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Abstract— Division of Labor Control is advanced function for
distributed autonomous robotic systems. Many studies focussing
division of labor control inspired biological phenomenon have
been reported. However, the optimality is not discussed because
decentralized control is typically complicated. In this study,
we propose the division of labor control method for robot
group that enable adaptively select whether homogeneous
state or heterogeneous state against working conditions and
address the optimality by mathematical analysis. To evaluate the
effectiveness of the proposed method, the computer simulations
are carried out and we confirm that robot group implemented
the proposed method inevitably organize the division of labor
state with group performance improvement.

I. INTRODUCTION

Division of labor in a robot group system is an advanced
collective behavior. Distributed autonomous robotic systems
carries out given labor collectively: it is expected to yield
group performance improvement with the division of labor
control. In this study, adaptive division of labor control
means the ability that enable robot group to automatically
select whether homogeneous state or heterogeneous state
according to working conditions by decentralized control.

Many studies using learning are related to such division
of labor algorithms to realize a division of labor in a
multi-agent system. A multi-agent reinforcement learning
algorithm for cooperative behavior has been reported[1][2].
The division of labor achieved through learning algorithm
or other computational optimization algorithm is expected
to yield a collective performance improvement. However, in
division of labor with learning algorithm, robots determine
the better behavior after estimating the payoff of behaviors
through experience, which means trial-and-error. Therefore,
the use of learning algorithms is often accompanied by a time
cost to learn it, along with complicated interaction protocols.

On the other hand, examining the biological world, divi-
sions of labor model is reported[3][4][5]. Especially, social
insects live with a group, called a colony, which organizes
the division of labor, and which behaves adaptively against
environmental conditions. Division of labor is one advanced
social activity that is shown by many living beings. The com-
mon dynamics of the division of labor is that a heterogeneous
state is generated by self-organization thorough interactions
among individuals. The individual’s internal non-learned
property is exposed to the group state. The division of labor
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by biological-inspired model without trial-and-error process
through a phase transition, it is however that its optimality
is not guaranteed in their models.

The objective in this study is to propose division of labor
control method for a robot group. In particular, the proposed
method is evaluated using a situation of food forage labor by
robot group. Then, it is proved theoretically that the group
performance is certainly improved using proposed method,
and the dynamical structure is elucidated to show how group
performance is improved. Finally, the proposed algorithm
and its dynamical behaviors are evaluated using computer
simulations.

The contents of this paper are summarized as follows: Sec-
tion 2 describes the assumed robot’s task and working space,
and defines the fitness to evaluate the group performance.
In section 3, proposed division of labor control method is
explained. Subsequently, it is proof that how the robot group
implemented the proposed method achieves the adaptive
division of labor against working conditions and works for
group performance improvement by mathematical analysis.
Section 5 describes evaluation of the adaptive division of
labor with implementation of the proposed method to the
problem provided in section 2. The salient results of this
study are summarized in section 6.

II. ROBOT TASK

A. Task and Working space

1) Task overview: In this research, we used the following
simple foraging problem, which includes a division of labor,
through an interaction by the robot group on a working space,
as shown in Fig. 1. The working space is defined as a 2× 2
square. The number of robots is n in the working space. A
robot moves in a working space, harvesting the food when
a robot contacts with food. There are m kinds of food; the
labor of robots is to assimilate the food that is harvested.
The labor of robots is described as the following.

Ei = {Assimilating i-th food} (1)

The frequency of assimilation is described with strategy
frequency jxi. For example, the j-th robot can assimilate
the i-th food with frequency jxi as the following.

jxi = {j-th frequency of Ei} (2)
m∑
i

jxi = 1, jxi = 0

The fitness, that is working performance, is defined by the
amount of assimilated food per unit time. Robots harvest
and assimilate the m kinds of food in solitude if the group
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Fig. 1. Working space and Collision rules of robots

state is homogeneous. Robots harvest or exchange the food
with other robots and assimilate a food using a specialized
behavior if the group state is heterogeneous. Let jyi be
amounts of the i-th food that the j-th robot harvests per
unit time.

