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Abstract— This paper presents an easy and fast method of
testing force closure when a multi-fingered hand grasps an
object. Different from previous methods, we consider approx-
imating the friction cone by using a few ellipsoids. By using
this method, the total force/moment set applied to the grasped
object can be obtained by a common set of multiple ellipsoids.
This method is effective since we can test the force closure by
simply calculating the inequalities of quadratic form. Moreover,
by using the ellipsoidal approximation, we propose an easy
method of evaluating the grasp stability. We show that the
grasp stability can be calculated by using simple equations.
The effectiveness of the proposed method is verified by several
numerical examples where we show that the proposed method
is fairly accurate and can evaluate the grasp stability faster
than conventional methods.

I. INTRODUCTION

Multi-fingered hand has potential ability to grasp various
objects with different shape, weight or surface friction. A
robot with multi-fingered hands is expected to be used
for personal service assistants. In such situation, after the
robot measures an object position and orientation, the grasp
planning should be performed in realtime. However, the
grasp planning is complex since we have to search for
the contact point satisfying the following conditions; 1) the
multi-fingered hand grasps the object without dropping it out
from the hand, 2) each finger avoids unexpected collision
with the environment, and 3) each finger joint keeps its
movable range.

Among the above conditions, we focus on the first one
and propose a fast and easy method of evaluating the grasp
stability. The multi-fingered hand can keep on grasping
the object if each finger can exert the contact forces onto
the object and the resultant of contact forces balances any
direction of external force/moment. This criteria is known
as the force closure. Based on this concept, grasp stability
can be evaluated. In most of the previous researches, The
friction cone at each contact point has been approximated
by using the polyhedral convex cone. In this case, the force
closure is tested by solving the linear programming problem.
The grasp planning has been a time consuming calculation
since we have to search for the grasping posture satisfying
the force closure by solving the linear programming problem
for each iteration.
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Fig. 1. Approximation of friction cone

In this case, as the number of span vectors of the polyhe-
dral convex cone increases, we can approximate the friction
cone accurately. However, at the same time, the calculation
time of the force closure will increase. On the other hand, if
we want to save the calculation time, we have to approximate
the friction cone roughly by using smaller number of span
vectors.

Knowing the above problems of force closure where the
friction cone is approximated by using the convex polyhedral
cone, this paper proposes a novel method of testing the force
closure where the friction cone is approximated by using a
few ellipsoids. Different from the conventional methods, we
can test the force closure by calculating just 2n inequalities
of quadratic form for n-fingered grasping if the friction cone
is approximated by using two ellipsoids. This paper also
proposes a simple method of evaluating the grasp stability
by using the ellipsoidal approximation of friction cone.

The rest part of this paper is organized as follows. In
chapter II, we describe a general method of force closure
testing. In section III.a, each friction cones is approximated
by an ellipsoid, a calculation method for resultant force is
formalized and the relationship between the formalization
and Minkowski sum is analyzed. In section III.b, the method
of product set of all ellipsoids for accurate approximation
on each contact point is described. In chapter III.c, fast
calculation method of grasp stability is described [1]. In
chapter IV, the effectiveness of the proposed method is
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verified by 2D and 3D simulation.

II. FORCE CLOSURE

When a multi-fingered hand grasps an object, an appro-
priate force/moment has to be generated onto the grasped
object in order to balance any direction of the external
force/moment. This condition is satisfied if the set of re-
sultant force/moment applied by each finger includes the
origin. This condition is known as the force closure. The
set of resultant force/moment applied to the object can be
obtained by calculating the sum of contact force applied by
each finger where the contact force is limited inside fiction
cone.

