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Abstract— We consider the problem of sensor-aware path
planning for a robot in a Networked Robot System, in particular
in urban environments equipped with a network of surveillance
cameras. A robot can use observations from the camera
network to improve its own localization performance, but also
needs to take into account the specifics of its local sensors. We
model our problem in the Markov Decision Process framework,
which forms a natural way to express concurrent and possibly
conflicting objectives – such as reaching a goal quickly, keeping
the robot localized, keeping the target in sight – each with their
own priority. We show how we can successfully prioritize the
different objectives in a flexible way by changing the reward
function, based on the sensory needs of the system.

I. INTRODUCTION

Robots are leaving the research labs and operating more

often in human-inhabited environments, such as urban pedes-

trian areas. The main idea of the URUS (Ubiquitous Net-

working Robotics In Urban Settings) Project [1], [2] is to

incorporate a network of intelligent components, e.g., robots,

sensors, devices and communications in order to improve

quality of life in urban areas. The scenario we consider in our

work is a group of robots assisting humans in a car-free area,

a so-called Networked Robot System (NRS). The pedestrian

area in which the robots operate is equipped with surveillance

cameras providing the robot with more information. Imple-

menting such a system requires addressing many scientific

and technological challenges such as cooperative localization

and navigation, map building, human-robot interaction, and

wireless networking, to name but a few. In this paper, we

focus on one particular problem, namely how to plan paths

for robots taking into account the coverage of the camera

network as well as the robots’ own sensors.

In many NRS, surveillance cameras will run a set of

event detection algorithms, for instance observing events

such as people waving, people lying on the floor, fires, or

other emergencies, each with a different priority. However,

the network of cameras will have a limited coverage and

accuracy. In particular, the environment might contain blind

spots that are not observed by any fixed camera. As such,

though the camera network is supposed to cover the scene,

employing mobile robots for visual coverage is a need.

A camera network might cover a lab environment, but

providing full coverage for urban environments is a difficult

task. There are often obstacles both natural and man-made in
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the environment which make parts of the environment hidden

from the camera network. Even if we could employ a large

number of cameras to have an environment fully in view,

dynamic obstacles still can create new hidden patches.

Furthermore, other areas might be observed by a camera,

but not with sufficient resolution for accurate event detec-

tions. In this case, we send mobile robots to positions where

higher resolution images are required. In NRS the interaction

between the system and humans will largely be achieved

through human-robot interaction, which in general requires

a robot to be close to a human subject. In this work, we

consider the problem of a robot planning a path to reach

a target location. For instance, consider a situation where

a robot needs to reach a human for interaction purposes.

The robot should take into account available sensory ca-

pabilities provided by a robot’s mounted sensors as well

as by the network of surveillance cameras. In particular, a

robot can use observations from the camera network for its

own localization, or take into account the specifics of its

mounted sensors to plan an approach to a target location

that maximizes the information its sensors will give it about

the target.

We use a Markov Decision Process (MDP) framework to

address our sensor-aware path planning problem [3], [4]. A

decision-theoretic framework such as the MDP forms a nat-

ural way to express concurrent and possibly conflicting ob-

jectives such as reaching the goal quickly, keeping the robot

localized, keeping the target in sight, each with their own

priority. Given the partially observable nature of the problem,

modeling it as a partially observable MDP (POMDP) would

be appropriate. However, given the scale and level of detail

of the problems we are targeting, with many states, and, more

importantly, a large number of possible observations and a

high planning horizon, this is beyond current state-of-the-art

approximate POMDP planners.

II. RELATED WORK

In related work, the Coastal Navigation algorithm models

the problem of navigating a robot while keeping localization

uncertainty low as a POMDP [5]. It converts the POMDP

into an augmented MDP, which has an extended state space

composed of robot locations and discretized entropy levels.

