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Abstract— In this paper, a novel genetic algorithm based
on a “collaborative” fitness-sharing technique to deal with the
Multi-Robot Localization problem is proposed. Indeed, the use
of the fitness-sharing is twofold and competitive. It preserves
the diversity among individuals during the space exploration
process, thus maintaining evolutionary niches over time, and
reinforces the best hypotheses by means of collaboration among
robots, thus augmenting the selection pressure. Simulations by
exploiting the robotics framework Player/Stage have been per-
formed along with a proper statistical analysis for performance
assessment.

I. INTRODUCTION

The localization problem consists of estimating the pose

for a robot moving in an environment using data coming

from sensors. Localization has been recognized as one of the

most important problems in Robotics. In fact, the availability

of reliable pose information turns out to be fundamental to

perform almost any task. Moreover, the interaction of the

robot with the environment and the noisy nature of sensor

data make the problem highly complicated.

The emergence of Multi-Robot Systems (MRS) intro-

duces new challenges for the localization problem. In fact,

the inherent collaborative and cooperative nature of these

systems requires new paradigms to be properly exploited.

Indeed, frameworks for solving the localization problem

in the multi-robot context might be naively obtained by

extending classical approaches developed for the single robot

context, e.g parallelizing their execution. However, this way

the inherent collaborative nature of the system is completely

neglected. Instead, better results can be obtained by taking

into account all the available information.

In this paper, the map-based localization problem for a

team of robots equipped with some exteroceptive sensors,

e.g., laser scanners, is addressed. A novel approach based on

a “collaborative” fitness-sharing technique is proposed. The

key idea is to use a fitness-sharing technique for a twofold

competitive objective. On one side it helps to preserve the

diversity among individuals during the exploration of the

search space, and thus it allows to maintain evolutionary

niches over time. On the other side, it helps to reinforce

the best hypotheses by means of collaboration among robots

and therefore it allows to augment the selection pressure.

This works represents an extension of the idea proposed

in [1]. The common baseline is to provide a mechanism

for which evolutionary niches representing the most likely
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hypotheses (robot locations) are maintained over time. In

previous works this was achieved by providing a spatial

structure to the population and constraining the mating over

this topology. In this work a niching method is exploited

instead. This results in a more focused and effective action,

while providing at the same time a suitable framework to

strengthen the more promising hypotheses through collabo-

ration.

The rest of the paper is organized as follows. In Section

II an overview of the state of the art for the multi-robot

localization problem is given. In Section III some theoretical

insights about evolutionary computing are given. In Section

IV the proposed “Collaborative” Fitness-sharing based ge-

netic algorithm is described. In Section V simulation results

are reported. Finally, in Section VI conclusions are drawn

and future work is discussed.

II. RELATED WORK

In [2] the concept of mobile landmark is introduced. The

authors consider a team of robots exploring an unknown

environment without any beacon. The exploration is carried

out using the robots themselves as landmarks. Each vehicle

repeats move-and-stop actions and acts as a landmark for

the other robots, while a data fusion algorithm collects data

to improve the estimate of the relative positioning of the

robots. According to the authors, this mechanism works well

in uncharted environments since the concept of landmark is

intrinsically exploited. In [3], the idea previously introduced

is exploited to improve the exploration of an unknown

environment. In detail, underlining how the odometry errors

might heavily affect the mapping of the environment, the

authors introduce a mapping technique which acts also

to minimize the effects of inherent navigation. A similar

solution is proposed in [4], [5] where a new sensing strategy,

named robot tracker, is exploited to improve the accuracy

of the pose estimation of each robot. The robots explore

the environment in teams of two; each platform is equipped

with a robot tracker sensor that reports the relative position

of the other robot. Measurements are used in a particle

filter to update the poses of the multi-robot system together

with the associated uncertainties. All the solutions above

mentioned suffer from the following limitations: only one

robot is allowed to move at any given time, and the team

has to maintain sensorial contact at all times.