Let us consider the contact force fi (i = 1, · · · , m)
applied at the i-th contact point position pi. The wrench
wi generated by fi can be calculated as

wi =
[

fi

γpi × fi

]
. (1)

where γ is torque magnitude which is scaled with respect
to the force magnitude. The space spanned by all contact
forces is called the grasp wrench space (GWS). Ferrari and
Canny[1] proposed two methods of generating GWS. One
method generates GWS (WL∞) by calculating the sum of all
combination of contact forces. It is the Minkowski sum of the
wrench applied by each finger. The other method generates
convex hull of contact wrenches as GWS (WL1). The set of
GWS, WL∞ and WL1 are expressed as,

WL∞ = {⊕m
i=1wi|wi ∈ Wi} (2)

WL1 = ConvexHull({∪m
i=1wi|wi ∈ Wi}) (3)

where ⊕ is Minkowski sum, Wi is a set of the effect wrench
applied at i-th each contact point. When GWS contains the
origin of wrench space, we say that the grasp is force closure.
If a set of vectors, wi ∈ Wi positively spans �6, then both
WL∞ and WL1 will contain the origin. For testing whether
or not, GWS contains the origin, WL1 is useful because of its
fast calculation. However, for the purpose of dynamic motion
planning of grasped object and more accurate grasp stability
evaluation, WL∞ is needed. Since WL∞ space shows the
range which can counter external wrench or inertial wrench
in any direction.

For constructing WL∞ , the friction cone has been approx-
imated by using a polyhedral convex cone. In this case, if
we consider accurately approximating the friction cone by
using a larger number of the faces, it results in the dramatic
increase of the calculation cost. Let m and n be the number
of finger and the number of face of the polyhedral cone,
respectively. Its calculation cost is represented as O(nm).
Reduction of the calculation cost of WL∞ is important issue
for grasp planning.

As for the research on force closure, Reuleaux[2]
discussed force closure used in classical mechanics.
Ohwovoriole[3], Salisbury and Roth[4] introduced it into the
research field of robotics. Mishra, Schwartz, and Sharir[5],
Nguyen[6], and other researchers[7]-[9] investigated the con-
struction of force closure grasp by a robotic hand. Kerr

and Roth[10], Nakamura, Nagai, and Yoshikawa[11], and
Ferrari and Canny[1] discussed the optimal grasp under force
closure.

Linear matrix inequality (LMI) method[12][13][14] is a
fast method of force closure testing. LMI method can find
a solution which satisfying the friction constraint quickly.
Some methods are derived from LMI method, such as ray
tracing method[15][16], and heuristics approach[17]. They
are fast method for testing force closure and find optimal
solution. However, the methods based on LMI don’t generate
the whole WL∞ .

Borst[18] proposed a method of incremental expansion of
subspace of in the weakest direction of WL∞ . It is faster than
conventional methods for grasp stablity evaluation of WL∞ .
However, the method doesn’t generate the whole WL∞ , since
the method do not expand the subspace of WL∞ in the strong
direction. A much faster method for generating the whole
WL∞ is desirable for many applications[19]-[28].

This paper proposes a fast method of grasp stability
calculation. Our method generates a good approximation of
the whole WL∞ . We show that our calculation is much faster
than the other methods. However, more distinctive merit of
our approach is that we can very easily calculate the grasp
stability. Our method simply checks inequalities for force
closure judgment and does not need to construct convex hull
or to solve linear programming problem. If we approximate
the friction cone by using a single ellipsoid, the force closure
can be confirmed by checking only one inequality. Also, the
grasp quality of WL∞ can be calculated by using one or two
simple equations.

III. ELLIPSOIDAL APPROXIMATION OF FRICTION CONE

A. The resultant force set

As shown in Fig.1 (b), we approximate friction cone by
ellipsoid. Considering the ith contact point pi on an object
with contact force fi (i = 1, · · · , m), the set of the contact
force can be expressed by the ellipsoid as

(fi − fcni)tUiSU t
i (fi − fcni) ≤ 1 (4)

where S = diag[1/a2 1/b2 1/c2] and a, b and c are the
axis length of the ellipsoid, Ui is a 3 × 3 matrix composed
of the unit normal vector and the unit tangent vector of the
contact surface. ni is a unit normal vector and fc is defined
as a distance between the ellipsoid center and the contact
point. Here, we assume that the arbitrary contact force can
be applied within the limit of Eq.(4). It means that we assume
that each finger has at least 3 DOF and that only the fingertip
contacts the object.

