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Abstract— In this paper the problem of path following
control of autonomous vehicles subject to sliding is addressed.
First a kinematic model is built which takes sliding effects
into account by introducing two additional tire sliding angles.
Since the tire sliding angles cannot be directly measured by
sensors, an adaptive robust Luenberger observer is designed.
With this observer, the tire cornering stiffness instead of
the sliding angles is identified in presence of time-varying
lateral disturbance. The Lyapunov stability theory guarantees
that the estimated cornering stiffness would converge to a
neighborhood of the real value when control inputs excitated
the system persistently. But due to the existence of the lateral
disturbance which causes loss of accuracy of the sliding angle
reconstruction, the previously designed anti-sliding controller
whose effectiveness completely depends on the estimation
of the sliding angles cannot yield satisfactory results. To
overcome this problem a tire-oriented kinematic model is built
in which the inaccuracy of the sliding angle reconstruction
is modeled in form of additive disturbances to the kinematic
model. By transforming the tire-oriented kinematic model into
a perturbed chained system, a sliding mode controller, which
is robust to both the sliding effects and the negative effects
of the lateral disturbance is designed with the help of the
natural algebraic structure of the chained systems. Simulation
results show that the proposed methods can provide accurate
estimation of the sliding angles and guarantee high anti-sliding
control accuracy even in presence of time-varying lateral
disturbance.

Index Terms— Lateral control, sliding control, autonomous
vehicles

I. INTRODUCTION

Automatic steering control has been studied actively, but

most of them focus their interests on control law design

under the pure rolling condition which is never true for

actual applications. Sometimes stability and controllability

of the autonomous systems may be violated because of

unexpected sliding effects.

Until now there are very few papers dealing with sliding.

[1] prevents cars from skidding by robust decoupling of

car steering dynamics which is achieved by feedback of

the integrated yaw rate into front wheel steering. [2] copes

with the control of WMR (Wheeled Mobile Robot) not
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satisfying the ideal kinematic constraints by using slow

manifold methods, but the parameters characterizing the

sliding effects are assumed to be exactly known. In [3]

a controller is designed based on the averaged model

allowing the tracking errors to converge to a limit cycle near

the origin. In [4] a general singular perturbation formulation

is developed which leads to robust results for linearizing

feedback laws ensuring trajectory tracking. But the schemes

of [3][4] only take into account sufficiently small sliding

effects and they are too complicated for real-time practical

implementation. In [5] [6] Variable Structure Control (VSC)

is used to eliminate the harmful sliding effects when

the bounds of the sliding effects have been known. The

trajectory tracking problem of mobile robots in the presence

of sliding is solved in [7] by using discrete-time sliding

mode control. But the controllers [5]-[7] counteract sliding

effects only relying on high-gain controllers which is not

realistic because of limited bandwidth and low level delay

introduced by steering systems. Moreover a robust adaptive

controller is designed in [8] which compensates sliding

by parameter adaptation and VSC. But the adaptive laws

make the controller too complicated to be realized. In the

latest research papers [9][10], kinematic-based observers

are designed with the concept of classical feedback control

theories to estimate the sliding effects. But because only

one GPS is available, a numerical derivation is necessary

for state vector estimation. In [11] an adaptive observer

is designed to estimate the sideslip angle. But all the

front/rear-side acceleration and the yaw rate have to be

measured.

In this paper body side-acceleration and yaw rate of

vehicles are measured which provides necessary measure-

ments for sliding estimation. From these data the cornering

stiffness which is only relevant to tire-ground characteristics

is identified in presence of lateral disturbances. Because it is

rather difficult to identify a time-varying variable especially

when it cannot be modeled precisely, the advantage of

the proposed scheme is that instead of the time-varying

sliding effects, the cornering stiffness which is nearly time-

invariant or varies slowly may be identified with high

accuracy by using an adaptive robust Luenberger observer.
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Furthermore a sliding mode controller is to be designed

based on chained system theory to cope with inaccuracy

of sliding angle estimation, leading to satisfactory sliding

control results. This paper is organized as follows, in

section II the path following problem is described and

a kinematic model considering sliding with two sliding

angles is constructed. In section III the sliding angles are

reconstructed by using adaptive robust observer. In section

IV an anti-sliding controller is designed based on chained

system theories. In section V some comparative control

results are presented to validate the proposed control laws.

