structure
and autonomously maintaining on-orbit systems. In these
missions, one fundamental task with the robotic system
would be the tracking, the grasping and the positioning of
a target in Cartesian space. This paper addresses the task of
following a desired trajectory in Cartesian space while the
space robot grasps a target whose dynamic properties are
unknown. The model uncertainty causes a tracking problem,
where a given nominal trajectory has to be tracked, while
accounting for the parameter uncertainty.

To cope with such an issue, this paper proposes an adap-
tive control of a free-floating space robot. In free-floating
space robots, because of high dynamical coupling between
a passively moving part in Cartesian space (end-point) and
an actively operated robot arm, two unique issues exist in
the control design in the presence of model uncertainty.
Firstly, the end-point of the robot arm is governed by the

Fig. 1: Chaser-robot and target scenario

coordinate mapping from Cartesian space to joint space,
which is strongly subject to the uncertainty of both kinematic
and dynamic properties. Secondly, the dynamic equation
is not simply linearly parameterized in terms of uncertain
parameters because of the nature of the coupling dynamics.
These two problems induce the difficulty in adaptive control
design of space robots.

In fixed-based manipulator systems, Slotine and Li pro-
posed adaptive controllers to track a given trajectory in
both joint and Cartesian space while compensating for the
dynamic parameter uncertainty of a grasped target in [1]
[2]. Xu et al. [3] used the same approach of adaptive
controller design as proposed in [1] for the space robot on
the assumption that the base satellite attitude is perfectly
controlled. However, it is practically impossible to perfectly
control the base attitude because of the poor performance of
attitude control devices, (e.g. thrusters and reaction wheels)
and time delay in feedback controllers. Gu and Xu [4]
introduced another adaptive control for fully floating space
robot; however, for the implementation of this method, it is
essential to measure the linear and angular accelerations of
the base satellite, which is again difficult because the accel-
eration measurement is susceptive to sensor noise and drift in
practice. Wee et al. [5] proposed an adaptive control method
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with parameter identification based on the principle of con-
servation of momentum. However, the proposed method does
not explicitly solve the nonlinear parameterization problem
associated with the computed torque control for the free-
floating space robots. Abiko and Hirzinger [6] developed
an alternative adaptive controller by using a velocity-based
closed-loop controller for generating a torque input. Using
this control input, one does not encounter the nonlinear
parameterization problem, but tuning gain parameters for the
torque input is still a key issue and explicit description of
the torque input in the adaptive control method is desired.

Cheah et al. [7] introduced an adaptive Jacobian tracking
control for a fixed-based manipulator system with kinematic,
dynamic, and actuator model uncertainties. The proposed
method in [7] designed an adaptation law for kinematic
parameters with kinematic mapping and another adaptation
law for dynamic parameters with dynamic equation, sepa-
rately. However, this approach is not simply applicable to
the space robot since there exists major difference between
the fixed-based manipulator system and the space robot, i.e.
the space robot exhibits high dynamical coupling because
its base satellite is inertially free. As mentioned previously,
dynamical coupling causes the complexity of the coordinate
mapping and the difficulty of the linearized parameterization
in the dynamic equation in the free-floating space robot,
while the kinematic and dynamic parameter errors can be
exclusively handled in the fixed-based manipulator system.

This paper proposes an adaptive controller for a torque-
controlled fully free-floating space robot with both kinematic
and dynamic model uncertainty. A novel feature of the
proposed method is that it does not involve the measurment
of the acceleration of the system; however, it is still possible
for the system to be linearly parameterized in terms of
uncertain parameters. The paper is organized as follows.
Section II describes the dynamic model and properties of the
free-floating space robot. Section III introduces operational
space trajectory tracking control based on passivity theorem
and proposes an adaptive controller for the fully free-floating
space robot. Section IV gives details about numerical sim-
ulation of the proposed mothod using a realistic three-
dimensional model. Section V summarizes the conclusions.

II. MODELING OF FREE-FLOATING SPACE ROBOT

In the conventional dynamic expressions, linear and an-
gular velocities of the base satellite and the motion rate of
each joint are selected as the generalized coordinates [8].
However, due to the lack of a fixed base, the space robot can
be expressed by the motion of the end effector and that of
the robotic joints in the same structure as in the conventional
expression. This scheme is termed inverted chain approach
[6].