2) Robot behavior: An robot has no directionality: it can
move omnidirectionally. The initial states of both robots and
food are random location. Robots have behaviors of three
kinds for foraging: moving in a working space, harvesting
food, and exchanging food with other robots. The labor
of a robot Ei is assimilating the food as defined in the
above subsections. For foraging, an robot generally moves
with linear uniform motion with velocity 30[1/s]. The robot
harvests the food on the working space if it contacts food.
Interactions are carried out when the distance between a
robot and another robot, food, or wall equals 0 (Fig. 1).

3) Food-related behavior: Food is replaced randomly in
the working space. The food disappears from the working
space if a robot harvests food. After that, new food is
replaced randomly. Therefore, the food quantity is assumed
to be constant. The working space has food of m kinds,
where the number corresponds to the number of robot’s
strategies m. The quantities of i-th food are defined as
Ci. For example, When m = 2, and the numbers of 1-
th food and 2-th food are 7 and 3, respectively, we have
(C1, C2) = (7, 3). Ci do not correspond to jyi. Here, Ci

is the amount of food in the working space and jyi is the
amount of food that the j-th robot has for assimilating.

B. Labor performance definitions

The optimal ratio of the strategy frequency is defined as
the same ratio existing in a food Ci. Therefore, the optimal
strategy frequency is defined as (jx1 : jx2 :, · · · , : jxm) =
(C1 : C2 :, · · · , : Cm).

Let jG be the fitness matrix of j-th robot, which deter-
mines the amounts of food assimilated per unit time and
the dynamics of strategy frequency jx. The fitness matrix is
represented the matrix in which the i-th diagonal element is
equal to jyi and all of non-diagonal elements equal to

∑m
i

jyi

as follows.

jG =


jy1

∑m
i

jyi

. . .∑m
i

jyi
jym

 (3)

1 2

1 2

1 2

1 2

(a)

1 2 1 2

21

(b)

Fig. 2. Division of labor for the robot group system. (a)Homogenous state.
(b) Heterogeneous state

This fitness matrix is not explicitly given to an robot. A robot
takes that through collecting foods. Then (3) depends on the
contact frequency with foods. The jG consists of functions
of jyi because the amounts of food that a robot can assimilate
are dependent on the amounts of food that a robot harvests.
jG is determined according to the frequency with which a
robot contacts with the food per unit time. For example, jg12,
that is the element of jG, is the fitness when jx1 = 1 and
jx2 = 1. The term of jg12

jx1
jx2 is one for the given fitness

and corresponds to the amount of food that the robot can
assimilate per unit time. The robot fitness jφ is obtained
using the summation of those terms.

In addition, the fitness given by j-th assimilation of food
i is described as jfi

(
jx

)
. Without interactions among robots,

i.e., no exchanges of food to be assimilated, the fitness simply
corresponds to

(
jGjx

)
i
, where (·)i denotes the i-th row

element, which is regarded as the expected value or degree
of demand of each labor. In the case of robots’ interaction
with other robots, we define jfi

(
jx

)
with interaction terms

between other robots as follows.
jfi

(
jx

)
=

(
jGjx

)
i
+ jhi (4)

Therein, jhi denotes the fitness that is generated from in-
teractions . In interactions, the summations of food to be
assimilated in both robots must have a law of conservation
of amount. Therefore,

∑n
j

jhi = 0 must be satisfied at any
time. With these fitness, because robots carry out activities
with strategy frequency jx, the j-th robot fitness is obtained
as jφ =

∑m
i

jxi
jfi

(
jx

)
. Thereby, we can determine the group

mean fitness as

〈jφ〉 =
1
n

n∑
j

jφ. (5)
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III. DIVISION OF LABOR CONTROL

A. Rules of a behavior decision and an interaction

A simple gradient method can not be used, e.g. djxi

dt =
∂〈jφ〉
∂jxi

, because of the condition
∑m

i
jxi = 1. The opti-

mization problem is transformed using a gradient projec-
tion system[6]. With the projection, the optimization on∑m

i
jxi = 1 is described using the replicator equation, as

the following,

djxi

dt
= jxi

(
jfi

(
jx

)
− jφ

)
(6)

The interaction term jhi is determined with respect to ex-
changing labor demands. Let jpi be food to be assimilated
that a robot transports to another robot. To satisfy the
condition of