II. KINEMATIC MODEL FOR PATH FOLLOWING

CONTROL

In this paper the vehicle is simplified into a bicycle

model. The kinematic model is expressed with respect to

the path in frame (M, ηt, ηn), variables necessary in the

kinematic model are denoted as follows: (see Figure 1)

• C is the path to be followed.

• O is the center of the vehicle virtual rear wheel.

• M is the orthogonal projection of O on path C.

• ηt is the tangent vector to the path at M .

• ηn is the normal vector at M .

• y is the lateral deviation between O and M
• s is the curvilinear coordinates (arc-length) of point

M along the path from an initial position.

• c(s) is the curvature of the path at point M .

• θd(s) is the orientation of the tangent to the path at

point M with respect to the inertia frame.

• θ is the orientation of the vehicle centerline with

respect to the inertia frame.

• θ̃ = θ − θd is the orientation error.

• l is the vehicle wheelbase.

• v is the vehicle longitudinal linear velocity.

• δ is the steering angle of the virtual front wheel

So the vehicle movement can be described by (y, s, θ̃).
In this paper an anti-sliding control law

δ = K(s, y, θ̃, v) (1)

will be designed to guarantee

lim
t→∞

y = 0 (2)

and θ̃ is bounded in presence of sliding.

When autonomous vehicles move without sliding, the

ideal kinematic model of the vehicles is (see [12] for

details). 



ṡ =
v cos θ̃

1 − c(s)y
ẏ = v sin θ̃

˙̃θ = v
( tan δ

l
−

c(s) cos θ̃

1 − c(s)y

)
(3)

But when autonomous vehicles move on a steep slope or the

ground is slippery, tire sliding would occur inevitably, (3) is

no longer valid. The violation of the pure rolling constraints

is described by introducing the rear sliding angle αr and

the front sliding angle (also called Steering Angle Bias) δb

(Figure 2).

δb = δ −
lfγ + v tanβ

v
(4)

αr =
−lrγ + v tanβ

v
(5)

where β is the body sideslip angle of the vehicle and γ
is the yaw rate at the mass center, lf (lr) is the distance

between the front (rear) wheel and the mass center.

Similar developing methods lead to a tire-oriented kine-

matic model with sliding [9]




ṡ =
v cos(θ̃ + αr)

1 − c(s)y
ẏ = v sin(θ̃ + αr)

˙̃θ = v
[
cosαr

tan(δ + δb) − tan αr

l
−

c(s) cos(θ̃ + αr)

1 − c(s)y

]

(6)

III. SLIDING ANGLE RECONSTRUCTION

A. 2DOF lateral vehicle dynamics

The proposed robust adaptive observer is deduced from

a 2DOF dynamic model of a vehicle which is simplified

into a bicycle. Since it is possible to decouple the longi-

tudinal and lateral dynamics, the following linear model

of the lateral vehicle dynamics is used for observer design

[13][14].

ẋ = Ax + Bu + Ψξ (7)

where

x =
[
vy γ

]T
(8)

A =



−

p1

mv
−v +

p2

mvp2

Izv
−

p3

Izv


 (9)

B =

[
kf

m

kf lf
Iz

]T

(10)

Ψ =

[
1

m
−

ld
Iz

]T

(11)

s = 0

θd

θ̃

ṡ

v

ηt

ηn

M
y

δ

θ

C

1
c(s)

o

R(s)

Fig. 1. Notation and path frame description
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Fig. 2. Notations of sliding effects

Iz = mlrlf (12)

p1 = kf + kr (13)

p2 = krlr − kf lf (14)

p3 = kf l2f + krl
2
r (15)

u is the vector of the steering law δ. The state vectors [vy, γ]
are the lateral velocity and the yaw rate at the mass center.

ξ is the time-varying lateral disturbance, ld is the distance

between the disturbance location to the mass center. kf

(kr) represents the cornering stiffness of the front (rear)

tire which is approximately constant or varies slowly.

Therefore by assuming the vehicle moves with a constant

velocity, differentiating (7) may yield

Ẋ = AX + BU + Ψξ̇ (16)

where

X = ẋ =

[
v̇y

γ̇

]
=

[
ag − vγ

γ̇

]
(17)

U = u̇ (18)

where ag is the body side-acceleration.