The following subsections explain the dynamic equations
of the system in inverted chain approach, for a serial rigid-
link manipulator attached to a floating base, as shown in Fig.
2. The main notations used in this section are listed in Table
I.

A. Equations of motion
Let us consider the linear and angular velocities of the

end-effector, �̇�𝑒 = (𝒗𝑇
𝑒 ,𝝎

𝑇
𝑒 )

𝑇 ∈ 𝑅6×1 and the motion rate
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Fig. 2: General model of space robot

of the joints, �̇� ∈ 𝑅𝑛×1 as the generalized coordinates The
equations of motion are expressed in the following form:[

𝑯𝑒 𝑯𝑒𝑚

𝑯𝑇
𝑒𝑚 𝑯𝑚

] [
�̈�𝑒

�̈�

]
+

[
𝒄𝑒 𝒄𝑒𝑚
𝒄𝑇𝑒𝑚 𝒄𝑚

] [
�̇�𝑒

�̇�

]

=

[ ℱ𝑒

𝝉

]
+

[
𝑱𝑇

𝑒

𝑱𝑇
𝑚

]
ℱ𝑏. (1)

The upper part of eq. (1) describes the coordinate mapping
for the free-floating robot in acceleration level, where both
kinematic and dynamic parameters exist. The lower part
of eq. (1) expresses the dynamic equation in joint space
including the dynamical coupling motion of the end-effector.

Property 1: The equation (1) can be linearized in terms
of certain parameters:

𝑯𝑒�̈�𝑒 +𝑯𝑒𝑚�̈�+ 𝒄𝑒�̇�𝑒 + 𝒄𝑒𝑚�̇� = 𝒁𝒂 , (2)
𝑯𝑇

𝑒𝑚�̈�𝑒 +𝑯𝑚�̈�+ 𝒄𝑇𝑒𝑚�̇�𝑒 + 𝒄𝑚�̇� = 𝒀 𝒂 , (3)

where 𝒂 is a vector with suitable kinematic and dy-
namic parameters. 𝒁 = 𝒁(𝒙𝑒, �̇�𝑒, �̈�𝑒,𝝓, �̇�, �̈�) and 𝒀 =
𝒀 (𝒙𝑒, �̇�𝑒, �̈�𝑒,𝝓, �̇�, �̈�) are known as regressor matrices and
functions of state values.

Property 2: The inertia matrices 𝑯𝑒 ∈ 𝑅6×6, 𝑯𝑚 ∈
𝑅𝑛×𝑛 and 𝑯 =

[
𝑯𝑒 𝑯𝑒𝑚

𝑯𝑇
𝑒𝑚 𝑯𝑚

]
∈ 𝑅(6+𝑛)×(6+𝑛) are

symmetric and uniformly positive definite for all 𝒙𝑒 ∈ 𝑅6×1

and 𝝓 ∈ 𝑅𝑛×1.
Property 3: The following matrices are skew symmetric:

𝑺𝑒 = 𝒄𝑒 − 1

2
�̇�𝑒, 𝑺𝑚 = 𝒄𝑚 − 1

2
�̇�𝑚, 𝑺 = 𝒄− 1

2
�̇�,

such that:

𝝂𝑇
𝑒 𝑺𝑒𝝂𝑒 = 0, 𝝂𝑇

𝑚𝑺𝑚𝝂𝑚 = 0, 𝝂𝑇𝑺𝝂 = 0,

for all 𝝂𝑒 ∈ 𝑅6×1, 𝝂𝑚 ∈ 𝑅𝑛×1, and 𝝂 ∈ 𝑅(6+𝑛)×1,

respectively. 𝒄 =

[
𝒄𝑒 𝒄𝑒𝑚
𝒄𝑇𝑒𝑚 𝒄𝑚

]
∈ 𝑅(6+𝑛)×(6+𝑛).

B. Momentum equation

The integral of the upper part of eq. (1) represents total
linear and angular momentum of the system around the end-
effector:

ℒ𝑒 = 𝑯𝑒�̇�𝑒 +𝑯𝑒𝑚�̇�. (4)
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TABLE I: Main notations in dynamic equations

𝑛 : number of joints.
𝒗𝑒 ∈ 𝑅3×1 : linear velocity of the end-effector.
𝝎𝑒 ∈ 𝑅3×1 : angular velocity of the end-effector.
�̇�𝑒 ∈ 𝑅6×1 : spatial velocity of the end-effector.
𝝓 ∈ 𝑅𝑛×1 : vector for the joint angle of the arm.
𝑯𝑒 ∈ 𝑅6×6 : inertia matrix of the end-effector.
𝑯𝑚 ∈ 𝑅𝑛×𝑛 : inertia matrix of the robot arm.
𝑯𝑒𝑚 ∈ 𝑅6×𝑛 : coupling inertia matrix between the

end-effector and the arm.

