
  

  

Abstract—This paper presents a novel appearance-based 
technique for qualitative spatial localization. A vocabulary of 
visual words is built automatically, representing local features 
that repeatedly occur in the set of training images. An 
information maximization technique is then applied to build a 
hierarchical classifier for each environment by learning 
informative visual words. Child nodes in this hierarchy encode 
information redundant with information coded by their 
parents. In localization, hierarchical classifiers are used in a 
top-down manner, where top-level visual words are examined 
first, and for each top-level visual word which does not respond 
as expected, its lower-level visual words are examined. This 
allows inference to recover from missing features encoded by 
higher-level visual words. Several experiments on a challenging 
localization database demonstrate the advantages of our 
hierarchical framework and show a significant improvement 
over the traditional bag-of-features approaches. 

I. INTRODUCTION 
NE of the fundamental requirements for an autonomous 
mobile agent is localization, i.e., the capability of 

knowing where it is located within its world. Agents should 
be able to localize themselves in order to navigate in the 
environment, compute a path to a target destination, and 
recognize that the target destination has been reached. 
Localization in complex environments usually relies on a 
map which can be either given to the agent (e.g., topological 
maps), or learned while the agent discovers its surroundings 
(e.g., metric maps). 

There are two types of localization: qualitative and 
quantitative. Qualitative localization gives the agent the 
capability of recognizing the environments, but not the 
ability to estimate a precise metrical pose. On the other 
hand, quantitative localization provides the agent with the 
capability to estimate its exact pose (i.e., position and 
heading) relative to a metric map. In this paper we focus on 
the problem of qualitative localization, which can be seen as 
a starting point for quantitative localization. 

Vision sensors have advantages over laser, ultrasonic and 
sonar range finders, for the purpose of localization. Cameras 
are information-rich, relatively inexpensive and easily 
available. However, visual localization is very challenging, 
since: (i) the visual appearance of scenes varies significantly 
with changes in lighting conditions; (ii) objects may be 
added to or removed from the environment, which can 
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change the visual appearance remarkably from the training 
time; and (iii) the same scene may look very different from a 
different viewpoint. 

A large number of qualitative localization approaches 
have been developed and refined in recent years, which can 
be classified into two categories: context-based (global) 
techniques and landmark-based approaches. 

Amongst context-based methods, which usually use 
global image features such as color (e.g., [3]), texture (e.g., 
[4]), or both (e.g., [5]), one influential approach is that of 
Torralba et al. [6], introducing a low-dimensional global 
image representation called an image gist, encoding the 
textural properties of the image and their coarse spatial 
layout. Image gist has been used widely in many localization 
methods, either solely (e.g., [7]) or together with other 
techniques (e.g., [8]), and has provided very good 
localization results. 

In landmark-based approaches, such as [10] and [26], 
local image features play the main role in localization. 
Unlike global features, local features characterize a limited 
area of the image. However, they usually provide more 
robustness against common image variations (e.g., 
illumination, occlusion, etc.). Among local feature extraction 
techniques, the Scale Invariant Feature Transform (SIFT) [9] 
has been used in many localization systems (e.g., [8], [10]). 
Other examples are Kernel PCA features [11] and MSER 
features [12]. 

Local image features are usually used for localization 
within a bag-of-features framework [2], where only the 
appearance of features are used and their spatial coordinates 
are discarded. In this framework, the extracted features from 
the query image are matched to a vocabulary of visual words 
(i.e., each representing a category of local image features 
that are visually similar to each other), resulting in a 
response vector indicating the presence/absence or the 
frequency of each visual word in the query image. The 
response vectors are then used as classification keys for 
training and recognition.  