Summation of this equation for all contact points can be
calculated as

m∑
i=1

(fi − fcni)tUiSU t
i (fi − fcni) (5)

= (F − fcN)T T (F − fcN) ≤ m (6)
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where

F = [f t
1 · · · f t

m]t,
N = [nt

1 · · · nt
m]t,

T = block diag[U1SU t
1 · · · UmSU t

m].

An equation w.r.t. the resultant force/moment can be derived
from this equation. The resultant force/moment w can be
defined by

w − fcGN = G(F − fcN) (7)

where

G =
[

I · · · I
γp1× · · · γpm×

]
.

Note that even if Eq.(6) is satisfied, Eq.(4) is not always
satisfied. Therefore, we define G# which is the weighted
pseudo-inverse matrix of G, so that all forces satisfy Eq.(4).
Let G# be defined as

G# = T−1GT (GT−1GT )−1. (8)

The G# give the least norm solution for F T TF . Then, by
minimizing F T TF , the all forces are likely to be inside
of ellipsoid of Eq.(4). Since F is weighted dependent on
each ellipse radius. By using G#, Eq.(7) can be solved w.r.t.
F − fcN ;

F − fcN = G#(w − fcGN) + (I − G#G)k. (9)

From Eq.(6) and Eq.(9), we have

(F − fcN)T T (F − fcN)
= {(w − fcGN)T (G#)T + kT (I − G#G)T }T

{G#(w − fcGN)(I − G#G)k}
= (w − fcGN)(G#)T TG#(w − fcGN)

+2kT (I − G#G)T TG#(w − fcGN)
+kT (I − G#G)T T (I − G#G)k. (10)

A right-hand side of the Eq.(10) can be simplified as follows;
First, the first term of the right-hand side of Eq.(10) can be
simplified as

(G#)T TG#

= (GT−1GT )−1GT−1TT−1GT (GT−1GT )−1

= (GT−1GT )−1. (11)

Then, the second term of the right-hand side of Eq.(10) is
equal to zero since

(I − G#G)T TG# = TG# − GT (G#)T TG#

= TT−1GT (GT−1GT )−1

−GT (GT−1GT )−1GT−1TT−1GT (GT−1GT )−1

= GT (GT−1GT )−1

−GT (GT−1GT )−1(GT−1GT )(GT−1GT )−1

= GT (GT−1GT )−1 − GT (GT−1GT )−1

= O (12)

Minkowski sum 

approximation ellipse

ellipses

Fig. 2. Minkowski sum of two ellipses and its approximation

Fig. 3. Ellipsoid and friction cone

Finally, the third term of the right-hand side of Eq.(10) is
always greater than 0 since T is positive definite. Therefore,
by substituting Eq.(11) and Eq.(12) to Eq.(10), we obtain,

e(w) = (w − fcGN)T (GT−1GT )−1(w − fcGN) ≤ m.

(13)

Thus, we can obtain the inequality about the resultant
force/moment w. Therefore, we can easily confirm stable
grasp condition by linear calculation.

The set of GWS W ′ calculated by ellipsoidal approxima-
tion is defined as,

W ′ =
{w|(w − fcGN)T (GT−1GT )−1(w − fcGN) ≤ m}. (14)

Here, we note that Eq.(13) is an equation of ellipsoid.
However, even if we approximate the friction cone at each
contact point by an ellipsoid, the Minkowski sum of the
wrench does not always be an ellipsoid. Eq. (13) shows
inequality of ellipsoid approximating the Minkowski sum by
an ellipsoid. In Fig.2, the blue closed curve represents the
Minkowski sum of two ellipses, and the red line represents
an ellipsoid calculated by Eq.(13). As a result, Eq. (13)
generates accurate approximation of Minkowski sum of
ellipses.