𝒄𝑒 ∈ 𝑅6×6 : non-linear velocity dependent term on the
end-effector.

𝒄𝑚 ∈ 𝑅𝑛×𝑛 : non-linear velocity dependent term of the
arm.

𝒄𝑒𝑚 ∈ 𝑅6×𝑛 : coupling non-linear velocity dependent term
between the end-effector and the arm.

ℱ𝑒 ∈ 𝑅6×1 : force and moment exerted on the
end-effector.

ℱ𝑏 ∈ 𝑅6×1 : force and moment exerted on the
base.

𝝉 ∈ 𝑅𝑛×1 : torque on joints.
ℒ𝑒 ∈ 𝑅6×1 : total linear and angular momentum around

the end-effector.

𝑱𝑒 ∈ 𝑅6×6 : Jacobian matrix related to the end-effector
and the base.

𝑱𝑚 ∈ 𝑅6×𝑛 : Jacobian matrix related to the arm and the
base.

The above equation governs the motion of the free-floating
space robot. Therefore, the coordinate mapping in velocity
level is expressed as follows:

�̇�𝑒 = 𝑱∗
𝑒�̇�+𝑯−1

𝑒 ℒ𝑒, (5)

where 𝑱∗
𝑒 = −𝑯−1

𝑒 𝑯𝑒𝑚 ∈ 𝑅6×𝑛 represents the general-
ized Jacobian matrix for the end-effector.

C. Dynamics in joint space

The dynamic equation for the free-floating space robot is
reduced a form expressed by only joint acceleration, �̈�, by
eliminating the end-effector acceleration, �̈�𝑒 from eq. (1) as
follows:

𝑯∗�̈�+ 𝒄∗ = 𝝉 + 𝑱∗𝑇
𝑒 ℱ𝑒 + 𝑱∗𝑇

𝑏 ℱ𝑏, (6)

where

𝑯∗ = 𝑯𝑚 −𝑯𝑇
𝑒𝑚𝑯−1

𝑒 𝑯𝑒𝑚 ∈ 𝑅𝑛×𝑛,

𝑱∗
𝑏 = 𝑱𝑚 − 𝑱𝑒𝑯

−1
𝑒 𝑯𝑒𝑚 ∈ 𝑅6×𝑛.

The inertia matrix 𝑯∗ is symmetric positive definite. The
Jacobian matrix 𝑱∗

𝑏 represents the generalized Jacobian
matrix in terms of the base satellite. The vector 𝒄∗ ∈ 𝑅𝑛×1

represents the non-linear velocity dependent term expressed
as follows:

𝒄∗ =
(
𝒄𝑚 −𝑯𝑇

𝑒𝑚𝑯−1
𝑒 𝒄𝑒𝑚

)
�̇�+

(
𝒄𝑇𝑒𝑚 −𝑯𝑇

𝑒𝑚𝑯−1
𝑒 𝒄𝑒

)
�̇�𝑒.
(7)

The above vector can be described by a reduced form
expressed by only the joint motion using eq. (5). Then, 𝒄∗
possesses the following notable property.

Property 4: On the assumption of zero total linear and
angular momentum (ℒ𝑒 = 0), the non-linear velocity de-
pendent term, 𝒄∗, can be expressed in the linearized form in
terms of the joint velocity [9]:

𝒄∗ = �̇�
∗
�̇�− ∂

∂𝝓

(1
2
�̇�

𝑇
𝑯∗�̇�

)
= 𝒄∗𝑚�̇� . (8)

Equation (8) has the following feature; the matrix 𝑺∗ =
𝒄∗𝑚 − 1

2�̇�
∗

is skew symmetric, such that 𝝂𝑇
𝑚𝑺∗𝝂𝑚 = 0 for

all 𝝂𝑚 ∈ 𝑅𝑛×1.

III. ADAPTIVE CONTROL FOR TRAJECTORY TRACKING
CONTROL

A. Adaptive Controller Design
The presence of dynamic parameter errors degrades the

control performance of the above method and, in the worst
case, causes instability in the closed-loop. This section
proposes an adaptive control technique to compensate for
the model uncertainties in the trajectory tracking control in
Cartesian space for the space robot.

