
  

  

Abstract—This paper addresses the measurement noise of 
Extended Kalman Filter-based Simultaneous Localization And 
Mapping (EKF-SLAM). The Extended Kalman Filter (EKF) is 
based on the Gaussian noise with zero mean and should know 
the correct prior knowledge of control and measurement noise 
covariance matrices. If these conditions are not satisfied, EKF 
unavoidably diverges. The present paper proposes the method 
of a new adaptive kalman filter to be supported by 
Measurement Noise Estimator (MNE), which estimates the 
measurement noise distribution including biased noise and noise 
covariance, whenever the update step executes. We evaluate this 
method under well-known benchmark environment for SLAM 
problem. Simulation results show that the proposed algorithm 
overcomes degrading performance of the standard EKF under 
the condition of wrong knowledge of sensor statistics. 

I. INTRODUCTION 
HE Simultaneous Localization And Mapping (SLAM) 
problem is one of the most significant subject among the 

researchers of the autonomous vehicle and mobile robot, for 
the last twenty years. The SLAM problem, as the name 
explains, consists of estimating the pose of a moving platform 
on the basis of the map and estimating the map including 
features on the basis of the pose of a moving platform [1]. 
Due to the mutual dependence of robot pose and the map, the 
noise of robot pose arise the uncertainty of map estimation 
and vice versa. Therefore, this problem requires a solution in 
a high dimensional space. 

Kalman Filter (KF) based technique is one of the popular 
approaches to solve the SLAM problem. Several successful 
SLAM algorithms have been developed with various sensors 
[2], [3] and for various environments [4], [5], [6]. In general, 
Extended Kalman Filter-based SLAM (EKF-SLAM) 
represents the robot pose and the feature positions in the form 
of a state vector and the state uncertainty in the form of an 
error covariance matrix.  The covariance matrix includes the 
covariance of the robot pose and the each feature position, 
and the cross-correlations among the robot pose and the each 
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feature position and among feature positions. However, the 
standard EKF-SLAM has the one significant weakness that 
the computational burden increases geometrically. Several 
recent papers have focused on this problem [7], [8]. 

Particle Filter (PF) based approaches is an alternative to 
solve the SLAM problem. Because the uncertainty is 
represented as the distribution of particles, PF can be 
emancipated from the key assumption in EKF that the noise 
should is model by Gaussian distribution, and can remove a 
redundant uncertainty owing to linearization of nonlinear 
model. However, this approach requires a large number of 
particles for the sufficient performance. Furthermore, in case 
of the SLAM problem that there are many targets to be 
estimated, the number of particles increases geometrically. 
Some researchers have developed Rao-BlackWellized 
Particle Filter (RBPF) based approaches [9], [10]. These 
methods have solved the curse of dimensionality by using 
each advantage of KF and PF. The uncertainty of each feature 
is represented by Gaussian distribution in the form of KF, and 
the current robot pose is represented by the particles including 
the robot trajectory in the form of PF. The significant 
meaning of this combination is that the trajectory, stored in 
each particle, replaces cross-correlation factor among the 
features. Due to the property, the computation complexity 
increases in arithmetical progression in the respect to the 
number of features. However, such simplification may be 
unable to correct the previous features.   

To return KF, the performance of EKF-SLAM depends on 
the accuracy of the prior knowledge of the control noise 
covariance matrix Q  and the measurement noise covariance 
matrix R , this is a first matter of our concern. In a practical 
application, it is too difficult to get the precision prior 
knowledge, furthermore the real noise covariance may be 
time-variant. Hence, originating from the innovation adaptive 
estimation approach [11], some approaches to estimate these 
matrices have been developed [12], [13].  The general 
strategy is how to reducing difference between the theoretical 
covariance of innovation sequences and the corresponding 
actual covariance of the innovation sequence. To put it 
plainly, the quantity of individual innovation is regarded as 
the standard deviation of the covariance of the innovation 
sequence, but the correlations among innovations are not 
considered. In this paper, the noise covariance matrix is 
estimated with the correlations among innovations, without 
the uncertainty of the robot. Therefore, the proposed 
approach can decrease the redundant computation burden and 
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be suitable for a real-time application. 
 In KF, a second matter of our concern is a white noise 

assumption in KF that the means of control and measurement 
noise should be zero. In real application, noise may have a 
biased error owing to mismodeling, extreme non-linearity 
and variation of system parameters. This type of noise can 
result in not only degrading performance of EKF-SLAM, but 
also the divergence due to feature mismatching in the data 
association process. In [14], a neural network aided extended 
Kalman filter have been proposed to estimate a biased error of 
the control noise. 