B. Common set of ellipsoid

It is difficult to approximate friction cone accurately by
only one ellipsoid. Thus consider extending the proposed
method by defining more than two ellipsoids. In this case, the
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friction cone is approximated by the common set of multiple
ellipsoids. First, we show the method of approximating the
friction cone by using two ellipsoid where one is tangent to
the side face and the other ellipsoid is tangent to the bottom
face. The equation of each ellipsoid is defined as,

(fi − fmaxni)tUiS1U
t
i (fi − fmaxni) ≤ 1 (15)

(fi − fmaxni/2)tUiS2U
t
i (fi − fmaxni/2) ≤ 1(16)

where fmax is maximum contact force, μ is friction coeffi-
cient, and

S1 = diag

⎡
⎣
( √

2
μfmax

)2 ( √
2

μfmax

)2 ( √
2

fmax

)2
⎤
⎦

S2 = diag

[(
1

fmax

)2( 1
fmax

)2( 2
fmax

)2
]

.

Fig.3 approximates the friction cone by using the cross
section of two ellipsoids. Here, if we define the minimum and
the maximum normal component of the force, the common
region defined by S1 and S2 give a good approximation of
friction cone.

T in Eq.(13) is calculated by using all combination of S1

or S2 on each finger. w is obtained by the common region
of Eq.(13) for all possible T .

For example, in the case of two-points contact, the follow-
ing four combinations can be considered for T in Eq.(13)

T1 = block diag[U1S1U
t
1 U2S1U

t
2] (17)

T2 = block diag[U1S1U
t
1 U2S2U

t
2] (18)

T3 = block diag[U1S2U
t
1 U2S1U

t
2] (19)

T4 = block diag[U1S2U
t
1 U2S2U

t
2]. (20)

Then a wrench set W ′
j using Tj is defined as,

W ′
j =

{w|(w − fcGN)T (GT−1
j GT )−1(w − fcGN) ≤ m}. (21)

GWS W is defined as a common set of W ′
j

W = ∩jW
′
j (22)

where j = 1, 2, 3, 4. In the case of n contact points, 2n

inequality are judged.
Fig.4 shows an example of 2D simulation of common sets.

4 ellipses of the resultant force and moment are calculated
by using combination of the ellipses at each contact point.
The set of the resultant force and moment is a region which
is included by all ellipses.

In the previous section, we approximated the friction cone
by using two ellipsoids. Here, we assumed the maximum
and the minimum normal component of the contact force.
However, with this approximation, the force closure cannot
be satisfied if we want the fingers to grasp the object
with extremely small grasping force. We can overcome this
problem by increasing the number of ellipsoids used for the
approximation. Fig.5 shows the case where we approximate
the friction cone by using three ellipsoids. We can see that,
by simply increasing the number of ellipsoids, we can make
the approximate to be more accurate one.

Origin

Origin

Origin

Origin

(a)

(b)

(c)

(d)

(e)

Fig. 4. Common set of ellipse

C. Criteria of grasp stability

Ferrari and Canny[1] proposed the numerical evaluation
of grasp stability using a radius of the largest inscribing ball
in the GWS around the origin. The radius means a distance
between the origin and boundary of GWS. In our method, the
distance between GWS boundary and the origin is evaluated
for the same purpose. Since the equation which calculates the
accurate distance between the origin and a ellipsoid cannot
be solved algebraically, the approximation method is used.

We propose two different approaches for calculating ap-
proximation distance(Fig. 6). One is homothetic ellipsoid E1

sharing the same center and passing through the origin (Fig.
6(b)) and the other is an ellipsoid E2 sharing the same foci
and passing through the origin(Fig. 6(c)).

