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Abstract— Mapping is an activity of making a useful descrip-
tion of an environment. Not only geometric information such
as free space but also object placements are important if the
map is used for human-robot communication. We call such a
map making environment information summarization because
how to summarize may change depending on the purpose
of the map. Environment information summarization usually
includes searching for specified objects in the environment.
It is, therefore, crucial to make a good observation plan for
efficient summarization. We develop an observation planning
method which uses object appearance models for appropriately
handling a trade-off between visual data quality and vision cost.
Experimental results using a vision-based humanoid robot show
the effectiveness of the proposed planning method.

Index Terms— Environment information summarization, ob-
servation planning, mobile robots, object appearance model.

I. INTRODUCTION

Environment modeling is one of the active research areas
in robotics. One important aspect of environment modeling
is mapping [1]. Many successful mapping or SLAM methods
have been developed which use statistical tools such as
Kalman filter (e.g., [2]) or particle filter (e.g., [3]). A major
objective of these methods is to make an accurate free space
map. Such a geometric map is important in planning a safe
robot motion in the mapped environment.

When maps are used for natural human-robot communi-
cation, semantic information is also important. For example,
we would like to direct a robot to move to some specific
place or the place where some specific object exists not
by using the coordinates of the destination but by using
the place or object name. Semantic mapping includes object
recognition by mobile robots [4] and space segmentation and
categorization [5].

Several robot systems have also been developed that
can extract semantic information while they move around.
Vasudevan et al. [6] proposed an object-based representation
and mapping of semantic information in indoor environ-
ments. Each place (room or corridor) is characterized by
placement of known objects there. The robot can learn
places and their relationships and recognize previously-
visited places. This work does not deal with planning for
efficient semantic mapping. Galindo et al. [7] used a con-
ceptual hierarchy in which several concepts (objects and
places) are organized using “is-a” and “has” semantic links.
The hierarchy is used for obtaining a map which describes
objects, places, and their relationships. Since the spatial
relationships are also represented in the map, a plan can be

generated which navigates the robot from the current place
to the destination. The work does not, however, consider the
efficiency of the mapping process.

If we use a map as a medium for human-robot com-
munication, the map needs to include both geometric and
semantic information. In this paper, we use the term envi-
ronment information summarization to represent the activity
of making such a description (or a summary) because what
kinds of information are included in the summary depends
on the purpose of the map. An example type of summary,
treated in this paper, includes a rough spatial configuration
of a room and placement of important objects in the room;
a user may use the summary to direct the robot a task
of fetching something, while the robot may use it for
autonomous navigation. Observation planning is a key to
realize an efficient summarization.

Observation planning problems appear in various contexts
of mobile robotics. Makarenko et al. [8] proposed integrated
exploration that balances three kinds of utilities, information
gain, navigation cost, and localization quality, for an efficient
and reliable mapping. Sujan and Meggiolaro [9] used an
information gain criterion for exploring an unknown region
with multiple robots. These works focus not on search for
specific objects but on exploring unknown regions. Wang et
al. [10] dealt with a view planning problem which considers
both the observation cost for inspecting the surfaces of
objects and the traveling cost between viewpoints. This work
does not consider observation uncertainty.

Tsotsos’s group [11], [12] has proposed a general frame-
work for solving a visual object search problem. Using
the probabilistic distribution of the target position and the
probabilistic detection functions, the object search problem
has been formulated as a statistical optimization problem.
Saidi et al. [13] proposed a similar approach to a 3D object
search using a humanoid robot. These works deal with the
problem of search for one object in the environment.

In this paper, we consider the following scenario. A robot
is ordered to examine an approximate shape of the free
space in a room and the positions of specified objects there.
The robot is not given what objects exist and how many. It
needs to enter the room, explore the room while detecting
objects and planning motions, and exit. In general, it is
better to approach an object closely in order to recognize
the object more reliably. If the object position and the next
subgoal of the robot are far apart from each other, however,
two objectives, increasing the recognition probability and
reducing the path length to the goal, may conflict. Miura and
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laser range finder

stereo camera

Fig. 1. The robot with stereo vision and laser range finder.
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Fig. 2. Flow of two-stage observation planning and execution.

Shirai [14] have dealt with such a trade-off between visual
data quality and vision cost in a route planning problem
under uncertainty. In the scenario treated in this paper, a
similar trade-off should be considered because there are
multiple objects to detect in general.

The rest of the paper is organized as follows. Sec. II
describes the problem treated in this paper and an overview
of the proposed method. Sec. III explains the object appear-
ance models and object recognition. Sec. IV describes the
planning method in detail. Sec. V shows experimental results
using a humanoid robot. Sec. VI concludes the paper and
discusses future work.