In consideration of the two matter of our concern as 
mentioned above, the proposed method estimates the 
measurement noise covariance matrix and the biased 
measurement noise. We evaluate this method under 
well-known benchmark environment for SLAM problem [17]. 
Simulation results show that the proposed algorithm is very 
effective compared with the standard EKF-SLAM under 
practical condition where the measurement noise is 
time-variant biased noise.  

This paper is organized as follows. Section II presents the 
standard EKF-SLAM algorithm and some statistics property 
for the background knowledge. Section III presents the 
proposed algorithm to estimate the measurement noise 
covariance and its bias. In Section IV, the performance of the 
proposed method is evaluated in comparison with the 
standard EKF-SLAM. Conclusion is presented in Section V.  

II. BACKGROUND 

A. The Standard EKF-SLAM 
The basic formulation of the EKF-SLAM begins at the 

definition of model functions. The state transition (control) is 
modeled by a nonlinear function ( )f i  and the measurement 
of the state is modeled by a nonlinear function ( )h i  
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where the subscript k  is time index, and x , u  and z  are the 
state vector, the control input vector, and the measurement 
vector, respectively. The control noise q is modeled by 
Gaussian white distribution with the covariance matrix Q . 
The measurement noise r  is modeled by Gaussian white 
distribution with the covariance matrix R . 

For the SLAM problem, the state vector consists of the 
vehicle pose vx  and the feature (landmark) position mx , and 
its uncertainty is represented by the covariance matrix P  
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where vvP  is the covariance of vehicle pose, mmP  is the 
covariance of each feature position, and vmP  is the covariance 
of cross-correlation among the vehicle pose and feature. 

The procedure of the standard EKF algorithm consists of 
the prediction step (3) and the update step (4), of which 
formulations are, 
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where x̂  presents the estimated state, y  is the innovation 
sequences, S  is theoretical covariance of innovation 
sequences, and K  is the Kalman gain. The Jacobians of the 
control model and the measurement model are given as; 
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B. Statistic Property 
The KF-based approach requires the noise covariance 

which can be calculated as, 
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where E( )i  is expectation, μ is mean, and Ω  is covariance, 
n  is the number of samples.  

A whole sample set cS  can divide into two subsets aS  and 
bS , of which samples present as bellow,  
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where an  and  bn  are the number of elements in each subset. 
Assumed that the statistics of each subset are known, the 

mean and the covariance of superset cS  can be calculated in 
the form of a multivariate as; 
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where cΩ  is a covariance matrix form. If variables are 
independent, equation (8) can be simplified in the form of a 
variance vector; 
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where ( )2  is the element by element operation. 
In this paper, this property is employed as computing the 
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noise character. One subset aS  is utilized in a prior 
knowledge, the other bS  is utilized in a current knowledge, 
and the super set cS  presents a corrected current knowledge 

III. MEASUREMENT NOISE ESTIMATOR ASSISTED 
EKF-SLAM 

A. The Algorithm 
Most researches about adaptive Kalman filter technique 

have presented how to extract the reasonable information 
from innovations acquired for certain time interval. The 
existing works extract the useful information from the 
disparity ΔC  between the desired value and the prediction 
value: the corresponding actual covariance of innovation 
sequence C  and the theoretical covariance of the innovation 
sequences S  in (4). 

T= ⋅
Δ = −
C y y

C C S
           (10) 

In (10), S  is the function of measurement noise covariance 
R . The measurement noise covariance R , which makes the 
disparity ΔC  minimum, is optimal value in existing method. 