A different collaborative scheme, based on estimation

theoretical framework, is presented in [6], where two robots

are supposed to navigate in a partially known environment.

At every meeting they stop and improve their localization
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by exchanging their beliefs, i.e., the posterior probability

density over the state space conditioned to measurements.

A particle filter is at the base of the algorithm, giving the

possibility to handle a non Gaussian shaped belief, and

achieve localization. Another promising solution is proposed

in [7], [8] and reviewed in [9], [10], where a Kalman

based algorithm is used to realize collaborative localization.

During the navigation cycle, each robot collects data from

its proprioceptive sensors to perform the prediction step of a

Kalman filter while sharing information from the exterocep-

tive sensors with the rest of the team during the update. The

authors introduce a distributed algorithm based on singular

value decomposition of the covariance matrix. In this way,

the centralized filter is decomposed into a number of smaller

communicating filters, one for each robot. However, this

approach can be applied only if inter-robot communication

can be consistently guaranteed. If not, problems related to the

maintenance of cross-correlations terms arise. In [11], a dis-

tributed approach based on maximum likelihood estimation

is described. Robots are equipped with sensors that allow

them to measure the relative pose and identity of nearby

robots, as well as sensors that allow them to measure changes

in their own pose. Therefore, localization is obtained using

only the robots themselves as landmarks. In [12], the authors

focus on the problem of examining the effect on localization

accuracy of the number N of participating robots and the

accuracy of the sensors employed. In detail, the improvement

in localization accuracy per additional robot as the size of

the team increases is investigated.

III. THEORETICAL BACKGROUND

A. Genetic Algorithms

Genetic algorithms are a class of research techniques,

inspired by Darwin’s Theory of Evolution, applied in several

research fields to solve optimization problems. These algo-

rithms use a population of encoded strings (chromosomes)

as candidate solutions to explore the search space. The

candidate’s evaluation is performed by means of an objec-

tive function (fitness function) and improvements at each

iteration (epoch) result from the application of probabilistic

transition operators (crossover and mutation) acting onto

chromosomes. A simple genetic algorithm (SGA) usually

provides three steps: initialization, selection and reproduction

[13]. Initialization generates a population randomly picking

up elements over the whole search space, selection draws an

intermediate population relying on a fitness-based approach

and reproduction causes the population to evolve combin-

ing elements from the intermediate population. Usually,

crossover is performed with probability pc, while mutation

modifies chromosomes with probability pm. This means that

some individuals, likely with high fitness, will be exactly

copied in the new population. The reader is referred to [14]

for a complete overview of genetic algorithms.

B. Genetic Algorithms Niching Methods and Fitness-Sharing

A simple genetic algorithm, when dealing with multimodal

functions, would converge to the best peak, whereas, in

addition to wanting to know the best solution, one may

be interested in knowing the location of other optima. To

overcome these limitations several techniques relying on the

concept of niches have been introduced.

In multimodal GAs, a niche is commonly referred to as

the location of each optimum in the search space, the fitness

representing the resources of that niche. Niching methods

have been developed to minimize the effect of genetic drift

resulting from the selection operator in the traditional GA in

order to allow the parallel investigation of many solutions in

the population. An important number of niching methods

have been reported in the literature, among them fitness-

sharing, pre-selection and crowding [15].

In particular, the fitness-sharing technique modifies the

search landscape by reducing the payoff in densely-populated

regions. It derates each population element’s fitness by an

amount almost equal to the number of similar individuals

in the population. Typically, the shared fitness fsh,i of an

individual i is defined as:

fsh,i =
fi

ni

where fi is the raw fitness and ni is the niche count given

by:

ni =

m
∑

j=1

sh(dij)

where m denotes the population size, dij represents the

distance between the individual i and individual j and

sh describes the sharing function. This last term measures

the similarity level between two elements of a population

according to a threshold of dissimilarity σs and is defined as

follows:

sh(dij) =

{

1 −
(

dij

σs

)α

if dij < σs,

0 otherwise

where α is a constant parameter which regulates the shape

of the sharing function (typically α = 1). The effect of

this scheme is to encourage search in unexplored regions.