B. State Equation of Sideslip Angle

Remark that ag can be written as

ag =
[
v 0 v

]


β̇
γ̇

θ̇


 = T ˙̃x (19)

Furthermore the following equation describing the sliding

dynamic relationship between the sideslip angle β and the

yaw rate γ is considered

˙̃x = A1x̃ + B1u + Ψ1ξ (20)

where

x̃ =
[
β γ θ

]T
(21)

A1 =




−
p1

mv
−1 +

p2

mv2
0

p2

Iz

−
p3

Izv
0

0 1 0


 (22)

B1 =

[
kf

mv

kf lf
Iz

0

]T

(23)

Ψ1 =

[
1

mv
−

ld
Iz

0

]T

(24)

Substitute (20) into (19), it can be obtained that

ag = TA1x̃ + TB1u + TΨ1ξ (25)

Hence the expression of the sideslip angle β can be

obtained by solving the above equation.

β =
kf

kf + kr

u −
kf lf − krlr
v(kf + kr)

γ −
m

kf + kr

ag +
1

kf + kr

ξ

= β̂ +
1

kf + kr

ξ

(26)

Remark that the side-acceleration ag is measurable and γ
can be obtained by a yaw gyroscope, so the unmeasurable

sideslip angle β can be reconstructed by (26) with trouble-

some estimation errors as long as the cornering stiffness

kf , kr has been identified. Therefore the identification of

kf , kr becomes a key issue for estimating the sideslip angle

as well as the two tire sliding angles by considering (4)(5).

C. Identifying cornering stiffness by using adaptive robust

observer

Due to the existence of the derivative of the lateral dis-

turbance ξ̇ in (16), the following linear robust Luenberger

observer is applied to identify kf , kr [15]
{

Ẋ = AX + BU + Ψξ̇
˙̂

X = ÂX̂ + B̂U + K(X − X̂) + Λsign(X − X̂)
(27)

where Â, B̂ are the matrices containing the estimation of

the unknown cornering stiffness k̂f , k̂r.

Â =




−
k̂f + k̂r

mv
−v +

k̂rlr − k̂f lf
mv

k̂rlr − k̂f lf
Izv

−
k̂f l2f + k̂rl

2
r

Izv


 (28)

B̂ =

[
k̂f

m

k̂f lf
Iz

]T

(29)

K = diag(k1, k2) is a matrix such that (A−K) is Hurwitz.

X̂ is the estimated value. Λ = diag(λ1, λ2) is the gain of

the signum function.

Define the error of the state estimation e = X̂ − X , the

following equation holds by considering (27)

ė = Aee + W̃φ − Ψξ̇ − Λsign(e) (30)

where

Ae = A − K (31)

W̃ =
[
W1X̂ + W2u̇ W3X̂

]
(32)

φ =

[
k̂f − kf

k̂r − kr

]
(33)
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And in W̃

W1 =



−

1

mv
−

lf
mv

−
lf
Izv

−
lf

2

Izv


 (34)

W2 =

[
1

m

lf
Iz

]T

(35)

W3 =



−

1

mv

lr
mv

lr
Izv

−
lr

2

Izv


 (36)

The adaptive learning rules for k̂f , k̂r may be obtained

by using Lyapunov stability theory. The Lyapunov function

is defined as

V = eT P0e + φT Q0φ (37)

where P0 = diag(pa, pγ) and Q0 are positive symmetric

definite matrices and P0 satisfies Ae
T P0+P0Ae = −Q1 <

0, then the time derivative of V is

V̇ < −eT Q1e + 2φT (W̃T P0e + Q0φ̇)

+2|e|T (|P0Ψξ̇| − P0Λ

[
1
1

]
) (38)

Assume an estimation of the maximum disturbance deriv-

ative ξ̇ is available, let

φ̇ =

[
˙̂
kf

˙̂
kr

]
= −Q−1

0 W̃T P0e (39)

λi > max(|Ψξ̇|i) (40)

It can be obtained that

V̇ < −eT Q1e (41)

which guarantees the convergence of the linear Luenberger

observer.

From (41) it is concluded that e → 0, ė → 0 . When W̃ is

full rank, the identification errors of the cornering stiffness

φ is stable and bounded by the values of the disturbance

derivative. In this case, u̇ which appears in the notation of

W̃ functions as the excitation instead of control inputs of

the systems. It is also noted that if the lateral disturbance

is constant, the estimated values of the cornering stiffness

would converge to its real values.