In the proposed algorithm, we use the weighted sample 
mean and variance of innovations at time k  to obtain a 
current knowledge of measurement. From the statistical 
viewpoint, the feature’s uncertainty covariance includes the 
meaning of the inverse form of weight of innovation sample. 
To put it precisely, the correlation between the vehicle and the 
features can separate owing to considering the vehicle pose as 
a static variable. At a single discrete time k , the vehicle 
uncertainty can be excluded from the process of calculating 
weighted mean and weighted variance, because the influences 
of the vehicle uncertainty on each innovation sample are same 
and can be canceled. As time goes by, the influences become 
a statistical zero, therefore it can be ignored.  

To update a current estimate including mean and variance 
of the measurement noise, the proposed Measurement Noise 
Estimator (MNE) employs the number of innovation samples 
(7),(9), instead of the concept of uncertainties. Therefore, it is 
possible to estimate the properties of measurement noise by 
using the weighted sample mean and variance that we have 
focused on. The detail implementation of Measurement Noise 
Estimator (MNE) presents in Section III-B. 

We explain the MNE assisted EKF-SLAM using a 
range-bearing sensor model. The measurement and its noise 
model given as 
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where r is range, θ  is bearing, z  is actual measurement, 
truez  is true measurement, b  is a biased noise, and ( )N i  is a 

Gaussian distribution function. 
The proposed algorithm is described. 
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2) Predict x̂  and P , using (3) 
3) Obtain measurement 1k +z  
4) Compute augmented innovation sequence 1|k k+y  for 
already stored features, for batch-mode.  

( )1| 1 1|ˆhk k k k k+ + += −y z x         (14) 

where the dimension of 1|k k+y  is 2 1N ×  and N  is the 
number of measurements corresponding with stored 
features. 

5) Estimate the mean and variance of measurement noise, 
using MNE of which function representation is, 
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6) Make augmented measurement noise covariance ˆ
augR  

of which dimension is 2 2N N×  and augmented 
measurement biased noise ˆ

augb  of which dimension 
is 2 1N × , for batch-mode. 
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where ( )diag i is the function to make a diagonal matrix 
regarding a vector as a diagonal term.  

7) Compute the Kalman gain, using (4). 
8) Correct innovation sequence with augmented ˆ

augb  

1| 1 1|
ˆ

k k k k aauugg+ + += −y y b          (17) 

9) Update x̂  and P , using (4). 
10) Correct measurement to store a new feature. 

1| 1 1| 1 1
ˆ

k k k k k k+ + + + += −z z b           (18) 

11) Augment corrected measurement for new features  
 
For 0R̂  in step 1), λ  prefers to be large rather than small 

in the basis of the real noise model, because the larger one can 
prevent the wrong correction due to the premature estimation 
in the early stages. 
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Fig. 1.  The block diagram of MNE assisted EKF-SLAM. 
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B. Measurement Noise Estimator 
Measurement Noise Estimator (MNE) is developed as a 

simple feedback system with input of innovation sequence 
1|k k+y  and the predicted state covariance 1|k k+P  in the main 

KF procedure, and output (internal state) of the biased 
measurement noise 1| 1

ˆ
k k+ +b   and the measurement noise 

variance 1| 1
ˆ

k k+ +R . (Fig. 2) 
The procedure of MNE is described, 
 
1) Convert the innovation sequence vector y  into the 

matrix form Y  of which dimension is 2 N×  
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where, N is the number of measurements corresponding 
with stored features, if  presents the corresponding 
index with already stored features, and r

fiy  and fiyθ  are 
range and bearing value of i -th innovation. 

2) Calculate the innovation weight. The input is given as, 
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where M is the number of total observed features. The 
innovation weight W  is defined as   

1 2f f fN⎡ ⎤= ⎣ ⎦W w w w      (22) 

where 2 2
, ,1 1

T
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3) Calculate the weighted sample mean 1k +b and variance 
1k +R  with respect to the current knowledge. 