A complete overview of niching methods can be found in

[16].

IV. THE PROPOSED ALGORITHM

In the proposed framework, each robot runs an instance

of the “Collaborative” Fitness-Sharing based Genetic Algo-

rithm (CFS-GA). The key idea is to take advantage of a

fitness-sharing technique for both maintaining evolutionary

niches over time and augmenting the selection pressure of

individuals. Indeed, as already pointed out in [1], being a

niche a region in which a particular solution is preserved, a

natural way to carry on multi-hypotheses is thus obtained.

On the other hand, collaboration among robots is exploited

in such a way that the selection pressure of individuals is

augmented and therefore the survival of the best hypotheses

is enhanced.
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A. Autonomous Localization

In the robotics context, a chromosome encodes the full

state of the robot p = (x, y, θ), where (x, y) represent the

robot cartesian coordinates on a plane, while θ is its heading

direction. In addition, the fitness function is defined as a

pattern function giving a measure of the similarity between

two vectors, as follows:

f(zk, ẑk) =
1

L

L
∑

i=1

1√
2πσ

e
−(zi

k
−ẑi

k
)2

2σ2

where, L is the number of laser beams, zk represents the

sensor data, ẑk is the expected one for the considered

hypothesis and finally σ is a measure of confidence related

to the sensor data noise.

The proposed algorithm for autonomous localization

works as follows. At each iteration k, a given robot i

performs two steps: kinematic update and population update.

The kinematic update is carried out by applying the current

proprioceptive information, i.e., odometric information, to

the kinematic model (the unicycle mode in the proposed

implementation) for each individual of the population.

The population update is achieved by collecting data

coming from exteroceptive sensors and then performing the

evolutionary step. In order to achieve that, the raw fitness and

the shared fitness must be computed. In particular, the raw

fitness is used to identify the best individuals to be preserved

(elitism) and the remaining individuals to be replaced (epoch

evolution). Regarding the epoch evolution, an intermediate

population is built by applying the tournament selection (with

tournament size equals to 2) over the shared fitness [17]. New

offspring are then obtained by applying the probabilistic tran-

sition operators crossover and mutation over this population.

In the proposed implementation, crossover simply produces

an offspring by combining the parents’ chromosomes, and

mutation produces an offspring by modifying some genes of

a parent’s chromosome. Finally, once the new population is

built, the best individual describing the most likely robot pose

is selected according to the raw fitness value multiplied by

an aging factor (memory effect) which reduces the chattering

phenomenon of the best individual selection over time (due

to the sensitivity of the algorithm toward the noise affecting

the measurements).

B. Collaborative Localization

Collaboration among robots is available each time two or

more robots are both in their range of communication (cr)

and in line of sight. Collaboration is achieved by exchang-

ing relative distance and orientation coming from sensors

affected by noise along with a portion of the populations for

which some particular conditions are satisfied.

Let us assume two robots, respectively r1 and r2, to be in

their range of communication and line of sight. Now, without

any loss of generality let us consider the collaboration from

the point of view of robot r1 as the same holds for robot r2

(in a similar way). At each iteration k, robot r1 first collects

data coming from the exteroceptive sensors in order to

compute the fitness (both raw and shared) for its populations,

successively it looks for neighboring robots to share data

with. In this case robot r2 is available, and then relative

position and orientation coming from sensors affected by

noise are exchanged along with a portion of the population

for which the raw fitness value is greater than the average

value of the whole population. This information will be

exploited remotely by robot r1 to augment the selection

pressure and support the best hypotheses. In order to achieve

that, a “virtual” population is built by robot r1 first by

collecting all the selected populations coming from the other

robots together (in this case only data coming from robot r2

is supposed to be available), and then by applying to them

a roto-translation depending on the corresponding relative

distance and orientation:

P (1)
v =

⋃

i∈N1

R(P
(i)
b , ∆p,o(r1, ri))

where P
(1)
v denotes the “virtual” population of the robot r1,

N1 is the detected neighborhood for the robot r1, R is the

roto-translation operator, P
(i)
b is the portion of population

sent by the i-th neighbor and ∆p,o(r1, ri) represent the

relative position and orientation between the robots r1 and

ri . This “virtual” population describes the most likely areas

where the local robot might be located from the other robots

point of view. Indeed, this information can be exploited to

strengthen local best hypotheses. This is done, by computing

“virtual” niches nv,i around local hypotheses as follows:

n
(1)
v,i =

mv
∑

j=1

sh(dij)

where n
(1)
v,i is the “virtual” niche count around the i-th indi-

vidual of robot r1, i is the index of the i-th local hypothesis, j

is the index of the j-th individual of the “virtual” population

and mv is the size of the virtual population. As a result, the

local hypothesis i is strengthened as follows:

f̃sh,i = fsh,i · nv,i

Note that the search landscape is now affected in the

opposite way, i.e., by augmenting the payoff in densely-

populated regions. This increases each population element’s

fitness by an amount almost equal to the number of similar

individuals in the “virtual” population. Indeed, this can be

thought as a consensus-like approach where the information

coming from other robots is taken as a “suggestion” in order

to either give value to or diminish the confidence of local

hypothesis. In the case such a suggestion is correct, this

collaboration might significantly speed-up the localization

process for the local robot. Conversely, if the local robot is

already well-localized, a wrong suggestion would eventually

bring ambiguity by strengthening misleading hypothesis for

a few iterations, while if the local robot does not have any

clue about its location, wrong information does not make it

any worse.
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C. Complexity Analysis

In order to determine the computational complexity of the

proposed CFS-GA running onboard a single robot with a

population of m individuals, the following main functions

are analyzed:

1) Fitness: The computation of the raw fitness function

is achieved by computing the difference between the real

robot measurements and the measurements estimated by each

individual. Assuming the number of beams to be L, the

overall complexity is O(m · L)
2) Shared Fitness: The evaluation of the shared fitness

requires to calculate the distance among all the individuals of

the population, to compute a niche count for each individual

and to perform a division between the raw fitness and the

related niche count. The dominant operation is the computa-

tion of the distance among the individuals and therefore the

complexity is O(m2).
3) Data Sharing: The data-sharing operation involves the

exchange of both relative distance and orientation along with

the portion of the population for which the raw fitness value

is greater than the average value over the whole population.

The dominant operation is the comparison operation for

which the complexity is O(m).
4) Shared Fitness Update: The update of the shared-

fitness involves the computation of the distance between

the m individuals of the local population (regarding the

robot in analysis) and the mv individuals of the virtual

population (obtained by putting together the data collected

from the neighboring robots). The dominant operation is

again the distance and, in this case, the related complexity

is O(m · mv).
5) Selection: The selection process is implemented by

exploiting the “Tournament Selection” with tournament size

equals to 2, and its complexity is O(m).
6) Crossover and Mutation: Both the crossover and mu-

tation operators have a constant complexity when applied to

a single individual, therefore for the whole population the

complexity is O(m) each.

As a result, putting together all the single pieces,

the overall computational complexity of the algorithm

running onboard each single robot turns out to be

max{O(m2), O(m · mv)}.

V. SIMULATION RESULTS

The proposed algorithm has been throughly investigated

by exploiting the robotics simulation framework Player/Stage

[18]. It consists of a set of tools for multi-robot and dis-

tributed sensor systems. Briefly speaking, Player provides a

network interface to a variety of robot and sensor hardware.