The entropy is used as a measure for the uncertainty of the

robot’s localization. In our case, we keep the size of the state

space constant, focusing on modifying the reward function

instead. This is a flexible way of incorporating different

objectives, beyond only caring about the robot’s localization

certainty: we also consider the visibility of the target by

the robot. Keeping a constant state space allows for quick
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solving of the MDPs. The environment, the costs and the

rewards can be modeled in advance and the optimal path

can be determined for all destinations. Moreover, if there

are changes in the environment, updating the MDP model

even with a large number of states is quite fast. We have a

good initial estimate of the value functions which causes the

algorithm to converge quickly.

Some researchers studied this problem under a path plan-

ning framework. Choi et al [6] used Q-learning to find the

path which can maintain good kinematic isotropic property

while avoiding obstacles. Singh [7] et al introduce a greedy

search approach for motion planning in order to maximize

the amount of information collected while placing bounds on

their resources. Since the original algorithm, called recursive

greedy, is computationally expensive, an approximate algo-

rithm is used which decomposes the state space in a uniform

grid in order to reduce the computational complexity. The

algorithm is suboptimal and is still expensive to apply to real-

time applications. In [8], a gradient-search-based algorithm

is used to provide a suboptimal solution for sensor position

selection to realize the best observation of a moving target

in an environment with no obstacles. Comparing to our

work, the authors only considered the localization certainty

as a parameter that affects the robot path. Moreover, the

algorithm only considers one step ahead rewards based on

the other robots’ position prediction. Park [9] proposes a

real-time path planning by combining probabilistic roadmap

and reinforcement learning to deal with uncertain dynamic

environments and similar environments. To avoid obstacles,

the Q values in the states occupied by the obstacles are set

to zero. This is one shortcoming of this work because the

planned path might not be optimal anymore, specially if the

environment is highly dynamic.

III. BACKGROUND ON MARKOV DECISION PROCESSES

We will briefly introduce the Markov Decision Process

(MDP) framework [3], [4]. MDPs provide strong mathemat-

ical tools for decision making under uncertainty, in case the

state of the environment is observable to the robot. It is

formally specified by a four tuple (S,A, T,R) where S is

a (finite) set of states, A is a (finite) set of atomic actions,

T is the transition model and R is a reward function. Each

element of S describes the state of the system at a given

time instant. Each action element a ∈ A represents the action

that agent takes, at any time step. A value function defined

as V : S → R determines the sum of total expected future

reward from being in a state s: V (s) = E [
∑

∞

t=0
γtRt(s, a)],

where 0 ≤ γ ≤ 1 is a discount factor. A policy is a function

π : S → A which maps states to actions. π(s) states the

action that should be taken in state s and the value of the

policy Vπ(s) is the expected cumulative discounted future

reward that the agent gets if it executes π. The optimal

policy π∗ tells us which action to take at each state in order

to maximize the expected reward, and can be implemented

using the optimal value function V ∗. It is known that V ∗

verifies

V ∗(s) = max
a∈A

{

R(s, a) + γ
∑

s′∈S

T (s, a, s′)V ∗(s′)

}

.

(1)

In order to compute V ∗, dynamic programing techniques

such as value iteration can be used [3], [4].

IV. COSTS AND REWARDS FOR ACTIVE COOPERATIVE

PERCEPTION

We will implement our ideas on decision-theoretic robot

guidance by defining the MDP’s reward function. This is

a flexible way for the user of the system to specify the

relative importance of the considered factors. In particular,

the idea of taking the best path is directly related to costs

and rewards. By rewards, we mean what the agents receive

along the path or at destination. The costs are defined as

the amount of resource consumption, effort, loss necessary

to achieve the goal or the risk, e.g., risk of bumping into

an obstacle due to taking a narrow path. In our scenario,

localization certainty, visibility of the target location, as well

as reaching the destination are considered as the rewards.

Maneuvering risk and traveling are considered as costs, i.e.,

as negative rewards. Each of them are explained below in

detail.