After the cornering stiffness has been identified accu-

rately, the vehicle sideslip angle β may be estimated and

the unknown sliding angles δb, αr can be reconstructed.

But due to the existence of the lateral disturbance, the

reconstructed δb, αr are not identical to the real values.

IV. ROBUST ANTI-SLIDING CONTROLLER DESIGN

BASED ON CHAINED SYSTEM THEORY

To accomplish anti-sliding control relying on the esti-

mated values δ̂b, α̂r which suffer from a certain amount

of reconstruction errors, a sliding mode controller is to be

designed based on chained system theory.

Because the tire sliding introduces weak effects on the

longitudinal motion, substituting the estimation of δb, αr

into (6) and ignoring the negative effects of the estimation

errors on the longitudinal direction, we obtain that





ṡ =
v cos(θ̃ + α̂r)

1 − c(s)y
ẏ = v sin(θ̃ + α̂r) + ε1

˙̃
θ = v

[
cos α̂r

tan(δ + δ̂b) − tan α̂r

l
−

c(s) cos(θ̃ + α̂r)

1 − c(s)y

]
+ ε2

(42)

where εi is the vector indicating the negative effects

caused by the estimation errors of δb, αr on the lateral and

orientation kinematics.

Considering the kinematic model (42), via state transfor-

mation as following [16]

(a1, a2, a3) = (s, y, (1 − c(s)y) tan(θ̃ + α̂r)) (43)

a perturbed chained system (44) can be obtained

derivation w.r.t t





ȧ1 =
v cos(θ̃ + α̂r)

1 − yc(s)
= m1

ȧ2 = v sin(θ̃ + α̂r) + ε1

= a3m1 + ε1

ȧ3 =
d

dt
((1 − yc(s)) tan(θ̃ + α̂r))

= m2 + η
(44)

where

m2 = −vc(s) sin(θ̃ + α̂r) tan(θ̃ + α̂r)

− v
dc(s)

ds

cos(θ̃ + α̂r)

1 − yc(s)
tan(θ̃ + α̂r)y

+ v
1 − yc(s)

cos2(θ̃ + α̂r)

(
cos(α̂r)

tan(δ + δ̂b) − tan α̂r

l

− c(s)
cos(θ̃ + α̂r)

1 − yc(s)

)
+

1 − yc(s)

cos2(θ̃ + α̂r)

d

dt
α̂r

(45)

η =
(1 − yc(s))ε2

cos2(θ̃ + α̂r)
− c(s)ε1 tan(θ̃ + α̂r) (46)

Noting that in (44) ε1 and η play a role as two additive

disturbances to a ideal chained system, so (44) can be

converted into a perturbed single-input linear system by

computing the derivative with respect to the state variable

a1.

derivation w.r.t a1





a′

1 = 1

a′

2 = a3 +
ε2

m1

a′

3 =
m2

m1
+

η

m1
= u +

η

m1

(47)

where u is the virtual control input of the disturbed single-

input system (47). Because the single-input model (47) con-

tains uncertain bounded disturbances, sliding mode control

theories are applied to design a robust controller which may

guarantee the system states converge to a neighborhood

near the origin.
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Fig. 3. The estimation of kf , kr

Theorem 1: Considering the system (44) where

(a1, a2, a3) =
(
s, y, (1 − c(s)y) tan(θ̃ + α̂r)

)
, define

z = Λa2 + a3 = Λy + (1 − yc(s)) tan(θ̃ + α̂r) (48)

the achievement of sliding motions on the sliding surface

(48) can be guaranteed by the control law

u = −Ksz − Λsa3 − ρsign(z) (49)

where

ρ ≥ |ς| =
∣∣∣Λsε2 + η

m1

∣∣∣ (50)

Please refer to [6] for more details. The physical steering

angle is obtained by inverse conversion of the virtual robust

control law u.

Due to the definition of a2, a3 in (43), it is proven that the

lateral deviation y and the orientation error θ̃ are globally

uniformly ultimately bounded in presence of the sliding

effects and lateral disturbances.