Let us define a reference output velocity 𝜼 and a reference
output acceleration �̇� as follows:

𝜼 = �̇�𝑑
𝑒 +𝑲𝑣�̃�𝑒,

�̇� = �̈�𝑑
𝑒 +𝑲𝑣

˙̃𝒙𝑒. (9)

The reference error 𝒔 between the reference output 𝜼 and
the actual velocity �̇�𝑒 is defined as:

𝒔 = 𝜼 − �̇�𝑒 = ˙̃𝒙𝑒 +𝑲𝑣�̃�𝑒. (10)

In the above equations, 𝑲𝑣 ∈ 𝑅6×6 is a strictly positive
definite matrix. �̇�𝑑

𝑒 =
(
𝒗𝑑𝑇
𝑒 ,𝝎𝑑𝑇

𝑒

)𝑇 ∈ 𝑅6×1 represents the
desired velocity of the end-effector. �̃�𝑒 =

(
𝒆𝑇𝑝 , 𝒆

𝑇
𝑜

)𝑇 ∈
𝑅6×1 represents the operational space error consisting of
the position error 𝒆𝑝 ∈ 𝑅3×1 and the orientation error
𝒆𝑜 ∈ 𝑅3×1. The position error 𝒆𝑝 is simply expressed as
follows:

𝒆𝑝 = 𝒓𝑑𝑒 − 𝒓𝑒.

The orientation error 𝒆𝑜 is expressed in terms of the quater-
nion expression 𝒬 =

[
𝜉, 𝝐𝑇

]
where 𝜉 and 𝝐 represent the

scalar and vector parts of the quaternion as follows:

𝒆𝑜 = Δ𝝐 = 𝜉𝝐𝑑 − 𝜉𝑑𝝐− 𝝐𝑑 × 𝝐,

where the operator × denotes the cross-product operator.
By using the above preliminary information, the following

trajectory tracking control with model uncertainties and an
adaptive control are determined:
1) joint space reference acceleration and velocity:

�̈�
𝑟
= −𝑯

+

𝑒𝑚(𝑯𝑒�̇� + �̂�𝑒𝜼 + �̂�𝑒𝑚�̇�+Λ𝒔),

�̇�
𝑟
= −𝑯

+

𝑒𝑚𝑯𝑒𝜼, (11)
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2) input torque:

𝝉 = 𝑯
𝑇

𝑒𝑚�̇� +𝑯𝑚�̈�
𝑟
+ �̂�𝑇𝑒𝑚𝜼 + �̂�𝑚�̇�

𝑟
+Λ𝑞𝒔𝑞, (12)

3) adaptive control law:

˙̃𝒂 = −Γ−1
(
𝒀 𝑇𝒔+𝒁𝑇𝒔𝑞

)
, (13)

where {̂⋅} denotes the matrix including kinematic and dy-
namic parameter errors. The vector, �̃� = 𝒂 − �̂�, represents
the parameter errors, in which 𝒂 describes a real parameters
and �̂� is its estimate. Note that the real parameter vector
𝒂 is constant. Λ ∈ 𝑅6×6 is a positive definite gain matrix
in Cartesian space. Λ𝑞 ∈ 𝑅𝑛×𝑛 is a positive definite gain
matrix in joint space. 𝒔𝑞 is a joint space reference error
defined as follows:

𝒔𝑞 = �̇�
𝑟 − �̇�. (14)

𝑯
+

𝑒𝑚 = 𝑯
𝑇

𝑒𝑚

(
𝑯𝑒𝑚𝑯

𝑇

𝑒𝑚

)−1 represents the generalized
inverse of the coupling matrix 𝑯𝑒𝑚. The above control
can be obtained when 𝑯𝑒𝑚 is of full rank. To cope with
the singularity problem, damped-least-square (DLS) method
is applied in this paper [10]. Yet, solving the singularity
problem is still not the main scope of this paper. One who
has interest in it should see the references [10] [11] [12].

B. Stability Analysis

The stability of the closed-loop system (6) with the control
laws (11), (12), and (13) is analyzed with the following
Lyapunov function consisting of the reference kinetic energy
error in joint space and the potential energy resulting from
the parameter uncertainties.