Several extensions have been proposed to this basic 
approach. A group of authors have proposed feature 
selection techniques to choose the most discriminative visual 
words for recognition and classification tasks. In [19], three 
feature selection approaches - namely, the maximization of 
mutual information [20], odds ratio [21], and linear SVM 
[22] - have been evaluated for selecting the most 
discriminative visual words, and the linear SVM is reported 
as the best one. In [23] visual words are iteratively selected 
that maximally increase the recognition performance. More 
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recently, Lazebnik et al. [24] proposed another information 
theoretic solution to address a similar problem through 
information loss minimization.  

Another group of authors, focused on improving the 
performance of the bag-of-features framework by modeling 
the statistical relationships between the visual words. 
Bernoulli mixture model is employed by Ferreira et al. [13] 
to capture the conditional dependencies between visual 
words in the vocabulary. In a more recent approach by 
Cummins et al [18], visual words are used in a probabilistic 
framework for image matching, where the statistical 
relationships between the visual word are modeled through 
Chow Liu trees, capturing the fact that certain combinations 
of visual words are likely to appear or disappear together in 
the images of the environment. They experimentally showed 
that modeling such statistical relationship in a probabilistic 
framework can improve the result in visual loop closure 
detection in dynamic environments, allowing more accurate 
estimation of the probability that two observations come 
from the same location. 

Although the proposed extensions, to some extent, 
improve the performance of the traditional bag-of-features 
approach [2], they do not address the problem of partial 
occlusion (i.e., failure to detect some of the expected visual 
words in the query images) explicitly. This is particularly 
important in the context of qualitative localization in 
dynamic environments, where objects (i.e., visual 
landmarks) could be removed from the environment. In this 
paper, a novel landmark-based algorithm for qualitative 
localization is presented, which explicitly considers the 
challenges resulting from dynamic changes in the 
environment (as mentioned above). Hierarchical classifiers 
are built for different environments, where each node in a 
hierarchy is a visual word selected based on the additional 
information it can deliver about an environment, i.e., 
information not already provided by previously-selected 
visual words. Hierarchies are built in a top-down manner, 
where the children of each node in the hierarchy are visual 
words that together deliver (almost) the same additional 
information about the class (environment) as their parent 
does. During classification, if a visual word in a hierarchical 
classifier does not respond as expected (e.g., it is absent 
while expected to be present), then the children of that node 
are examined, and this process successively continues until 
atomic nodes (i.e., leaves) are reached. Experimental 
evaluations show that our proposed hierarchical method 
perform significantly better than competitive approaches, as 
it survives loss of key features due to changes in viewpoint, 
dynamic occlusions, shadows, and many other common 
environmental effects. 

The remainder of the paper is organized as follows: in 
Section II we describe the different steps of our method. 
Section III presents the implementation details and 
experimental results. Finally, we conclude the paper and 
discuss some future work in Section IV.  

II. METHOD 

A. Image Representation 
In our method, images are represented by their local 

distinctive features. Image features are extracted using the 
Scale Invariant Feature Transform (SIFT) technique, 
developed by Lowe [9], which combines a scale invariant 
feature detector and a gradient distribution based descriptor. 

 The detector (based on the Difference-of-Gaussians 
function) identifies locations in image scale space that are 
invariant with respect to image scaling and rotation, and are 
minimally affected by noise and small distortions. For each 
detected feature, a 128 dimensional description vector is 
created relative to the scale and orientation of the feature [9].  

B. Vocabulary of Visual Words 
Similar to the idea of bag-of-features, in our method, 

extracted features from training images are quantized with a 
set of compact visual words. Visual words are built 
automatically by grouping the visually similar features 
extracted from the training images, using a clustering 
method. There are many clustering algorithms that can be 
used, each with certain strengths and weaknesses. The k-
means algorithm has been widely used for this purpose, 
since its computational simplicity allows for very large data 
sets. However, k-means clustering requires the user to 
specify the number of clusters in advance, which is not 
possible for many applications (including ours). 