∑n
j

jhi = 0, jhi simply is described with mutual
diffusion of jpi as

jhi = D
(
lpi − jpi

)
, D =

{
α, if interaction
0, else (7)

Therein, l ∈ N, ̸= j denotes the number of robots that
interact with the i-th robot; α represents the value at which
robots can exchange their fitness. If the jpi is the labor the
robot must carry out, it is expected that labor and actual food
to be assimilated can be exchanged among robots. With this
consideration, the jpi is determined as the following equation.

jpi =
(
jGjx

)
i

(8)

Therein, jpi means not only the amount of food that an
robot collects per unit time but also the expected fitness with
jxi. The interaction defined by (8) generates the flows of
expected fitness in a group. In addition, jhi works as the
global feedback to a robot’s jxi with differences of jpi among
robots.

B. Analysis for adaptability and optimality

1) Analysis setup: In this section, mathematical analyses
of two kinds are performed on a two-dimensional labor
situation(m = 2 and n = 10). In concrete terms, the
proposed method constantly organizes the homogeneous or
heterogeneous state with increasing group mean fitness 〈jφ〉.

Here, it is assumed that interactions among robots are
carried out uniformly and continuously. Therefore, the time
evolution of D is assumed to be continuous and a robot
interacts in mean field approximation as

jhi = D
(
〈jpi〉 − jpi

)
, (9)

where 〈·〉 is the mean related to j. Furthermore, jpi is
described by the function of jxi.

jp1 = g12 − (g12 − g11) jx1

jp2 = g21 − (g21 − g22) jx2

jfi

(
jx1,

jx2

)
are also described by jxi; this is simply de-

scribed as jfi.
jf1 = (1 − D) jp1 + D〈jp1〉
jf2 = (1 − D) jp2 + D〈jp2〉. (10)

(6) is transformed as the following.

djx1

dt
= jx1(1 − jx1)

(
jf1 − jf2

)
djx2

dt
= jx2(1 − jx2)

(
jf2 − jf1

)
, (11)

The dynamical system represented by (11)has three fixed
points on S2: (jx1,

jx2) = (1, 0), (0, 1), and (jx∗
1,

jx∗
2). They

satisfy jf∗
1 = jf∗

2 and

x∗
1 =

g12 − g22 − Dk〈x1〉
(1 − D) k

x∗
2 =

g21 − g11 − Dk〈x2〉
(1 − D) k

, (12)

where k = g12 − g11 + g21 − g22.
To provide insight through analyses, the case of no inter-

action, which means D = 0, is analyzed first. When D = 0,
(10) are transformed to jfi = jpi. In this case, the fixed point
(jx∗

1,
jx∗

2) is described specifically as (x
′

1, x
′

2). With (12),

x
′

1 =
g12 − g22

k
, x

′

2 =
g21 − g11

k
. (13)

Then, the strategy frequency converges to one of (jx1,
jx2) =

(1, 0), (0, 1), and (jx
′

1,
jx

′

2). Meanwhile, (6) is known to have
a unique stable fixed point on S2 if jfi

(
jx

)
is a monotonically

decreasing function related to jxi[6]. Consequently, when the
conditions g12 − g22 > 0 and g21 − g11 > 0 are satisfied,
the fixed point (jx

′

1,
jx

′

2) is stable at D = 0. In addition, the
conditions by which the fixed point (jx

′

1,
jx

′

2) is not included
on borders of jx

′

1 + jx
′

2 = 1 and outside of the region are
g12 − g11 > 0 and g21 − g22 > 0.

In the situation in which jG does not satisfy those condi-
tions, the robots need not organize a heterogeneous state be-
cause replicator dynamics in a robot have the maximization
principle of jφ. Moreover, the optimal state is that all of j-th
strategy frequency converges to (jx1,

jx2) = (1, 0) or (0, 1),
and homogeneous state always becomes optimal. Therefore,
these situations are deselected from those cases addressed
in this paper. Then, the robot mean fitness is described as
jf1 = jf2 = jφ

′
= −|jG|

k at any j.
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2) Condition of differentiation: For D > 0, jfi

(
jx

)
is not

a monotonically decreasing function at any time because (6)
includes the (9) term. Let ζ, ξ, and η be ratios of the number
of robots located at (1, 0), (0, 1), and (jx∗

1,
jx∗

2), respectively,
and satisfy 0 ≤ ζ, ξη ≤ 1 and ζ + ξ + η = 1. Additionally,
〈jxi〉 is determined using a self-consistent method.