Before going into details, it is necessary to mention that

the world is discretized in a number of states. Each state is

specified by its position and its orientation. The orientation

space is divided into eight equal sectors and the first starts at

zero radian. There are three atomic actions possible in each

state: stay in the same state but change the orientation ±π
4

,

or move forward.

A. Goal Reward

The goal reward ρG is defined as the reward the agent

receives when it reaches the goal state. This reward may

vary based on the degree of our interest in the goal and

the situation. For example, if the camera network detects

a fire and the system deploys the robot to provide more

details, considering the urgency of the case, the system only

considers the rewards which result in generating the fastest

path to the goal and ignores other possible rewards.

B. Localization Certainty Reward

Often, the pose of a target, e.g., a robot, a person, etc.

is an important piece of information we need to know. For

example, when the robot should approach a person to let

the person to interact with the robot, in order to prevent

collision, having an accurate relative localization of robot

and the person is very important. In another word, if the

person is localized but with a large uncertainty, the robot can

use its sensors in order to help the camera network to better

localize the person. Therefore, if the localization uncertainty

of the robot is not good enough, while it is traveling toward

the person, it has to give more priority to paths with larger

Certainty Reward than to other paths, e.g., shorter paths but

with a large localization uncertainty.
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Fig. 1. The figure shows a robot in several positions. The reward in
Positions P1 and P4 is zero but in P2 and P3 is not zero. The reward value
depends on the relative distance and the angle receives.

The observation model of the surveillance cameras is

assumed Gaussian, with the mean centered at the real value.

The covariance increases proportionally with the relative

distance between the camera and object of interest. To each

state in state space we assign a real number ρL which is

called Localization Certainty and is defined as:

ρL =
1

1 + σi

(2)

where σi is defined as:

σi =
1

eT Σ−1e
(3)

where e = [1, 1, ..., 1]T is a 1×N vector, N is the number of

cameras that can observe the state and Σ is the covariance

matrix of cameras which cover the state.

C. Visibility Reward

One important issue in our scenario is the visibility issue.

The visibility is defined as feasibility of observing the object

of interest at a specific position and angle. We explain this

concept by providing an example which is drawn in Fig. 1.

In this example, a robot with an on-board camera in several

positions is shown. The robot in P1 is not able to see the

object of interest which is depicted by a circle because its line

of sight is blocked by the obstacle on the way. However, in

P2, the robot is potentially able to view the object. It means

that although the object may not be in robot camera view

field, there is no obstacle that blocks the robot line of sight.

The robot in P3 can see the target and we give a higher

visibility reward compared to P2 because as it is closer to

the object and the visibility is less sensitive to change in

the orientation. Moreover, in P4, a zero visibility reward is

Fig. 2. Illustration of the maneuvering cost function. Giving more attention
to maneuvering cost than the traveling cost, in absence of other costs and
rewards, forces the robot to take path P1-P2-P6-P7 instead of P1-P2-P3-P4-
P5, although P1-P2-P3-P4-P5 is shorter.

assigned. Although it is closer to the object than the robot in

P2, considering its orientation, the target is not in the robot’s

line of sight.

Formally, ρV is defined as:

ρV =
αvi

∆p
(4)

αvi = 0 if ∆p > η, |∆θ| > ξ, line of the sight is

blocked by an obstacle placed between the state and the

goal or an obstacle is in the state; Otherwise αvi = 1.

∆p is defined as the Euclidean distance between the goal

and the state and η is a positive number representing the

maximum visibility radius. ∆θ is the relative angle between

the robot’s orientation and the line of the sight to the goal and

ξ representing the maximum visibility angle. The visibility

and the robot sensor range are related but visibility is a

different concept, as it is affected by the robot orientation

and, more importantly, the path characteristics. A path with

many obstacles between the goal and the robot has a low

visibility, even if the robot is equipped with a long-range

sensor.

D. Maneuvering Cost

Often, a robot needs to change its orientation. To do so, it

needs space. In larger spaces, the maneuvering risk is smaller.