The GWS boundary ellipsoid is expressed as,

(w − c)T A(w − c) = m (23)

where c = fcGN and A = (GT−1GT )−1. Let us consider
the homothetic ellipsoid smaller than the GWS boundary
ellipsoid having the same center with the GWS boundary el-
lipsoid. Let us also assume that this ellipsoid passes through
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Fig. 5. Three ellipsoids

the origin o. This ellipsoid E1 can be expressed as

(w − c)T A((w − c) = eo (24)

where eo = e(0) = cT Ac. The unit normal vector n′
1 on

the homothetic ellipsoid at the origin is expressed as,

n′
1 = Ac (25)

The distance d1 between the origin and the ellipsoid along
the vector is expressed as,

(d1n
′
1 − c)T A(d1n

′
1 − c) = m (26)

This equation is expressed as a quadratic equation:

(n′
1
T
An′

1)d
2
1 − 2(cT An′

1)d1 + (cT Ac − m) = 0. (27)

Note that cT An′
1 = n′

1
T
Ac, since A = AT . The distance is

smaller one of two solutions of this equation.
Let us consider the other ellipsoid (Fig. 6(c)) smaller

than the GWS boundary ellipsoid having the same foci with
the GWS boundary ellipsoid. Let us also assume that this
ellipsoid passes through the origin o. Eigenvalue of A is
defined as λ1, λ2, · · · , λ6. A can be expressed as,

A = V ΛV T (28)

where Λ = diag(λ1λ2 · · ·λ6), and V is composed of
eigenvectors of A. The ellipsoid which has the same foci
of the original ellipsoids is expressed as using parameter s,

(w − c)T V Λ′V T (w − c) = m (29)

where

Λ′ = diag

(
1

1
λ1

− s

1
1
λ2

− s
· · · 1

1
λ6

− s

)
.

The ellipsoid which passes through the origin is expressed
as,

cT V Λ′V T c = m. (30)

This equation cannot be solved algebraically since it is a 6-
dimensional equation. Then this equation is approximated by
a 3-dimensional equation. When eigenvalue is sorted as λ1 >
λ2 > · · · > λ6, the approximated matrix Λ′′ is expressed as,

Λ′′ = diag

(
1

1
λ1

− s

1
1
λ2

− s

1
1
λ3

− s

1
1
λ4

1
1
λ5

1
1

λ6

)
(31)

(a)

(b)

o

d

p

o

(c)

o

E0

E0

E0

E1

E 2

p

1

2

d1n1’

d2n2’

Fig. 6. Approximation distance

Fig. 7. The condition of simulation

Then the smallest solution of this equation is used for
the ellipsoid. By using the same approach of homothetic
ellipsoid, the normal vector on the ellipsoid E2 at the origin
is calculated, and distance d2 is calculate as the distance
between the origin and the E2 boundary along the normal.

d1 and d2 accuracy are dependent on the ratio between
the minimum length of the ellipse axis and the maximum
one. If the ratio is small, d2 has good accuracy. If the ratio
is close to 1, d1 has good accuracy. Therefore, the minimum
one of d1 and d2 is used. Then the evaluation value dmin is
expressed as,

dmin = min
j

min(d1j , d2j) (32)

where d1j and d2j are d1 and d2 of j-th the resultant ellipsoid,
respectively. The calculation can be done algebraically and
quickly.

IV. SIMULATION AND EXPERIMENT

A. 2D simulation

In order to compare accuracies of the approximation with a
conventional method using polyhedral cone and the proposed
method, the resultant force in 2D was simulated. Fig.7 shows
condition of the simulation of grasping circular form using
two fingers. α is the angle between the directions of forces
applied by two fingers. For simplicity, we considered only the
resultant force, and the resultant moment was ignored. In this
simulation, friction coefficient was 1/

√
3, and the maximum
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Fig. 8. Result of 2D simulation

normal force was 5
√

3 N . In the conventional method, the
GWS was calculated by using polyhedral cone. We define
that each normal force is larger than 5/

√
2 N .

