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Abstract— A fast and robust method for visual odometry based on
the Fourier-Mellin Invariant (FMI) descriptor is presented. It extends
previous FMI based approaches in two ways. First, a logarithmic
representation of the spectral magnitude of the FMI descriptor is used.
Second, a filter on the frequency where the shift is supposed to appear
is applied. It is shown with experiments with an Unmanned Aerial
Vehicle that this improved Fourier-Mellin Invariant (iFMI) method is
is indeed an advancement and well suited for online visual odometry
to generate large photo maps.

I. Introduction

Photomaps, i.e., image based, metric representations are interest-
ing for getting an overview of the environment where a mobile is
operating in. From a simple viewpoint, regions of overlap between
two consecutively acquired images have to be found and suitably
matched for photomapping, which is related to visual odometry as
it also allows to estimate the motion of the vehicle. This process
of finding a template in an image is also known as registration [1],
[2], [3], [4], [5], [6], [7]. But the task at hand is more difficult
than mere registration as the region of overlap is unknown and it
usually has undergone non-trivial transformations due to the robot’s
movements. This is comparable to image stitching [8], which is for
example used to generate panoramic views from several overlapping
photographs.

The scale invariant feature transform (SIFT) [8], [9] is at present
a very popular basis for image stitching. SIFT delivers point-wise
correspondences between distinctive, non-repetitive local features
in the two images. The number of detected features is significantly
smaller than the number of pixels in the image. Other methods for
identifying features include local image descriptors like intensity
patterns [10], [11] and the Kanade-Lucas-Tomasi Feature Tracker
(KLT) [12].

We postulate that when using the whole information in the images
and not only features, uncertainties and ambiguities are minimized
up to a level where they can be completely ignored. We hence
base our work presented here on a variant of the Fourier Mellin
transform for image representation and processing [13][14], which
was for example used in the context of robotics for underwater
photomapping [15]. In doing so, we introduce two significant
modifications to achieve a very fast and robust method. First, a
logarithmic representation of the spectral magnitude of the FMI
descriptor is used. Second, a filter on the frequency where the shift
is supposed to appear is applied. The advantages are demonstrated
by experiments with an Unmanned Aerial Vehicle (UAV).

The rest of this paper is structured as follows. In section II, the
improved Fourier Mellin Invariant (iFMI) descriptor is introduced.
Section III presents experiments with data from an Unmanned
Aerial Vehicle (UAV). Section V concludes the paper.
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II. The improved FourierMellin Invariant (iFMI) descriptor
approach

The classical Matched Filter (MF) of two 2D signals r ∗ (−x,−y)
and s(x, y) is defined by:

q(x, y) =

∫ ∫ ∞

−∞

s(a, b)r ∗ (a − x, b − y)dadb (1)

This function has a maximum at (x0,y0) that determines the
parameters of a translation. One limitation of the MF is that the
output of the filter primarily depends on the energy of the image
rather that on its spatial structures. Furthermore, depending on the
image structures the resulting correlation peak can be relatively
broad. This problem can be solved by using a Phase-Only Matched
Filter (POMF). This correlation approach makes use of the fact
that two shifted signals having the same spectrum magnitude are
carrying the shift information within its phase (equ.2). Furthermore
the POMF calculation is much faster than the MF because if a
signal frame of size 2N is used, the advantages of the Fast Fourier
Transform (FFT) can be exploited.

The principle of phase matching is now extended to additionally
determine affine parameters like rotation, scaling and afterward
translation.

f (t − a)� F(ω)eiωa (2)

When both signals are periodically shifted the resulting inverse
Fourier transformation of the phase difference of both spectra
is actually an ideal Dirac pulse. This Dirac pulse indicates the
underlying shift of both signals which have to registered.

d(t − a)� 1eiωa (3)