In our method, we use an agglomerative clustering 
scheme, which automatically determines the number of 
clusters. Starting with each feature as a separate cluster, at 
each iteration, the agglomerative clustering finds the most 
similar pair of clusters and merges them into one, as long as 
the average similarity between their constituent members 
stay above a certain thresholdθ : 
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In the above equation, cossim(x, y) is the cosine similarity 
between x and y, where x and y are the constituent members 
of clusters X and Y with sizes N and M, respectively.  

For each resulting cluster with more than m members (m 
is 5 in our experiments), we compute the centre of the 
cluster and store it as a visual word in the vocabulary.  

C. Hierarchies of Visual Words 
Given the set of computed visual words, the next step is to 

learn a classifier for each environment, by selecting and 
combining the appropriate visual words. For each 
environment, a positive and a negative set of images are 
created. Positive images for the environment are those taken 
from that environment, and negative images are simply the 
positive images of other environments. A binary vector, Pi, 
with the length equal to the number of training images is 
associated with every visual word, i. If there is a feature 
extracted from a training image, I, that belongs to visual 
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word i, then Pi(I) will be 1, otherwise it will be 0. Every 
class is also represented by a binary variable Cj, where Cj(I) 
is 1 if I is an image of environment j, and 0, otherwise.  

The discriminative value of each visual word is measured 
as the amount of mutual information it can deliver about the 
class [1]: 
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In the above equation, I(Pi; Cj) is the mutual information 

between visual word i and class Cj, and H denotes entropy. 
Informative visual word selection starts by identifying the 
visual word with the highest mutual information score. It 
then proceeds by iteratively searching for the next 
informative visual word that delivers the maximal amount of 
additional information with respect to each of the previously 
selected visual word(s): 
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Here Kl is the set of candidate visual word, Sl is the set of 
selected visual words up to iteration l, and Ql is the visual 
word to be selected in iteration l. 

This process ends when the increment in mutual 
information gained by selecting a new visual word is less 
than a certain threshold (0.05 in our experiments), or until 
the number of selected visual words reaches a pre-defined 
limit (15 in our experiments). 

In our experiments (Section III), we observed that for 
most classes, the learnt visual words (called top-level visual 
words) are strong enough to discriminate the positive and 
negative training images with 100% accuracy. However, it is 
unrealistic to expect that all (or even the majority) of these 
visual words will be detected and recovered in the test 
images. This might be the result of changes in the structure 
of the environments (e.g., some objects are removed or 
added), variation in lighting conditions, or substantial view-
point changes. Therefore, for each of the selected top-level 
visual words, we search for other visual words that can 
deliver the same mutual information about the class (relative 
to the previously-selected visual words), in the absence of 
that top-level visual word. The selected visual words are 
then considered as the children of the top-level visual word 
and are used in a top-down manner during classification 
(Section II.D). 

To identify such lower-level visual words, rather than 
using all the positive and negative training samples, only 
those that are successfully classified by the higher-level 
visual word are used. Therefore, the goal is to find a 
combination of visual words that can (almost) perfectly 
mimic the action of the higher-level visual word. This can be 
done by applying the same information maximization 
procedure that was used at the higher level. 

This process continues recursively, until the children of a 
selected visual word cannot provide an acceptable 
discrimination between the corresponding positive and 

negative samples, or when a pre-defined level (4 in our 
experiments) is reached. Visual words with no children are 
then labeled as atomic visual words. 

Similar to [1], the response of each hierarchical node is 
computed by linearly combining the responses of its 
children1: 
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In the above equation, si is the response of the ith child of 

the node, normalized by a sigmoid function to the range  
[-1, 1]. w0 and wi are the bias and weights of the 
combination, adjusted iteratively during the training, using 
the Back-Propagation algorithm (as described in [1]).  