1k fi fi fi
i i
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( )2

1 1k fi fi k fi
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where product and division are the element by element 
operation, and the dimension of 1k +b and 1k +R  is 2 1×  

4) Update the biased measurement noise 1| 1
ˆ

k k+ +b  and the 
measurement noise variance 1| 1

ˆ
k k+ +R , using (7), (9). 

 
In the final step for using (7), (9), the numbers of samples 

of two subsets are required. One number an  about a prior 
knowledge corresponds with the total number of innovations 

throughout the navigation, and the other number bn  about a 
current knowledge corresponds to the number N  of 
measurements corresponding with stored features. Naturally, 
the number an  should increase with time due to 
accumulating the innovation samples. Thus, the adaptation 
speed decreases gradually and the over-fitting problem 
happens. To prevent this problem, an  should be below a 
certain value. On the other hand, the small number an  on the 
basis of bn  makes the system sensitive, so the system can be 
diverse. In this paper, the number an  is regarded as a known 
constant, which is specified as 50 in our simulation. 

IV. SIMULATION RESULTS 
To evaluate the performance of the proposed method, we 

used well-known Matlab simulation for SLAM which is the 
opened software packages for SLAM [17]. We have 
developed the MNE assisted EKF-SLAM which is based on 
EKF-SLAM source in this packages. 

We assumed that the control noise is white Gaussian noise 
in every simulation. The standard deviation (STD) of linear 
velocity is 0.3 m/s and the STD of steering angle is 3 degree. 
In simulation environment, the measurement noise is 
time-variant with a non-zero mean, and its initial values are 
specified as: ( rσ = 0.1 m, θσ = 1 degree, rb = 0 m, and bθ = 0 
degree). The standard EKF-SLAM employs these initial 
values as the internal noise parameters ( θσ , rσ ) until the end. 

For the sake of the plain evaluation without side factor, the 
range uncertainties ( rσ , rb ) are time-invariant, and the only 
bearing uncertainties ( θσ , bθ ) frequently vary between 1-3 
degree and 0-4 degree, respectively. Identifications of the 
corresponding feature are known. The same control and 
observation data is used in both simulations: The standard 
EKF-SLAM and the MNE assisted EKF-SLAM. The vehicle 
navigates three loops.  

Fig. 3 shows that both R̂  and b̂  using the proposed 
method keep track of the true value. Thank to this tracking 
capacity, the performance of the proposed method can 
improve. Fig. 4 consists of the vehicle trajectory and features 
at three significant moments: just before loop closing, just 
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Fig. 2.  The block diagram of MNE. 
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(a) The biased noise of bearing measurement 
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(b) The standard deviation of bearing measurement noise 

 
Fig. 3.  The estimation of measurement noise; blue lines present true 
noise and red lines present estimated noise 
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after loop closing, and the last. Firstly, Fig. 4-(a) and Fig. 
4-(d) show that the possibility of mismatching in the proposed 
algorithm is less than the standard EKF-SLAM’s from the 
standpoint of the data association problem. Secondly, 
although the identification of feature is known, the estimation 
and the uncertainties of vehicle and featured are too 
inaccurate to be corrected reasonably in the standard 
EKF-SLAM after loop closing (Fig. 4-(b)), however, the 
proposed method works well (Fig. 4-(e)). Finally, even if the 
vehicle moves the same path over and over again, EKF cannot 
correct (Fig. 4-(c)) owing to its optimistic nature [15].  

If the true state kx is known, we can use the average Root 
Mean Square Error (RMSE) of features, and the average 
Normalized Estimation Error Squared (NEES) kε  to 
characterize the performance of SLAM algorithm by using 
the Monte Carlo test.1  

( ) ( )1
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1

ˆ ˆ

1

T

k k kk k k k k k

N

k i k
iN

ε

ε ε

−

=

= − −

= ∑

x x P x x
        (24) 