The resulting shifted Dirac pulse deteriorates with changing signal
content of both signals. As long as the inverse transformation yields
a clear detectable maximum this method can used for matching
two signals. This relation of the two signals phases is used for
calculating the Fourier Mellin Invariant Descriptor (FMI). The next
step for calculating the desired rotation parameter exploits the fact
that the 2D spectrum 5 rotates exactly the same way as the signal
in the time domain itself (equ.4):

s(x, y) = r[(x cos(α) + y sin(α)), (−x sin(α) + y cos(α))] (4)

| S (u, v) |=| R[(u cos(α) + v sin(α)), (−u sin(α) + v cos(α))] | (5)

where α is the corresponding rotation angle.
For turning this rotation into a signal shift the magnitude of

the signals spectrum is simply re-sampled into polar coordinates.
For turning a signal scaling into a signal shift several steps are
necessary. The following Fourier theorem

f (
t
a

)� aF(aω) (6)

shows the relations between a signal scaling and its spectrum.
This relation can be utilized in combination with another transform
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called Mellin transform which is generally used for calculations of
moments:

V M( f ) =

∫ ∞

0
v(z)zi2π f−1dz (7)

Having two functions v1(z) and v2(z) = v1(az) differing only by a
dilation the resulting Mellin transform with substitution az = τ is:

V M
2 ( f ) =

∫ ∞

0
v1(az)zi2π f−1dz

=

∫ ∞

0
v1(τ)(

τ

a
)i2π f−1dτ

= a−i2π f V M
1 ( f ) (8)

The factor a−i2π f = e−i2π f ln(a) is complex which means that with the
following substitutions

z = e−t, ln(z) = −t, dz = −e−tdt,

z→ 0 −→ t → ∞, z→ ∞ −→ t → −∞ (9)

the Mellin transform can be calculated by the Fourier transform
with logarithmically deformed time axis:

V M( f ) =

∫ −∞

∞

v(e−t)e−t(i2π f−1)(−e−t)dt

=

∫ ∞

−∞

v(e−t)e−i2π f tdt (10)

Now the scaling of a function/signal using a logarithmically de-
formed axis can be transfered into a shift of its spectrum. Finally,
the spectrum’s magnitude is logarithmically re-sampled on its radial
axis and concurrently the spectrum is arranged in polar coordinates
exploiting the rotational properties of a 2D Fourier transform as
described before. Scaling and rotation of an image frame are then
transformed into a 2D signal shift where the 2D signal is actually
the corresponding spectrum magnitude of the image frame.

Here, a sketch of the overall algorithm. The POMF is calculated
as follows:

1) calculate the spectra of two corresponding image frames
2) calculate the phase difference of both spectra
3) apply an inverse Fourier transform of this phase difference

The following steps are taken for a full determination of the rotation,
scaling and translation parameters:

1) calculate the spectra of two corresponding image frames
2) calculate the magnitude of the complex spectral data
3) resample the spectra to polar coordinates
4) resample the radial axes of the spectra logarithmically
5) calculate a POMF on the resampled magnitude spectra
6) determine the corresponding rotation/scaling parameters from

the Dirac pulse
7) re-size and re-rotate the corresponding image frame to its

reference counterpart
8) calculate a POMF between the reference and re-rotated/scaled

replica image
9) determine the corresponding x,y translation parameters from

the Dirac pulse
The steps of the iFMI can be used for photomapping in a

straightforward way. A first reference image I0 is acquired or
provided to define the reference frame F and the initial robot pose
p0. Then, a sequence of images Ik is acquired. Image I1 is processed
with the above calculations to determine the transformations T M

0
between I0 and I1 and hence the motion of the robot. The robot
pose is updated to p1 and I1 is transformed by according operations
T F

0 to an image I′1 in reference frame F. The transformed image I′1

Fig. 1. An image map generated with iFMI in real-time from about
300 images acquired with an UAV. The scene involves several challenges,
especially large featureless areas.

Fig. 3. Magnitudes of two image spectra

is then added to the photo map. From then on, the image I′n, i.e., the
representation of the previous image in the photo map, is used to
determine the motion-transformations T M

n in the subsequent image
In+1, which is used to update the pose pn+1 and the new part I′n+1
for the photo map.