D. Localization 
Localization of a query image starts by extracting the 

local features (Section II.A). The extracted features are then 
quantized with the set of visual words. Each hierarchical 
classifier is then examined in a top-down manner: if a visual 
word in a hierarchy does not respond as expected2 (e.g., 
absent while expected to be present), then the children of 
that visual word are examined, and this process successively 
continues until atomic visual words (i.e., leaves) are reached. 
Then the response of a non-atomic visual word is computed 
using Eq. 4, once the responses of all its children are 
determined. Similarly, the final response of a classifier is 
computed when a response for every top-level visual word is 
available. After applying all the classifiers, localization is 
determined by the maximal response over hierarchies 
representing each class. 

III. EXPERIMENTS 

A. Database 
To evaluate our method, we use a publicly available 

database provided by [15]. The database was created from 
three outdoor sites on University of Southern California 
campus. Each site was manually divided into 9 continuous 
paths (referred to as segments). For each segment, 12 to 15 
image sequences are provided, capturing different lighting 
conditions, small viewpoint variations and some structural 
changes. In [8] and [16], all images from almost half of the 
database are used for training (at least one run per segment 
per lighting condition) and the remaining for testing. 

 
1 If a visual word is an atomic node, its response is either 1 (the visual 

word is present in the image), or 0 (it is absent). 
2 If the weight between the visual word and its parent is positive, the 

visual word is expected to be present in the image, otherwise, it is expected 
to not be present (negative weights are not common and may only occur in 
low levels of hierarchies). 
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In our experiments we use only the first five segments of 
the first site (ACB site). For each segment, two runs are 
used: a subset (regularly sampled) from one run is used for 
training, and all the images from the other run are used for 
testing. Runs were selected manually, such that the 
difference between the training and testing images (in terms 
of lighting conditions and structural changes) was maximal. 
Note that unlike [8] and [16], our system was trained with 
images of only one lighting condition and was evaluated 
with images of a different lighting condition. Overall, our 
training and testing sets consist of 250 and 1960 images, 
respectively. Figure 1.a shows sample images from training 
and test sets.  

A. Results 
Extracting the features from all training images resulted in 

a pool of 76,965 features, ranging from 233 to 1264 per 
training image, with more features for highly textured 
images. Applying the clustering algorithm on the pool of 
features, a set of 25,284 visually compact clusters were 
produced. After discarding the clusters with less than 5 
features, 3,568 clusters remained to compute the visual 

words (see Figure 1.b for several examples).  For each 
environment, a separate hierarchical classifier was then 
constructed. Classifiers were then combined as described in 
Section II.D, to form the final localization system. Figure 2 
shows the top-level visual words selected for some of the 
classifier. 

Our first experiment was designed to evaluate the 
effectiveness of our hierarchical processing for dealing with 
dynamic changes in the environment. To this end, we run 
our localization system on the test images two times, once 
with full visual word hierarchies and the other time with 
only top-level visual words. As shown in Table 1, a 
recognition rate of 89.8% was achieved with full hierarchies, 
while with only top-level visual words the classification 
performance was around 77.6%. This confirms the 
advantages of our hierarchical method in dealing with 
variations in the test dataset. Variations that are not present 
in the training dataset may result in missing or misleading 
features, causing conventional feature-based methods to 
misclassify   scenes.    In   our   hierarchical   method,  these 

                 
 

                 
 

(a) 
 

 
 
 

(b) 
 

 
Figure1. (a) Examples from five segments of the ACB site [15] used in our experiments. Top images are samples from test set and 
bottom images are close samples from the training set. (b) Shows examples of the visual words produced by clustering the SIFT 
features extracted from the training images. Each example shows a cluster by displaying the image regions corresponding to the 
SIFT features that belong to that cluster, along with their average (top-left corner) to show the visual-compactness of the cluster. 
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variations generate unexpected responses in higher-level 
nodes, which lead the algorithm to seek clarifying evidence 
from “back-up” child nodes. Often, the features coded by 
these lower-level nodes will have survived the variation and 
will allow the system to respond correctly.  In effect, our 
hierarchical method prevents over-learning of specific 
features, distributing inference over features that may appear 
redundant in the training set, but may not be redundant in the 
test set. 