𝑉 (𝑡) =
1

2
𝒔𝑇𝑞 𝑯

∗𝒔𝑞 +
1

2
�̃�𝑇Γ�̃�. (15)

The time-derivative of the above Lynapunov function is
derived as:

�̇� (𝑡) = 𝒔𝑇𝑞
(
𝝉 −𝑯∗�̈�

𝑟 − 𝒄∗(𝒙𝑒,𝜼,𝝓, �̇�
𝑟
)
)
+ �̃�𝑇Γ ˙̃𝒂

= −𝒔𝑇𝑞 Λ𝑞𝒔𝑞

+ 𝒔𝑇𝑞
(
𝑯

𝑇

𝑒𝑚�̇� +𝑯�̈�
𝑟
+ �̂�𝑇𝑒𝑚𝜼 + �̂�𝑚�̇�

𝑟 −𝑯∗�̈�− 𝒄∗
)

+ �̃�𝑇Γ ˙̃𝒂

= −𝒔𝑇𝑞 Λ𝑞𝒔𝑞 + �̇�1(𝑡) + �̇�2(𝑡) + �̃�𝑇Γ ˙̃𝒂, (16)

where

�̇�1(𝑡) = 𝒔𝑇𝑞
(
𝑯

𝑇

𝑒𝑚�̇� +𝑯𝑚�̈�
𝑟
+ �̃�𝑇𝑒𝑚𝜼 + �̃�𝑚�̇�

𝑟)
,

�̇�2(𝑡) = 𝒔𝑇𝑞 𝑯
𝑇
𝑒𝑚{�̇� +𝑯−1

𝑒

(
𝑯𝑒𝑚�̈�

𝑟
+ 𝒄𝑒𝜼 + 𝒄𝑒𝑚�̇�

𝑟)}.
The term, �̇�1, is simply expressed in the linear parame-

terization form as described in Property 1:

�̇�1(𝑡) = 𝒔𝑇𝑞 𝒁�̃�, (17)

where 𝒁 = 𝒁
(
𝒙𝑒,𝜼, �̇�,𝝓, �̇�

𝑟
, �̈�

𝑟)
.

The term, �̇�2, can be also linearly parameterized by using
the coordinate mapping from Cartesian space to joint space

on the assumption that the constant total linear and angular
momentum (e.g. ℒ𝑒 = 0):

�̇�2(𝑡) = 𝒔𝑇𝑞 𝑯
𝑇
𝑒𝑚

{
�̇� +𝑯−1

𝑒

(
𝑯𝑒𝑚�̈�

𝑟
+ 𝒄𝑒𝜼 + 𝒄𝑒𝑚�̇�

𝑟)}
= −𝒔𝑇

(
𝑯𝑒�̇� +𝑯𝑒𝑚�̈�

𝑟
+ 𝒄𝑒𝜼 + 𝒄𝑒𝑚�̇�

𝑟)
= −𝒔𝑇

(
𝑯𝑒�̇� +𝑯𝑒𝑚�̈�

𝑟
+ �̃�𝑒𝜼 + �̃�𝑒𝑚�̇�

𝑟
+Λ𝒔

)
= −𝒔𝑇Λ𝒔+ 𝒔𝑇𝒀 �̃�, (18)

where 𝒀 = 𝒀
(
𝒙𝑒,𝜼, �̇�,𝝓, �̇�

𝑟
, �̈�

𝑟)
.

Consequently, the time-derivative of the Lyapunov func-
tion is given as:

�̇� (𝑡) = −𝒔𝑇𝑞 Λ𝑞𝒔𝑞 − 𝒔Λ𝒔

+ �̃�𝑇 (𝒁𝑇𝒔𝑞 + 𝒀 𝑇𝒔+ Γ ˙̃𝒂
)
. (19)

Since the adaptive control law is designed as (13), the
above equality results in:

�̇� (𝑡) = −𝒔𝑇𝑞 Λ𝑞𝒔𝑞 − 𝒔𝑇Λ𝒔 ≤ 0. (20)

The control laws (11) and (12) with the parameter update
law (13) guarantee the stability and result in the convergence
of position and velocity tracking errors of the end-effector
in the free-floating space robot, so that �̃�𝑒 → 0 and ˙̃𝒙𝑒 → 0
as 𝑡 → ∞.