III. Experiments and Results

Figure 3 shows the corresponding spectra of an example image
pair and figure 4 shows the polar/logarithmic resampled spectra
from 0 to 180 degree from figure 3. The periodical shift of the image
content on the x axis is clearly visible indicating the underlying
rotation. With smaller extent, on the y axis a shift of the image
content is also visible indicating the underlying scaling. Figure 5

Fig. 4. Polar/logarithmic re-sampled spectra
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Fig. 2. About 600 areal images from an UAV are combined by iFMI in real-time into an image map.

shows the resulting 2D Dirac pulse from the POMF applied to
the re-sampled spectrum magnitudes. Note the clearly distinguished
peak, which is also postulated by equation 3. Rotation and scaling
imply always change of the signal content in the sense that old
image content is lost and that new content moves in, i.e., previously
seen parts of the environment are not seen anymore and vice versa.
The theorem 3 theoretically only holds for a complete signal which
is periodically shifted to obtain an ideal Dirac pulse [16]. But as
will be shown, the method robustly works with small overlaps in
consecutive images.

The following results shows the progression of the resulting
Dirac amplitude while shifting an image frame and its counterpart
against each other. As mentioned, figure 5 shows the amplitude
of the resulting Dirac progression for the determination of FMI
parameter. Figure 6 shows the same pulse, but for a case where
there is a significant translation and more than 30% of the original
image content are ”lost” in the new image. The amplitude of the
corresponding Dirac pulse decreases from 0.15 to 0.087, but it is
still clearly identifiable.

In the following experiment, x and y coordinates are shifted in
a systematic way to illustrate the robustness but also the limits
of our method. Synthetic image data showing White Gaussian
noise is used for a worst case test, e.g., when the robot moves
over a homogeneous concrete floor or a lawn. Note that the
popular SIFT is known to perform very poorly in these cases as
it requires distinctive, non-repetitive local features. A base image
IG is registered with different test images Ik. All images are 256x256
pixel. We consider here the worst case scenario of moving both in
x- and y-direction at the same time. Each Ik is shifted one pixel in
x and y further away from the image shown in IG. The method
works robustly up to the translation of 78 pixel in both x and
y. The FMI parameters are always correctly determined. Figure
7 shows that the subsequent determination of the translation by
the POMF computation also fails when exceeding this translation
of 78 pixels in both directions. Experiments with real world data
show that the detection of the parameters is possible with larger
translational motions when there are highly distinguishable features
in the image content. Nevertheless, it is obvious that the method

Fig. 5. The 2D Dirac pulse. As can be seen, the parameters of the
transformations and hence robot movements are clearly identified.

fails when there is not sufficient overlap in consecutive images.
When this worst case happens, the robot can start a new partial
map, which can later on be combined with the first one through
map merging [17]. But as shown in remainder of this section, this
can be avoided with a decent image acquisition rate.

As default, we assume in the following an aerial robot with a
down-looking camera. Horizontal translations lead to shifts in x,
respectively y direction in subsequent images. A change in altitude
causes a change in scaling between two frames. Roll and pitch are
very well stabilized by gyroscopes and currently not taken into
account; if data is to be gathered in extreme flight maneuvers,
the gyroscope readings can be used to unwarp any shear from
the images. The yaw is determined by image rotations. In the
following, ground truth comparisons are presented. The top of
figure 8 shows a sequence of vastly changing yaw values of the
robot. The ground truth orientations are manually determined based
on the image sequence. This extreme case is used to validate the
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Fig. 6. The 2D Dirac pulse after rotation/scaling and a significant
translation where more than 30% of the previous image content are lost.
The amplitude of the pluse descreases, but it is still more than sufficient to
determine the parameters of the underlying transforms.

robustness against rotations of the proposed algorithm. The bottom
part of figure 8 shows the determined rotation parameters between
subsequent image frames. Figure 9 shows the deviations between
the true and the FM-SLAM orientation of the robot. As can be seen,
the errors are even in this extreme case on average well below one
degree.

A second ground truth experiment illustrates the performance on
fast changing altitude, i.e., scale. Figure 10 shows the true change of
scale between two image frames. Zooming into the scene (scaling >
1) means moving down in altitude and a scaling < 1 means moving
up in altitude. Figure 11 shows the corresponding errors between the
true and the determined parameters. The errors are in the order of
at most 2% in the worst case and below 1% on average. If the robot
is moving in about 2.5 m above ground, these values accordingly
coorespond to 5 cm, respectively 2.5 cm.