〈jx1〉 = ζ · 1 + ξ · 0 + η · jx∗
1

〈jx2〉 = ζ · 0 + ξ · 1 + η · jx∗
2 (14)

With (13) and (14),

(〈x1〉, 〈x2〉) =
(

Q1 + Q4

kQ3
,
Q2 − Q4

kQ3

)
(15)

(x∗
1, x

∗
2) =

(
Q1

kQ3
,

Q2

kQ3

)
(16)

where Q1 (ζ,D) = g12 − g22 − ζkD, Q2 (ξ,D) = g21 −
g11 − ξkD, Q3 (ζ, ξ,D) = 1 − ζD − ξD, and Q4 (ζ, ξ) =
ζ (g21 − g11)− ξ (g12 − g22). These satisfy Q1 +Q2 = kQ3

and ζQ2 − ξQ1 = kQ4.
In addition, 0 ≤ Q1+Q4

kQ3
, Q2−Q4

kQ3
≤ 1 and 0 ≤ Q1

kQ3
, Q2

kQ3
≤

1 are satisfied with 0 ≤ jxi ≤ 1 and 0 ≤ 〈jxi〉 ≤ 1.
We carry out stability analysis with particular emphasis on

the time evolution of jx1. Let J1, J2, and J3 be Jacobians
around the neighborhood of fixed points (1, 0), (0, 1), and
(jx∗

1,
jx∗

2), as

J1 =
(1 − D) Q2

Q3

J2 =
(1 − D) Q1

Q3
(17)

J3 = − (1 − D) Q1Q2

kQ2
3

.

Therein, 〈·〉 is jx∗
i -independent because n is assumed to be

large. It is assumed that all of the strategy frequency is on
either of the fixed points, as described above.

Hereinafter, the regions that guarantee linear stability of
D, ζ, ξ and η with (17) in situations of one-cluster states,
two-cluster states, and three-cluster states. The cluster exis-
tence conditions are summarized in Table I. Linear stability
conditions of each case 1–7 are obtained using Jacobians
(17). Let Reg1, Reg2, and Reg3 be the regions of D, ζ,
ξ, and η that respectively satisfy the stability conditions of
one-cluster states, two-cluster states, and three-cluster states.
According to Table I, the existence conditions of stable
cluster are as follows:

Reg1 = {(ζ, ξ, η) = (0, 0, 1), D < 1}
Reg2 = {ζ + ξ = 1, η = 0, Q1 < 0, Q2 < 0, D > 1}
Reg3 = {∅}.

To summarize, at 1 − D < 0 (1 − D > 0), the division of
labor is organized (disorganized). Therefore, the division is
derived when degrees of an interaction term are dominant
compared to a fitness term in (4).

TABLE I
CLUSTER EXISTENCE CONDITIONS

case ζ ξ η J1 J2 J3

case 1 1 0 0 negative positive positive
one-cluster case 2 0 1 0 positive negative positive

case 3 0 0 1 positive positive negative
case 4 ζ 0 η negative positive negative

two-cluster case 5 0 ξ η positive negative negative
case 6 ζ ξ 0 negative negative positive

three-cluster case 7 ζ ξ η negative negative negative

C. Group performance analysis

This subsection specifically addresses the increase and
decrease of group mean fitness 〈jφ〉. The necessary con-
ditions for the increase of 〈jφ〉 correspond to the stable
regions of homogeneous or heterogeneous state provided in
the previous subsection. Corresponding to the above, the
proposed algorithm realize an adaptive division of labor.

The group mean fitness is determined as the following
with ζ, ξ, η, D using a self-consistent analysis.

〈jφ〉 = ζ (1 · f1 (1) + 0 · f2 (0))
+ ξ (0 · f1 (0) + 1 · f2 (1)) (18)
+ η (x∗

1 · f1 (x∗
1) + x∗

2 · f2 (x∗
2)) .