Player’s client/server model allows robot control programs

to be written in any programming language and to run on

any computer with a network connection to the robot. Player

supports multiple concurrent client connections to devices,

creating new possibilities for distributed and collaborative

sensing and control. On the other side, Stage simulates a

population of mobile robots moving in and sensing a two-

dimensional bitmapped environment. Various sensor models

Fig. 1. First scenario. Autonomous Localization with Kidnap. Robot’s path
from start point (S) to kidnap point (K) and from restart point (R) to goal
(G).

Fig. 2. Second scenario. Collaborative Localization. Robots’ path from start
point (S) to goal (G). Communication constrained by range of visibility and
line of sight.

are provided, including sonar, scanning laser rangefinder,

pan-tilt-zoom camera with color blob detection and odome-

try. Stage devices present a standard Player interface so few

or no changes are required to move between simulation and

hardware.

Two different scenarios were considered for performance

assessment. In the first scenario, the autonomous local-

ization along with the kidnapped robot problem [19] was

investigated. In particular the proposed algorithm has been

compared against the “Adaptive Monte Carlo Localization al-

gorithm” (AMCL) [20], already available in the Player/Stage

framework, and against the “Spatially Structures Genetic

algorithm” (SSGA) proposed in [1]. In the second scenario,

the advantages introduced by the collaborative strategy were

investigated. The environment shown in Fig. 1 was exploited

for the first case, while the environment depicted in Fig. 2

was used for the second case. Both scenarios represent a

typical indoor, office-like environment.

A set of 100 independent runs was executed for each

scenario, and average values were computed. Specifically, at
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TABLE I

SIMULATION SETTING

Parameter Description SFGA

m Population Size 300

L No. of Pattern Beams 18

l Beam Range [m] 8

σ Confidence Measure [m] 0.5

pb Best Individuals Percentage [%] 80

ps Selected Individuals Percentage [%] 20

pr Random Individuals Percentage [%] 5

T Tournament Size 2

pc Crossover Probability [%] 80

pm Mutation Probability [%] 10

σs Dissimilarity Threshold [% size(Env)] 5

α Shape Parameter 1

cr Communication Range [m] 4

Qm Odometry Noise Var. [m/s, rad/s] [0.05, 0.1]
Ql Laser Noise Var. [m] 0.1
Qrd Rel. Distance Noise Var. [m] 0.2
Qro Rel. Orientation Noise Var. [rad] 0.1

each iteration of a given trial, a pose error was computed

(using the Euclidian metric) with respect to the best hy-

pothesis. Note that, the initial population was always drawn

from a random uniform distribution of individuals over the

whole environment. Regarding the disturbances affecting

both the proprioceptive and exteroceptive sensors, gaussian

noises with zero means and covariances Qm, Ql, Qrd, Qro

respectively for the odometric measurements, for the laser

scanner measurements, and for the relative distance and

orientation measurements have been considered. Table I

describes the parameters setting adopted for simulations.

Fig. 3 shows the localization error averaged over 100

trials for the first scenario. In detail, the solid (gren) line

describes the localization error for the proposed CFS-GA,

the dotted (red) line represents the localization error for the

SSGA and, the dashed (blue) line is the localization error

for the AMCL. According to the obtained results, the three

algorithms perform similarly in terms of accuracy until the

kidnap happens. In particular, it can be noticed from the

subplot in the nested box (a), that the AMCL converges more

quickly to the correct robot location, while the proposed

CFS-GA takes a little bit longer and the SSGA even longer.

This can be explained by the tendency of the last two

approaches to maintain several hypotheses over time (for

global localization purposes) which leads to a longer time

before to trust the correct hypothesis. Nevertheless, the CFS-

GA outperforms the SSGA proving to be a more focused and

effective localization strategy.