Figures 12 and 13 show in addition to the ground truth evalua-
tions some qualitative results.

The first image I0 taken by the robot is the so to say seed of
the map. When a new image In is taken, it is used to determine the
underlying transformations and the new pose of the robot. This new
pose is in turn used to transform the image In into an image I′n such
that it can be fused into the map. The qualitative result, namely the
continuous image without any visible disruptions, nicely illustrates
the quality of iFMI. An image map from a front or side looking
camera is for example interesting when flying along the facade of
a building.

Two other more typical examples from a down looking camera
are shown in figures 12 and 13. Figure 12 shows an image map
generated in a sequence including translations, rotations and the
change in altitude. In figure 13, the robustness against altitude
changes is illustrated in a qualitative way. The changes in scale
between two subsequent images were in this sequence up to 25%.

Our C/C++ implementation of the approach is laid out for differ-
ent frame sizes that allow to trade resolution for processing speed:
(256x256) = 170 msec, (350x350) = 260 msec and (480x480)
= 430 msec on a low-end PC with a single-core 1.7 GHz CPU.
The processing times already include data acquisition and overview
display using the INTEL OpenCV library. The field of view of the

Fig. 7. The Dirac amplitudes when the overlap between registered images
IB and Ik is systematically decreased by shifting each Ik in x and y by one
pixel. The top graph shows the amplitude for the FMI. The bottom graph
shows the pulse for the subsequent determination of the translation. As can
be seen, the method fails when the translation in both x- and y-direction
exceeds 78 pixel. Note that this is a worst case analysis based on synthetic
data.

down-looking camera is about 90o; one image can hence cover
about 20 m wide ground when the robot is in a typical altitude of
10 m for aerial maps; even when the robot moves very fast with
1 m/s, an image acquisition rate of 0.2 Hz - allowing more than
sufficient 5 sec processing time - still leads to consecutive images
with significant overlap of 15 m or 75%.

IV. Extension to other application domains

The presented approach is also of interest for other application
domains, especially underwater robotics [18]. Recent experiments
include data from a vehicle passing over a cold water coral reef
(figure 15)1 The original aim of this video was to monitor the
recovery of cold-water corals from the Tisler Reef. This reef lies
along the Norway-Sweden border at a depth of 74 to 155 m. As
shown in figure 14, the presented approach is also working well

1The video data was provided by Tomas Lundav, University of Gothen-
burg. This dataset was collected as part of the EU FP6 Hermes Project
(GOCE-CT-2005-511234-1).
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Fig. 8. A sequence of drastically changing yaw values of the robot (top). At
each orientation, an image In is taken and the underlaying rotation parameter
(bottom) is determined with FM-SLAM on In−1. As shown in figure 9, the
errors are even in this extreme case very small.

Fig. 9. The errors in absolute orientation when using FM-SLAM in the
sequence of drastically changing yaws shown in figure 8. The errors are
even in this extreme case on average well below one degree.

in this application scenario and it can be used for mosaicking. A
more detailed description can be found in [18].

But visual odometry has its limits when its comes to the
generation of maps. The consecutive registration of video frames
involves cumulative errors. Especially, errors in orientation build up
and lead to significant distortions over time. It is hence of interest
to use proper Simultaneous Localization and Mapping (SLAM). An
embedding of the presented approach into pose graph SLAM [19],
[20] is current work in progress.

V. Conclusion

An improved Fourier-Mellin Invariant (iFMI) descriptor is pre-
sented, which extends previous FMI based approaches in two ways.
First, a logarithmic representation of the spectral magnitude of the
FMI descriptor is used. Second, a filter on the frequency where the
shift is supposed to appear is applied. The iFMI can be used in a
fast and robust manner for visual odometry, as demonstrated with

Fig. 10. The ground truth changes in altitude measured by absolute scale
changes in subsequent images.

Fig. 11. The errors in the altitude expressed as difference in ground truth
versus computed scale factor. Note that the maximum error is about 2%,
the average error is below 1%.

experiments on photomapping with an Unmanned Aerial Vehicle
(UAV). The related work is also interesting for other application
domains, especially underwater robotics.
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