Herewith,

(1 − D) x∗
1 + D〈x1〉 =

Q1 + DQ4

PQ3
= x

′

1

(1 − D) x∗
2 + D〈x2〉 =

Q2 − DQ4

PQ3
= x

′

2,

we have

x∗
1f

∗
1 + x∗

2f
∗
2 =

g12g21 − g11g22

k
= φ

′

f1 (1) − g12g21 − g11g22

k
= −x

′

1J1 (19)

f2 (1) − g12g21 − g11g22

k
= −x

′

2J2

Therefore, substituting (19) to (18), we have the following
as a simple relationship,

〈jφ〉 = φ
′
− ζx

′

1J1 − ξx
′

2J2 (20)

The first term of the right side in (20) is the value depending
on jG, not ζ, ξ, η, and D. When J1 > 0 and J2 > 0, in this
case, D < 1 is satisfied, 〈jφ〉 decreases with ζ or ξ increases.
Therefore, 〈jφ〉 become maximum with ζ = 0 and ξ = 0.
These conditions correspond to Reg1. When J1 < 0 and
J2 < 0, in this case D > 1 and Q1 < 0, Q2 < 0 are satisfied,
〈jφ〉 increase with ζ or ξ increase because the second and
third terms of the right side in (20) become positive. These
conditions correspond to Reg2. Therefore, the group state
is organized through the division dynamics provided by the
previous analysis.

IV. SIMULATION RESULTS AND DISCUSSION

A. Evaluation of adaptive division of labor

1) Simulation descriptions: This section demonstrates the
effectiveness of the proposed method with simulation, which

2412



TABLE II
SIMULATION CONDITION

n term t α (jxi , jx1)
1 term 0 ≤ t < 10 0 not fixed
2 term 10 ≤ t < 20 0.1 not fixed
3 term 20 ≤ t < 30 0.1 not fixed
4 term 30 ≤ t < 40 0 fixed to division
5 term 40 ≤ t < 50 0 not fixed
6 term 50 ≤ t < 60 0.1 fixed to not division
7 term 60 ≤ t < 70 0.1 not fixed
8 term 70 ≤ t < 80 0.1 not fixed
9 term 80 ≤ t < 90 0.1 fixed to (0, 1) at t = 80

10 term 90 ≤ t ≤ 100 0.1 fixed to (1, 0) at t = 90

is the problem described in section 2. The variable values
are calculated using the Euler method with ∆t = 0.001
iteration. Firstly, we confirm how the evaluated value, strat-
egy frequency jxi, and group mean fitness 〈jφ〉 change
when the division is organized or disorganized. According
to this simulation, the optimality and homeostasis of the
homogeneous state or heterogeneous state is evaluated. To
compare the 〈jφ〉 in homogeneous and heterogeneous state,
α is fixed to 0 or 0.1 by reference to pre-simulation results.
In addition, to evaluate the adaptive division of labor, that
means 〈jφ〉 increasing, each jxi are fixed under the table II.
In the 1-3, 5, and 7, 8 terms, the normal simulation is carried
out, and at α = 0 or 0.1, the homogeneous or heterogeneous
state is selected, respectively. In the 4 term, each jxi are fixed
to the values of the end of 3 term with only setting α = 0.
In this case, the strategy frequency is forcibly specialized to
the heterogeneous state, although without interactions. In the
6 term, on the contrary, each jxi is fixed to the values of the
end of 5 term, setting only α = 0.1. In this case, the group
state is forcibly a homogeneous state, even though robots can
interact. With results of the 4 term and 6 term, the adaptive
division of labor is evaluated by increase and decrease of the
group mean fitness. For the 9 term, the strategy frequency is
fixed instantaneously to (jx1,

jx2) = (0, 1) at the beginning
of term t = 80. In the 10 term, in contrast, the strategy
frequency is fixed instantaneously to (jx1,

jx2) = (1, 0) at
the beginning of the term t = 90. In ordinary circumstances,
the group state converges to heterogeneity because of α =
0.1. Through these operations, regarded as environmental
disturbances, the stability and adaptive properties of division
rate are evaluated.