On the other hand, this capability to maintain several

hypothesis over time turns out to be crucial when the kidnap

happens. In fact, the CFS-GA always detect the kidnap

event and properly recovers the robot location due to the

tendency to continuously explore new locations, even when

the correct robot location is being tracked. Conversely, the

AMCL, which simply adds a number of randomly placed

samples at every time instant as detailed in [21], often fails

to re-locate the robot. A similar consideration holds for the

SSGA weakened by the requirement of an additional kidnap

sensing strategy which might fail to recognize the kidnap

event. In particular, the plot in the nested box (b) details the

algorithms behavior after the kidnap.
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Fig. 3. First scenario. Autonomous Localization with Kidnap. Solid (green)
line: CFS-GA Localization Error. Dashed (blue) line: AMCL Localization
Error. Dotted (red) line: SSGA Localization Error.

Fig. 4 shows the localization error averaged over 100 trials

for the second scenario. In particular, Fig. 4-(a) and Fig. 4-

(b) show respectively the results obtained for the proposed

CFS-GA with or without collaboration among robots. Ac-

cording to the results obtained for the previous scenario, the

autonomous localization already performs satisfactorily on

its own. For this reason, robots have been purposely placed

in the middle of three different corridors where laser data

are temporarily partially useless to make the localization

problem particularly difficult. Indeed, this would help to

better highlight the contribution coming from collaboration.

Note that, the collaboration cannot improve the accuracy

of estimation, i.e., the average localization error after the

convergence of the algorithm is roughly the same in both

cases. Nonetheless, a significant speed up of the algorithm

convergence can be noticed. Indeed, while the autonomous

localization requires almost 300 iterations for all robots

in order to settle around a value of 15cm, the same is

obtained by the collaborative localization after only roughly

100 iterations. This can be explained by the fact that, any

time two robots meet, the way in which they cooperate allows

them to strengthen the more likely hypotheses by computing

the virtual niches which affect the landscape by augmenting

the pay-off in densely populated areas.

Finally, in order to investigate the robustness of the pro-

posed CFS-GA, 500 simulations involving random starting

point and goal points for both environments were considered.

According to the obtained results, the CFS-GA proved to

always be able to localize the robot with a population of

300 individuals, while the AMCL showed a percentage of

failure of roughly 35% starting with 10000 particles (adaptive

population ranging from 10000 to 1000 particles) and the

SSGA a percentage of failure of roughly 15% starting with

a population of 300 individuals.
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(a) Collaborative Localization
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(b) Autonomous Localization

Fig. 4. Second scenario. Collaborative localization against autonomous
localization. Plot lines’ colors match robots’ paths color.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a novel genetic algorithm based on a

“Collaborative” Fitness-Sharing technique to deal with the

Multi-Robot Localization problem has been proposed.

The key idea is to use a fitness-sharing technique for a

twofold competitive objective. On one side this is used to pre-

serve the diversity among individuals during the exploration

of the search space, and thus it allows to maintain evolu-

tionary niches over time. On the other side, this is exploited

to reinforce the best hypotheses by means of collaboration

among robots and therefore it allows to augment the selection

pressure.

This works represents an extension of the idea proposed

in [1]. The common baseline is to provide a mechanism

for which evolutionary niches representing the most likely

hypotheses (robot locations) are maintained over time. In

previous works this was achieved by providing a spatial

structure to the population and constraining the mating over

this topology. In this work a niching method has been

exploited. This results in a more focused and effective action,

while providing at the same time a suitable framework to

strengthen the more promising hypotheses through collabo-

ration.

Several simulations by exploiting the robotics simulation

framework Player/Stage have been performed for perfor-

mance assessment. According to the simulation results, the

proposed CFS-GA seems to be a promising technique for

both autonomous localization and collaborative multi-robot

localization.

Interesting challenges still remain for future work. First, a

real implementation in order to investigate the effectiveness

of the proposed CFS-GA in a real context is currently under

study. In addition, an investigation to bring this idea into a

probabilistic context will be investigated. This way a major

shortcoming of this approach, i.e., inability of providing a

measure of uncertainty of the estimation, would be over-

come.
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