For a robot, it is less possible to bump into an obstacle when

it has a larger free space to maneuver. The places closer

to the obstacle are more risky for changing the orientation.

Moreover, a narrow passage is more risky to take than a

wider passage. Therefore, the maneuvering cost ρM of each

state is defined as a function of two factors:

ρM =
αM

λ
+ (1 − αM ) ∗ ϑ (5)
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(a) (b)

Fig. 3. The left figure shows the schematic diagram of the URUS test bed which is located in UPC Nord campus, Barcelona. The right figure presents
the free spaces and obstacles. The places marked with yellow filled squares are the obstacles and the rest is the free space.

where 0 ≤ αM ≤ 1 is used to balance the importance of

passage width (first term) versus the number of surrounding

obstacles (second term) and ϑ is the number of surrounding

obstacles. λ is defined as:

λ =
λi

λmax

(6)

λi is the cell size of ithcell and λmax is the largest cell size.

To make things clear, a scenario is explained in Fig. 2.

Considering a higher cost for maneuvering, the robot is

forced to take path P1-P2-P6-P7 instead of taking the path

P1-P2-P3-P4-P5, even though the second path is shorter.

E. Traveling Cost

The cost of traveling ρT has two components: the relative

distance and rotation. It is considered as a linear combination

of the two costs:

ρT = αT ∗ ∆p + (1 − αT ) ∗ ∆θ, (7)

where 0 ≤ αT ≤ 1.

The first component is calculated based on the relative

Euclidean distance ∆p the robot needs to take to travel from

one state to another. The second component is determined

by calculating the absolute difference ∆θ between the orien-

tation of the two states. We usually give the higher relative

importance to the second term as for our robots changing

the orientation needs more resources in terms of energy and

time.

V. DECISION-THEORETIC ROBOT GUIDANCE

We use the concepts defined in the previous section to

plan paths using value iteration (Section III). Value iteration

considers all the quantitative rewards and computes the best

path. We model the environment, cost and rewards and then,

using a simulated environment, we determine the optimal

path for all possible goal states off-line. One important issue

with this method is the change in the environment. Since

the environment is dynamic, we may experience changes

in the environment, e.g., an unforeseen obstacle appears on

the robot path and blocks it. In this case we recalculate

the value function. As we have a good initial starting value

for value functions, in a few iterations the algorithm might

converges. Because of that we call this method active cost-

reward based robot guidance since we can change the optimal

path according to changes in the environment and also our

needs. We define the rewards as:

ρ = βGρG + βV ρV + βLρL + βT ρT + βMρM (8)

Choosing β is based on the robot mission. To limit the

search space of ρ’s, we normalize the cost and rewards, ρ ∈
[0,1].

VI. EXPERIMENTS

To verify the performance of the proposed method, we

ran a series of simulations. Fig. 3(a) shows the schematic

diagram of the URUS test bed which is located in UPC

Nord campus, Barcelona. The area size is about 1 hectare,

which we divided in equal size 2×2 m2 squares as depicted

in Fig. 3(b). In each cell, we considered 8 different robot

orientations. The first orientation is at 0 radian and the step is
π
4

. The total number of states is 20000. However, part of them

are occupied by obstacles and we only deal with the free

states. Fig. 3(b) presents the free spaces and obstacles. The

places marked with yellow filled squares are the obstacles

and the rest is the free space. A discrete MDP is used to

model the path generation. The reward function is considered

according to (8). The basic atomic actions are either to stay in

the same cell and only change the orientations ±π
4

or move
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(a) {βG = 100, βV = 0, βL = 0} (b) {βG = 100, βV = 0, βL = 0}

(c) {βG = 100, βV = 0, βL = 100} (d) {βG = 100, βV = 100, βL = 0}

(e) {βG = 100, βV = 0, βL = 300} (f) {βG = 100, βV = 100, βL = 100}

Fig. 4. The figures represents the generated path in different situations. In the figures, the dashed rectangle corresponds to a region covered by cameras,
while the yellow squares are obstacles. To make the results better visible, only part of the scene shown in 3(b) in which the scenarios take place are shown.
For all above cases, we set βT = −1 and βM = 0.
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forward. Here we assume deterministic actions, however it

is trivial to extend the work to noisy actions, as the same

value iteration procedure can be applied. In Fig. 4, the goal

position is specified by ’G’ and the area under the camera

coverage is shown by a rectangle with a dashed edge.