Proof: Since 𝑯∗ is uniformly positive-definite, 𝑉 in (15)
is positive-definite in 𝒔𝑞 and �̃�. Therefore, equation (20)
indicates that 𝑉 (𝑡) ≤ 𝑉 (0), and thus 𝒔𝑞 and �̃� are bounded.
Equation (5) gives the reference error 𝒔 as a function of the
joint space reference error 𝒔𝑞 such that 𝒔 = 𝑱

∗
𝑒𝒔𝑞 where 𝑱

∗
𝑒

is a function of �̃�. Hence, 𝒔 is also bounded since 𝒔𝑞 and �̃�
are bounded as mentioned above.

Furthermore, the time-derivative of (20) yeilds

𝑉 (𝑡) = −2
(
𝒔𝑇𝑞 Λ𝑞�̇�𝑞 + 𝒔𝑇Λ�̇�

)
. (21)

This indicates that 𝑉 is bounded since both 𝒔𝑞 and 𝒔
are bounded. Hence, �̇� is uniformly continuous. By using
Barbalat’s lemma, we obtain 𝒔𝑞 → 0 and 𝒔 → 0 as 𝑡 → ∞,
which leads to �̃�𝑒 → 0 and ˙̃𝒙𝑒 → 0 as 𝑡 → ∞.△△△

In the implementation of the proposed adaptive controller,
sensory feedback of the position and velocity of the end-
effector is required as can be seen in (9). However, any
acceleration measurement is necessary since the controller
is designed by using the feature of dynamical coupling as
shown in (11) and (12). Besides, both reference acceleration
�̇� and �̈�

𝑟
do not involve the acceleration of the system

as shown in (9) and (11). Many previous researches have
assumed that the acceleration of the Cartesian point is
measurable or well-estimated since that assumption allows to
simply linearize the parameters in terms of suitable unknown
parameters for their adaptive controller design of the free-
floating space robot. However, measuring the acceleration on
orbit is practically difficult since the measurement is strongly
susceptible of a sensor noise and drift. A novel advantage of
the proposed adaptive controller in this paper is that it does
not involve any measurement of the acceleration; but the
system still can be linearized in terms of suitable parameters
in adaptive control design as expressed in this section.
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IV. SIMULATION STUDY

The simulation study is carried out to confirm the validity
of the proposed adaptive control for a free-floating space
robot. In the simulation, the space robot is assumed to track
a given trajectory while it firmly grasps a target. The desired
trajectory is designed along a circle whose radius is 0.30
[m] and it inclines 30 [deg] about the x axis with respect
to the inertial coordinate frame. In the simulation, the initial
total linear and angular momentum of the entire system are
assumed to be zero. The chaser robot has a seven DOF
(R-P-R-P-R-P-P) manipulator system mounted on the base
satellite as shown in Fig. 1. The dynamic parameters of the
robot are assumed to be well known in advance, as listed
in Table II. In the simulation, the target parameters of the
planned motion are supposed to be zero, while those of the
controlled motion are listed in Table IV. In addition, the
parameters of the base satellite of the planned motion are set
as listed in Table III, while those of the controlled motion are
supposed to be 0.8 times smaller than the parameters listed
in Table III. The center of mass of the base satellite and the
target in the model are assumed to deviate from those of the
real system as listed in Table V and Table VI, respectively.
These model errors give the extent of uncertainty introduced
in the system. Therefore, the unknown parameter vector 𝒂 in
eq. (13) includes mass, moment of inertia, product of inertia,
and center of mass of the base and the target, and then the
vector 𝒂 is expressed by two vectors associated with the
base and the target as follows:

𝒂 = [𝒂𝑏𝑎𝑠𝑒,𝒂𝑡𝑎𝑟𝑔𝑒𝑡] ,

𝒂𝑖 = (𝑚, 𝑟𝑔𝑥, 𝑟𝑔𝑦 , 𝑟𝑔𝑧 , 𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧 , 𝐼𝑥𝑦, 𝐼𝑦𝑧 , 𝐼𝑧𝑥, )
𝑇

(𝑖 = 𝑏𝑎𝑠𝑒 𝑜𝑟 𝑡𝑎𝑟𝑔𝑒𝑡)

TABLE II: Parameters of robot arm
mass [𝑘𝑔] 𝐼𝑥𝑥 [𝑘𝑔𝑚2] 𝐼𝑦𝑦 [𝑘𝑔𝑚2] 𝐼𝑧𝑧 [𝑘𝑔𝑚2]