To put our results in context, we compared them with the 
performance of three other solutions on the same test set 
(using the same training set): 

 
BF1: an in-house implementation of the traditional bag-

of-features technique (similar to [2]). For this, we use 
exactly the same set of 3,568 visual words used for our 
hierarchical method. Each image is described by a 
description vector indicating the frequency of each visual 
word in the image. A Support Vector Machine (SVM) [17] 
is then learnt for each class versus the other classes using the 
description vectors of the training images. To classify a 
query image, the trained SVM classifiers are applied and the 
one with maximal score indicates the label of the query. 

 
BF2: an implementation of [25], as a recent and well-

received extension to the original bag of features method. 
SIFT descriptors extracted from local regions of the training 
images are quantized into a tree of visual words, using the 
hierarchical k-means clustering technique. The tree of visual 
words is used in a Term Frequency Inverse Document 
Frequency (TF-IDF) context, scoring the similarity of a 
training image to the query. Classification of a query image 
is performed by retrieving N (N = 6 in our experiments) most 

similar training images from the database and using their 
label to cast vote for the label of the query image. In our 
experiments, we use Andrea Vedaldi’s implementation3 of 
this technique.  

 
Global: the implementation of the global image gist 

features [6], as described in Section I. As in [7], computed 
gist features from the training images are used as unique 
low-dimensional image classification keys to train a SVM 
classifier for each environment. Similar to BF1, each query 
image is then classified by applying the trained SVM 
classifiers and taking the maximal score.  

 
For each of the above methods, we use the parameters 

proposed by the authors. Table 1 summarizes the results. As 
can be seen, the classification accuracy achieved from the 
top-level visual words and BF1 and BF2 methods, while 
close to each other, are substantially lower than the 
performance of our proposed hierarchical method. This 
validates the superior robustness of our hierarchical method 
against dynamic changes in the environments, and supports 
the idea of explicitly addressing the problem of partial 
occlusion in learning the classifiers.  

All our experiments were performed on a PC with a 2.4 
GHz CPU. The most time consuming process in our 
localization system is the extraction of image features, which 
takes around 0.7s on average for each 240x352 image. Given 
the extracted image features, recognition is performed in 
around 0.1-0.3s, depending on the number of extracted 
image features and the number of informative visual words 
contained in each classifier (see Table 1 for the average 
 

3 http://vision.ucla.edu/~vedaldi/code/bag/bag.html 

                      
 

 

                  
 
        

Figure2. Top-level visual words selected during training for three of the five classifiers. Each visual word is represented by the 
average of the image regions corresponding to the SIFT features that build that visual word. A few of the selected visual words have 
negative weights (e.g., fourth visual word from top-left in the second environment). 
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localization time of other methods used in our evaluations).  

I. CONCLUSIONS 
In this paper, a novel technique for qualitative localization 

was proposed, which combined the advantages of landmark-
based approaches with hierarchical learning to achieve 
robustness against dynamic changes in the environments. 
Several experiments on a challenging localization database 
validated the effectiveness of our hierarchical learning and 
showed a significant improvement over the conventional 
feature-based and global approaches. 

 In future work, we intend to evaluate other feature 
extraction methods and study the scalability of our method. 
We would also like to investigate the possibility of using a 
feature tracking technique, rather than a clustering method, 
to build the vocabulary of visual words from feature points. 
This could significantly speed up the training process and 
result in more visually compact clusters. 

 
 

TABLE I 
PERFORMANCE AND COMPUTATIONAL TIME 

 

Methods Accuracy Computational Time 

Full Hierarchy 89.8% 0.9 s 
Top-Level 77.6% 0.8 s 

BF1 71.3% 0.9 s 
BF2 78.6% 0.8 s 

Global 81.2% 1.7 s 
   

 
The performance and average inference time of our hierarchical 
method on the test database, in comparison with other techniques 
used in our evaluations. 
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