2) Results: Figures 4(a) and 4(b) respectively depict the
time evolution of jx1 and jx2 simulated on the condition
table II. Figure 4(c) shows the average of 〈jφ〉 during each
term. Comparison of the 4 term and 5 term shows that group
mean fitness 〈jφ〉 in the 4 term. The division is forcibly
organized in this term; it persists at low levels against
the evaluated value in the 5 term. This result reflects the
effectiveness of roles of jhi. This compression indicates that
robots can not improve group performance with division that
is not organized by appropriate interactions. The performance
decrease is also readily apparent from eq. (20). Without
the forcible heterogeneous state, the homogeneous state is
ordinarily selected. Then, the Jacobian of the second and
third terms in the right side of the equation must be positive,
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Fig. 4. Result of convergence property for environmental disturbances

the group mean fitness decreases because of ζ > 0 and
ξ > 0, which indicates a heterogeneous state. Comparison
of the 3 term and 6 term shows that, for the evaluated value
in the 6 term, the division is forcibly disorganized in this
term; it persists at low levels against the evaluated value
in the 3 term. This comparison indicates the improvement of
performances with division. With explanation using eq. (20),
without the forcible homogeneous state, a heterogeneous
state is ordinarily selected. Then, the Jacobian of the second
and third terms in the right side of the equation must be
negative, the group mean fitness can not increase with ζ = 0,
ξ = 0, which means a homogeneous state. These two
comparisons of results suggest that the proposed method
has functions that are not only self-organized state but also
reflective of an adaptive division of labor.

In addition, at t = 80 and t = 90, all of (jx1,
jx2) are

set to (0, 1); and (1, 0) is used as an assumption of some
accidents in the 8 term and 9 term, such as the breakdown of
a robot. Robots can recover and organize the ratio of division
as it had been before. This result confirms the adequacy of
the stability analysis; the proposed method has a homeostatic
property. It is considered that the roles of jhi are not only the
exchange of food to be assimilated but also order formation
of the heterogeneous state and regulation of the division rate.

B. Scalability against changes of a number of robots

1) Simulation descriptions: This subsection demonstrates
the scalability of the number of robots with m = 2. All
other conditions are identical to those of the simulation in
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Fig. 5. Result of convergence property for variance of the number of robots

previous subsection, except that n changes from 1 to 10.
The j-th robot carries out the labor during 20(j − 1) ≤ t ≤
20(11 − j) on the working space (cf. Fig. 5(d)). When the
robot is put randomly into the working space, the strategy
frequency is initialized as (jx1,

jx2) = (0.5, 0.5). Results
of this simulation underscore that the division of labor can
be carried out with scalability of the number of robots, and
depends on the contact frequency.

2) Results: Figures 5(a) and 5(b) respectively portray the
time evolution of jx1 and jx2. The white circles and white
squares indicate the values of (jx1,

jx2) when the robot is
put into and picked up from a working space. Figure 5(c)
presents the time evolution of summation of contact fre-
quency per time. The contact frequency increases (decreases)
according to the increase (decrease) in the number of robots
in the working space. When, n > 5, the heterogeneous state
is organized because it is considered that the spatial density
of robots increases, satisfying sufficient interaction for divi-
sion. This result is straightforward. However, it indicates the
asset effectiveness because the proposed method is mainly

operated with only contact frequency. This is one reason that
the adaptive division of labor is achieved by decentralized
control. The group state is selected autonomously and driven
to a homogeneous or heterogeneous state when α is deter-
mined.

C. Discussion

The theoretical result presented by eq. (20) gives useful
information to understand the adaptively and optimality of
division of labor. In proposed method, the division of labor
is controlled through the phase transition, although transi-
tion does not generally guarantee the group performance
improvement. The interactions are simple, but the adaptive
division of labor is realized. The determination of whether a
state of stabilization or destabilization pertains is described
by the Jacobian, as shown in eq. (20). Its positive and nega-
tive values are directly linked to group fitness improvement.
The controlled state, at least the problem of homogeneity
or heterogeneity, already satisfies the condition of group
performance improvement.

V. CONCLUSION AND FUTURE WORK

Herein, we proposed adaptive division of labor for robot
group. Additionally, it was found through theoretical analy-
ses that the group performance is certainly improved in the
two-dimensional labor case, and that the dynamical behavior
of both robots’ and group states is observed through com-
puter simulations. The future work includes the development
of three or more dimensional division of labor method, and
experiment by real robots.
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