Link 3.3 0.0056 0.0056 0.0056

TABLE III: Parameters of base satellite
mass [𝑘𝑔] 𝐼𝑥𝑥[𝑘𝑔𝑚2] 𝐼𝑦𝑦[𝑘𝑔𝑚2] 𝐼𝑧𝑧[𝑘𝑔𝑚2]

Base 168 21.6 24.0 26.4

TABLE IV: Parameters of target

mass [𝑘𝑔] 𝐼𝑥𝑥[𝑘𝑔𝑚2] 𝐼𝑦𝑦[𝑘𝑔𝑚2] 𝐼𝑧𝑧[𝑘𝑔𝑚2]
Target 140 18.0 20.0 22.0

TABLE V: Deviation of center of mass of base satellite
𝑟𝑔𝑥[𝑚] 𝑟𝑔𝑦 [𝑚] 𝑟𝑔𝑧 [𝑚]

Base 0.05 0.0 0.05

TABLE VI: Deviation of center of mass of target
𝑟𝑔𝑥[𝑚] 𝑟𝑔𝑦 [𝑚] 𝑟𝑔𝑧 [𝑚]

Target 0.05 0.0 -0.05

The adaptation gain Γ−1 in eq. (13) is determined as

Γ−1 =
[
Γ−1
𝑏𝑎𝑠𝑒,Γ

−1
𝑡𝑎𝑟𝑔𝑒𝑡

]
Γ−1
𝑏𝑎𝑠𝑒 = 𝑑𝑖𝑎𝑔( [ 5× 102, 0.1, 0.1, 0.1, 50, 50, 50,

5× 10−4, 5× 10−4, 5× 10−4 ]).

Γ−1
𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑑𝑖𝑎𝑔( [ 1× 103, 0.1, 0.1, 0.1,

5× 103, 5× 103, 5× 103,

5× 10−4, 5× 10−4, 5× 10−4 ])

The control gains 𝑲𝑣, Λ and Λ𝑞 are set

𝑲𝑣 = 𝑑𝑖𝑎𝑔([ 20, 20, 20, 3000, 3000, 3000 ]),

Λ = 𝑑𝑖𝑎𝑔([ 0.3, 0.3, 0.3, 0.3, 0.3, 0.3 ]),

Λ𝑞 = 𝑑𝑖𝑎𝑔([ 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2 ].

Figure 4 shows the desired and actual trajectories in
Cartesian space. In the figure, the red solid line depicts
the desired trajectory, the green line depicts the trajectory
with parameter deviations but without adaptive control, and
the blue line depict the trajectory with adaptive control.
Figure 5 shows the trajectory error in the cases with and
without adaptive control. The blue solid line depicts the error
in the case with adaptive control, while the green dashed
line depicts the error in the case without adaptive control.
These graphs clearly show that the proposed adaptive control
method is effectively used for ensuring trajectory tracking
against parameter uncertainties. The representative dynamic
parameters, such as mass and moment of inertia about each
axis of the base satellite and the target change as shown in
Fig. 6. Note that if exact real parameters can be identified,
the input command needs to be persistently exciting.

V. CONCLUSIONS

This paper proposed an adaptive controller for a torque-
controlled fully free-floating space robot with kinematic and
dynamic model uncertainty. The proposed method resolved
two fundamental difficulties in adaptive control design for
the space robots, which are non-linear parameterization in

2363



-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

0
0.1

0.2
0.3

0.4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

x axis [m]

y axis [m]

z 
ax

is
 [m

]
w/o Adaptive Control

with Adaptive Control

Desired Trajectory

Fig. 4: Trajectory tracking in Cartesian space

 

 

with Control
w/o Control

-0.04
-0.02

0

0

0.02
0.04
0.06
0.08

5 10 15 20
time [s]

x
ax

is
[m

]

 

 

with Control
w/o Control

-0.04
-0.02

0

0

0.02
0.04

5 10 15 20
time [s]

y
ax

is
[m

]

 

 

with Control
w/o Control

-0.04

-0.02

0

0

0.02

0.04

5 10 15 20
time [s]

z
ax

is
[m

]

Fig. 5: Trajectory tracking error

the dynamic equation and both kinematic and dynamic
parameter uncertainties in the coordinate mapping from
Cartesian space to joint space. A novel feature of the
proposed method is that any acceleration measurement of
the Cartesian space is not required; but it is still possible
for the system to be linearly parameterized. The results of
the simulation demonstrated the efficiency of the proposed
adaptive control for the torque controlled free-floating space
robot.
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