V. SIMULATION RESULTS

A. Cornering stiffness identification

In order to validate the adaptive learning rules (39),

a simulation is performed in which the parameters

are set as m=500kg, lf =1.1m, lr=1.3m, kf =20000N/rad,

kr=25000N/rad. The sine-like lateral disturbance which is

the most common type of disturbances is set as ξ = 550N
and ld = 0.3m The vehicle velocity is set as a constant

v = 8.3km/h. In the simulations, values of the cornering

stiffness are initialized to zero, the gains are set as pa =
500000, pγ = 2750000, k1 = 20, k2 = 3, λi = 10.

The larger ||k1||, ||k2|| are, the faster the state estimation

errors e tend to zero, but the slower the estimation of k̂f , k̂r

converges to the real values. On the other hand if pa, pγ go

too large, it may cause too much vibration of the estimation

results of k̂f , k̂r, so in actual implementations these gains

should be tuned gradually to make an optimal compromise

between convergence rate and accuracy.

The estimation results of kf , kr are shown by Figure

3. From this figure it is known that although k̂f and k̂r

have important initial errors, finally they would converge

into a neighborhood of their real values which is necessary

for sideslip angle reconstruction. Then the sideslip angle
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Fig. 4. Estimation of sideslip angle

β is reconstructed based on (26) without the knowledge

of the lateral disturbance, the result is shown by Figure

4. In this figure the solid line indicates the sideslip angle

which is obtained by solving the dynamic model (20)

providing the normal lab values of the sideslip angle. The

dashed line depicts the estimated value of β̂. Because the

cornering stiffness has been identified, the estimation of

the sideslip angle may be obtained correspondingly. But a

certain amount of estimation errors are also noted which is

caused by the lateral disturbance.

B. Robust anti-sliding control

In this section, some simulation results are presented.

A reference path consisting of straight lines and curves

is followed (see Figure 5), the sliding effects are intro-

duced to the system and the time-varying sine-like lateral

disturbances are also introduced. To simulate all the other

external unexpected disturbances, noises are always added

to the system through the same channel as the control

inputs. To compare the control performances with the

previous works, the control laws of [9] as well as [12]

which didn’t take sliding effects into account are applied

under the same condition except that we set the controller

gains as kp = 0.09, kd = 0.6.

The simulation results of the lateral deviation of the path-

following controllers are shown by Figure 6 respectively.

The dotted line represents the results of the controller

without any sliding compensation, the dashed line presents

the results of the sliding controller of [9] only with

classical sliding angle observation and compensation, the

solid line depicts the results of the proposed robust anti-

sliding controller (49). Because the control law of [12]

does not take any sliding effects into account and from

theoretical point of view, the PD-type virtual control law

is not robust against disturbances, it is clear that it suffers

from sliding greatly. When the sliding effects appear, its

lateral deviation becomes more significant than the others.

Although the sliding controller [9] is effective to correct

the negative sliding effects in common cases, it still cannot

yield a satisfactory results either with obvious bias when

the lateral disturbances is important. While the robust

control law proposed in this paper provides satisfactory

simulation results, it has good transient responses and is
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robust against not only the sliding effects but also the time-

varying disturbance. The simulation results show that the

sliding effects affect the lateral deviation weakly, the lateral

deviation is obviously less than the others without robust

sliding compensation.

In the simulation, it is also found that the cornering

stiffness changes slowly with the tyre characteristics and

rapidly with the road condition. If the ground condition

varies greatly, the convergence speed of the lateral control

would become relatively slow which is a direct consequence

of prolonged process of parameter estimation. But with the

help of the proposed robust sliding controller, the stability

of the lateral control still can be guaranteed.

VI. CONCLUSION

Unknown sliding angles are reconstructed by using an

adaptive robust Luenberger observer in presence of time-

varying lateral disturbance. The stability of the observer is

proven via Lyapunov analysis. It is noted that the existence

of the time-varying lateral disturbance causes errors of

sliding angle reconstruction. To utilize the estimated sliding

angles into sliding compensation, a tire-oriented kinematic

model which integrates the effects of the lateral disturbance

as additive disturbances to the ideal kinematic model is

used. From this model, a particular perturbed chained

system is evolved. The use of the attractive structure of

chained systems together with the sliding mode control

leads to a robust controller which is robust to both the

sliding effects and the lateral disturbances.
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