Fig.8 shows the results when α is changed. The result of
proposed method is confirmed to be smaller than the resultant
force space of friction cone. The origin is not included in
GWS from α = 0◦ to α = 120◦. The origin is on GWS
border at α = 120◦. The origin is included in GWS from
α = 120◦ to α = 180◦. We can confirm these methods had
the same results whether the both GWS include the origin or
not. The result of numerical evaluation of grasp stability is
almost the same. The effectiveness of the proposed method
is confirmed by these results of the comparison.

B. 3D simulation

3D simulation is performed with a PC (CPU: Intel Xeon
2.32 GHz, Memory: 3.2 GB). A model, bunny is grasped
without considering the hand and finger kinematics. 4 facets
are randomly selected and the position and normal of them
are inputted to GWS generation function. We set friction
coefficient to be 0.5 and the maximum normal force to

Fig. 9. Bunny model of Stanford Universiy

TABLE I
CALCULATION TIME

the number of contact 3 4
polyhedral cone 0.1948 s 2.0704 s
ellipsoid 0.0020 s 0.0046 s

be 5.0 N . Our method is compared with a conventional
method[32] of polyhedral cone using qhull [31]. The con-
ventional method used 6-sided polyhedral cone.

We show the result of calculation time (Table I). The
average time of three contact points with polyhedral cone
method was 0.1948 s. On the other hand, the calculation time
with the proposed method was 0.0020 s. The time of four
contact points with polyhedral cone method was 2.0704 s.
On the other hand, the calculation time with the proposed
method was 0.0046 s. The calculation time with the proposed
method was extremely faster than that with the polyhedral
cone method.

Our method is also compared with Borst method[18]. The
calculation time is simulated by using the same number of
wrench which is totally used in their method for expansion of
the weakest direction of WL∞ . The calculation time of four
contact points was about 0.0500 s in our implementation.

When the wrench origin is obviously outside of GWS, the
proposed method can judge instantly by testing one ellipsoid.
In such case, the average calculation time is only 0.43 ms.
The time of Table I is the average time when all ellipsoid
are checked .

An example of GWS is shown in Fig.10. GWS generated
by using polyhedral cones, GWSp is displayed as translucent
surface. GWS generated by using ellipsoids, GWSe is
displayed as opaque surface. In force space, GWSe is almost
covered by GWSp. In torque space, GWSe run off GWSp.
However, GWSe is confirmed to be close to GWSp.

We compare force closure judgment and evaluation val-
ues of grasp stability between ellipsoids and polyhedral
cones(Fig. 11). The judgments of inside or outside of GWS
coincide at 90% . When the judgments are different, the
grasp stability value is small and the grasp is unstable.
Grasp stability criteria of them are close to each other and
correlation coefficient is 0.96.

C. Experiment of grasping using a HDH hand

By using a hand-arm system as shown in Fig.12, object
grasp is performed. The hand is HDH hand[29] composed
by 4 fingers attached to HRP-3P[30] with 7 degrees arm.
This is 4 fingered hand and has the thumb with 5 joints and
the index, middle and third fingers with 4 joints. The distal
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Fig. 11. Evaluation value of grasp stability

joint of each finger is not directly actuated and move along
with the next joint.

At planning phase, we set that friction coefficient was
0.5, the maximum normal force is 5.0 N . Grasp planning
is performed at (a) and (c), the grasp is executed as (b) and
(d), respectively. Total time of grasp planning is less than 1 s
with our method[32]. The proposed method is effective for
real-time application.