Consider the case when the network of cameras detects a

fire. The robot should be deployed in such a way it gets to

the place in the shortest possible time. Another situation is

where the robot is asked to approach and provide a service

for a person who is localized but with large uncertainty. To

do so, robot has to know its own localization very well in

order to find out the position of the person using the relative

localization for further operation. This is the situation where

robot has to take a path under camera coverage and with

acceptable ρL. The aim of the experiments are to evaluate

the effect of different parameters on the generated path.

Fig. 4(a) shows a scenario where we have a camera which

covers the area marked with the dashed rectangle. We check

the behavior of the system, the generated optimal path, by

changing the values of βL and βT while βV is set to zero.

First, we set βL to zero. Naturally, the generated path is

the path with the lowest traveling cost. In Fig. 4(a), the

generated path is shown. In Fig. 4(c), we kept all β’s the

same but change βL. Increasing βL causes a different path to

be considered for the robot. The generated path goes through

the area covered by the camera. To see the further effect of

increasing βL, we use the same setting but increase βL. This

time the system changes the generated path in such a way

it stays longer under the area covered by the camera. The

result is shown in Fig. 4(e). It can be seen that even when we

change the robot orientation, due to a large βL, the system

still guides the robot to the area covered by the camera.

The next scenario is designed to see the effect of βV and βT

on the generated path while either βL is fixed or changed.

There are situations where sending the robot to the position

where the object is in robot line of sight has the top priority

e.g., the camera detects an intruder and has to send the robot

to track. In other words, the priority is that the robot reaches

to a point in which it can observe the person as quickly as

possible. Using a robot equipped with a laser range finder,

the system can then track the person. Fig. 4(b) shows the

case where we set all βV and βL to zero. This is similar to

Fig. 4(a) but the starting and goal locations are different. The

generated path has the lowest traveling cost. In the second

case we gave more priority to βV over βT . As we can see

in Fig. 4(d), the robot is provided with a different path.

Only considering the traveling cost, this path is more costly.

However, taking this path, causes the robot to reach earlier

a point at which the object is in its line of sight. We have

an area under camera coverage close to starting state. For

improving robot localization uncertainty, giving some weight

to βL, causes the path generated to become longer but pass

through the area covered by the camera. This is depicted in

Fig. 4(f).

VII. CONCLUSION AND FUTURE WORK

In this paper we address the problem of generating an

optimal path for a robot taking into account available sensory

capabilities, both provided by a robot’s own sensors and

by a network of surveillance cameras. By changing some

parameters we can guide the robot to the same position but

taking different paths. The urban environments we target

are highly dynamic environments in which demands change

rapidly. Sometimes a robot should reach the goal as fast

as possible, sometimes it should consider other factors such

as its localization uncertainty and sometimes for an optimal

path we should consider the positions of both the object of

interest and the robot. We model the path planning problem

as Markov Decision Process, which allows to prioritize

the different objectives in a flexible way by changing the

reward function. We also can solve the MDP in real time

using value iteration. Since main focus of the NRS is to

employ a network of cooperative robots in order to assist and

provide services for human beings, extending this solution to

the multi-robot and multi-goal active guidance is necessary.

Since the number of robots is limited and we might have

more demands for services at the same time than available

resources, we have to prioritize our planning based on degree

of our interest in the objects, the costs and rewards explained

in this paper. In other words, the challenge will be to tell the

system which robot should take which path and in which

order.
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