 
1  For a consistent evaluation, a thorough examination is needed via 

multiple Monte Carlo runs [16]. The criterion of this test is the 95% 
probability concentration region for the average NEES with the 
3-demensional vehicle pose and 50 runs, and is bounded by the interval 
2.35-3.72 [15]. If it is higher than the upper bound, this algorithm is 
optimistic, and if it is below the lower bound, the algorithm is conservative. 
Thanks to the optimistic nature of the EKF, we can mention briefly that the 
lower average NEES is, the better performance is. 

where N  (=50) is the number of Monte Carlo runs. To 
evaluate the effects of R̂  and b̂  separately, we examine in 
two types of environment. In Monte Carlo test 1, we assumed 
that the “actual” measurement noise is a white Gaussian noise, 
and we used the only estimate of variance ˆθσ . The actual θσ  
varies between 1-3 degree, and the static θσ  ,employed by 
the standard EKF-SLAM, are 0.5, 1, 3, and 6 degree. In 
Monte Carlo test 2, the actual bθ  varies between 0-4 degree 
as well as the actual θσ  varies, and the static θσ  is 2 degree 
(the middle of the actual varying range). The other setting 
parameters are same as the single run simulation. 

In Monte Carlo test 1, in case that θσ  is smaller than the 
actual value θσ  (red lines), NEES of the standard EKF tends 
to get worse (Fig. 5-(b)), because the uncertainty P  become 
smaller than the optimal owing to excessive reliance of 
measurement. To the contrary, in case that θσ is larger than 
the actual value θσ  (blue lines), RMSE of the standard EKF 
tends to get worse (Fig. 5-(a)), because the correcting quantity 
is small owing to distrust of the measurement. Generally 
speaking about the standard EKF, the larger difference 
between θσ  and θσ  (solid color lines) is, the worse 
performance is. Consequently, Fig. 5 shows that the proposed 
algorithm (black line) is good in comparison with the 
standard EKF-SLAM from both standpoints. However, even 
the proposed algorithm cannot prevent the consistency from 
breaking, but only can reduce the breaking speed. 

In Monte Carlo test 2, we also observed that the 
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(a) Before loop closing. Time index k=944              (b) After loop closing, Time index k =1000                 (c) Three loop. Time index k =2887 
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(d) Before loop closing. Time index k=944              (e) After loop closing, Time index k =1000                 (f) Three loop. Time index k =2887 
 
Fig. 4.  Simulation results in case of a time-variant biased noise; (a),(b) and (c) are the performance of the standard EKF-SLAM, (d), (e), and (f) are the 
performance of the MNE assisted EKF-SLAM; blue (*) is a true feature, red (+) is an estimated feature, green line is a reference (true) trajectory, and black 
line is an estimated trajectory  
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performance of the proposed algorithm (block line) is better 
than the standard EKF-SLAM’s in the environment of a 
time-variant biased noise (Fig. 6). Unfortunately, the 
proposed algorithm rather worse than the standard 
EKF-SLAM until the time index 100, because of the 
oscillation of the estimate (Fig. 3). Therefore, if the actual 
noise is white Gaussian and we can know this fact, estimating 
the only variance R̂  is better, otherwise some technique to 
diminish the oscillation is recommended.  

V. CONCLUSION 
This paper presents an adaptive online approach to 

estimate the measurement noise distribution for the SLAM 
problem by using the mean and variance of innovation. The 
proposed method overcomes two practical problems of 
KF-based approaches; a time-variant noise and a color noise 
with non-zero mean. The performance of the proposed 
method is excellent in comparison with the standard 
EKF-SLAM in practical environment which includes a 
time-variant color noise. Based on this approach, we will 
keep researching on the subject of simultaneous estimating 
control and measurement noise. 
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Fig. 5. Results of Monte Carlo test 1 in case of a time-variant white 
noise. Black line presents the MNE-EKF, and color lines present the 
EKF with the static value of noise variance θσ : Red solid, red dashed, 
blue dashed, and blue solid present 0.5, 1, 3, and 6, respectively 
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Fig. 6. Results of Monte Carlo test 2 in case of a time-variant biased 
noise; black line presents the MNE-EKF, red line presents EKF with 

θσ =2 ( the middle of the varying interval of θσ ). 
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