V. CONCLUSION

Fast method of testing the force closure for multi-fingered
hand was proposed in this paper. In our method, we use

(a) (b)

(c) (d)

Fig. 12. Experiment of grasp

ellipsoids to approximate the set of contact force. If we use
two ellipsoids to approximate a contact force set, the one
is used to approximate the friction cone and the other is
used for limiting the maximum normal component of contact
force. By using this approximation method, we propose
a method of testing the force closure and a method of
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evaluating the grasp stability. We show that, by using both
methods, the force closure or the grasp stability can be
evaluated very easily. The 2D numerical example show that,
by using the proposed approximation method, the set of
total force is close to the original set. Also, the 3D example
showed that our method can test the force closure faster than
the previous methods.

As a future work, we consider approximating the friction
cone more accurately, and conservative calculation of torque
space of WL∞ . Also, in pragmatic grasping task, not only
GWS but also manipulability force of fingers has to be
considered. An algorithm to satisfy the both conditions has
to be investigated.

REFERENCES

[1] C. Ferrari, and J. Canny, Planning optimal grasps, IEEE Intl. Conf. on
Robotics and Automation, 1992, pp.2290-2295.

[2] F. Reuleaux, The kinematics of machinery, Macmillan, New York,
1876.

[3] M.S. Ohwovoriole, An extension of screw theory and its application
to the automation of industrial assemblies, Ph.D. dissertation, Depart-
ment of Mechanical Engineering, Stanford University, 1980.

[4] J.K. Salisbury and B. Roth, ”Kinematics and force analysis of articu-
lated hands”, ASME J Mech Trans Automat Des, 105, 1982, pp.33-41.

[5] B. Mishra, J.T. Schwartz, and M. Sharir, ”On the existence and
synthesis of multifinger positive grips”, Algorithmica (Special Issue:
Robotics) vol. 2, no. 4, pp.541-558, 1987.

[6] V. Nguyen, ”Constructing force closure grasps”, Int J Robot Res vol.
7, no. 3, pp.3-16, 1988.

[7] Y.C. Park and G.P. Starr, ”Grasp synthesis of polygonal objects using a
three-fingered robot hand”, Int J Robot Res vol. 11, no. 3, pp.163-184,
1992.

[8] I.-M. Chen and J.W. Burdick, ”A qualitative test fornfinger force-
closure grasps on planar objects with applications to manipulation and
finger gaits” Proc 1993 IEEE Int Conf on Robotics and Automation,
pp.814-820, 1993.

[9] J. Ponce and B. Faverjon, ”On computing three-finger force-closure
grasps of polygonal objects”, IEEE Trans Robot Automat vol. 11, no.
6, 1995, pp.868-881.

[10] J. Kerr and B. Roth, ”Analysis of multifingered hands”, Int J Robot
Res vol. 4, no. 4, 1988, pp.3-17.

[11] Y. Nakamura, K. Nagai, and T. Yoshikawa, ”Dynamics and stability
in coordination of multiple robotic mechanisms”, Int J Robot Res vol.
8, no. 2, 1987, pp.44-61.

[12] L. Han, J. C. Trinkle, and Z.X. Li, ”Grasp Analysis as Linear Matrix
Inequality Problems”, IEEE Trans. on Robotics and Automation, vol.
16, no.6, 2000, pp. 663-674.

[13] G.F. Liu, and Z.X. Li, ”Real-time Grasping Force Optimization for
Multifingered Manipulation: Theory and Experiments”, IEEE/ASME
Transactions on Mechatronics, vol.9, no.1, 2004, pp.65-77.

[14] G.F. Liu, J.J. Xu, and Z.X. Li, ”On Geometric Algorithms for Real-
time Grasping Force Optimization”, IEEE Trans. on control System
Technology, vol.12, no.6, 2004, pp.843-859.

[15] Y. H. Liu, ”Qualitative test and force optimization of 3-D frictional
form-closure grasps using linear programming”, IEEE Trans. Robot.
Automat., vol. 15, no. 1, 1993, pp.163-173.

[16] Y. Zheng, W.-H. Qian, ”Simplification of the ray-shooting based
algorithm for 3-D force-closure test”, IEEE Trans. Robot. Automat.,
vol. 21, no. 3, 2005, pp. 470-473.

[17] N. Niparnan and A. Sudsang, ”Positive Span of Force and Torque
Components of Three-Fingered Three-Dimensional Force-Closure
Grasps”, Proc. of the IEEE International Conf. on Robotics and
Automation, 2007, pp.4701-4706.

[18] Ch. Borst, M. Fischer, G. Hirzinger, ”A fast and robust grasp planner
for arbitrary 3D objects”, Proc. of the IEEE International Conf. on
Robotics and Automation, vol 3, 1999, pp.1890-1896.

[19] K.B. Shimoga, ”Robot Grasp Synthesis: A Survey”, Int. J. of Robotics
Research, vol.5, no.3, 1996, pp.230-266.

[20] S. Ekvall and D. Kragic, ”Learning and Evaluation of the Approach
Vector for Automatic Grasp Generation and Planning”, IEEE Int. Conf
on Robotics and Automation, 2007, pp.4715-4720.

[21] A.T. Miller, S. Knoop, H.I. Christensen, and P.K. Allen, ”Automatic
Grasp Planning using Shape Primitives”, IEEE Int. Conf. on Robotics
and Automation, 2003, pp.1824-1829.

[22] A.T. Miller and Peter K. Allen, ”GraspIt!: A Versatile Simulator for
Grasp Analysis”, ASME Int. Mechanical Engineering Congress &
Exposition, 2000, pp.1251-1258.

[23] N.S. Pollard, ”Closure and Quality Equivalence for Efficient Synthesis
of Grasps from Examples”, Int. J. of Robotics Research, vol.23, no.6,
2004, pp.595-613.

[24] N. Niparnan and A. Sudsang, ”Fast Computation of 4-Fingered Force-
Closure Grasps from Surface Points”, IEEE/RSJ Int. Conf. Intelligent
Robots and Systems, 2004, pp.3692-3697.

[25] J. Ponce, S. Sullivan, J.-D. Boissonnat, and J.-P. Merlet, ”On Char-
acterizing and Computing Three- and Four-fingered Force Closure
Grasps of Polygonal Objects”, IEEE Int. Conf. on Robotics and
Automation, 1993, pp.821-827.

[26] C. Borst, M. Fischer, G. Hirzinger, ”Grasping the Dice by Dicing the
Grasp”, IEEE/RSJ Int. Conf. on Intelligenr Robots and Systems, 2003,
pp.3692-3697.

[27] A. Morales, T. Asfour, and P. Azad, ”Integrated Grasp Planning and
Visual Object Localization for a Humanoid Robot with Five-Fingered
Hands”, IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2006,
pp.5663-5668.

[28] M. Prats, P.J. Sanz, and P. del Pobil, ”Task-Oriented Grasping using
Hand Preshapes and Task Frames”, IEEE Int. Conf. on Robotics and
Automation, 2007, pp.1794-1799.

[29] K.Kaneko, K. Harada, and F. Kanehiro, ”Development of Multi-
fingered Hand for Life-size Humanoid Robots”, IEEE Int. Conf. on
Robotics and Automation, 2007, pp. 913-920.

[30] K. Akachi, K. Kaneko, N. kanehira, S. Ota, G. Miyamori, M. Hirata, S.
Kajita, and F. Kanehiro, ”Development of Humanoid Robot HRP-3P”,
IEEE-RAS/RSJ Int. Conference on Humanoid Robots, 2005, pp.50-55.

[31] qhull: http://www.qhull.org/
[32] K. Harada, K. Kaneko, F. Kanehiro, Fast Grasp Planning for

Hand/Arm Systems Based on Convex Model, IEEE Intl. Conf. on
Robotics and Automation, 2008, pp.1162-1168.

1837