II. OVERVIEW OF THE METHOD

The environment information summarization treated in this
paper is to (1) make a map of free space and (2) detect
specified objects and record their positions in the map. We
use the robot shown in Fig. 1 that has a range finder to detect
free spaces and vision to detect objects; it can change the
viewing direction by rotating the head. The robot is given a
set of the appearance models of objects to detect.

Object detection is done in two stages (see Fig. 2). At
the first stage, the robot detects object candidates using
color information within the current visible areas. To explore
unknown regions for candidate detection, an observation
planning is performed to determine the next viewpoint. Once
a set of object candidates is obtained, another observation
planning for recognizing objects based on local features is
performed to determine a sequence of viewpoints to verifying
every candidate. The robot alternately performs these two
kinds of observation planning and their execution until all
candidates are detected and verified.

III. OBJECT APPEARANCE MODEL AND OBJECT

RECOGNITION

A. Visual features

Object recognition is done in two stages. In the first
stage, object candidates are detected by using color. Color

Fig. 3. Object recognition
example.

object A object B object C

Fig. 4. Three objects used.

Fig. 5. Observation parameters for appearance modeling.
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Fig. 6. SIFT appearance modeling.

information of each object is modeled by a color histogram.
An efficient search strategy [15] is used in this stage. In the
second stage, each detected candidate is verified using local
features. We use SIFT [16] as the feature and each object
is modeled by a set of SIFT features extracted off-line. If
an enough number of SIFT matches are obtained between
the model of an object and the current input, the object is
considered recognized. Fig. 3 shows an example of candidate
detection and verification for object A shown in Fig. 4. Two
objects are detected as candidates (red rectangles) and one
of them is verified (green rectangle). Such a hierarchical use
of features can reduce the cost for recognition [17].

B. Appearance model for a surface

An object is composed of multiple surfaces. We here
consider an appearance model for one surface. We use one
color model for one object because color information is
insensitive to scale changes. In the case of SIFT, however,
although the feature itself is scale invariant to some extent, a
large amount of scale change (i.e., change of distance to the
object) affects the set of SIFT features to be observed. The
number of SIFT matches usually decreases as the distance
from the camera to the surface increases. The relative angle
between the surface and the optical axis is another cause of
decreasing matches. We model these effects.

Fig. 5 shows two parameters, distance d and angle θ about
the vertical axis, used for the modeling. Fig. 6(a) shows
the relationships between the distance and the number of
matches; we fit an exponential function independently to
the data of each object. Fig. 6(b) shows the one between
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the angle and the number of matches normalized by the
number when the angle is zero. Since the data shows the
same tendency for all objects, we fit a single sigmoid curve
to all the data.

Let f and g be the fitted functions for distance and for
angle, respectively. Assuming that the effects of the distance
and the angle are independent, the predicted number ẑ of
SIFT matches is given by the product of the two functions:

ẑ(Xc,Xobj ,mi, θi)
= f(dist(Xc,Xobj)) g(angle(Xc,Xobj , ψ, φ)), (1)

where Xc is the viewpoint, Xobj is the object position, ψ is
the surface orientation with respect to the object coordinates,
φ is the orientation of the object around the vertical axis.
dist and angle are the functions to calculate distance d and
relative angle θ shown in Fig. 5, respectively.

C. Appearance model for an object

An object has in general different appearances for different
surfaces. It is thus necessary to make multiple appearance
models viewed from several directions. The more models
are used, the more reliably an object is recognized but the
more costly the recognition will be.

We use a fixed threshold thmatch on the number of SIFT
matches for judging if an object is recognized. Currently,
thmatch is set to ten. We thus chose four as the number M
of appearance models for one object; if the robot can comes
to 50 [cm] to an object, the number of matches is expected
to exceed the threshold even when the angle is in the worst
case, that is, 45 [deg.].

D. Object orientation estimation using appearance models

The effective distance for recognition of an object depends
on what surface of the object is visible. So we on-line
estimate the object orientation (i.e., φ in eq. (1)) using the
appearance models.

We discretize the orientation into N representative angles,
φi (i = 1 . . .N) (currently, N = 8). We assume the uniform
distribution in the initial state. In one observation, we obtain
a set of the numbers of SIFT matches z = {z1, . . . , zM}
between the SIFT features detected in the current search
region and the M models. The posterior probability of the
model being at φi given observation z is estimated by:

P (φi|z,Xc,Xobj) = αP (z|φi,Xc,Xobj)P (φi), (2)

where P (φi) is the prior probability and 1/N at the initial
state. P (z|φi,Xc,Xobj) is the likelihood function given by:

P (z|φi,Xc,Xobj)

= exp

⎛
⎝−k

M∑
j=1

|zj − ẑ(Xc,Xobj , ψj , φi)|
⎞
⎠ , (3)

where k is a constant (currently, k = 0.1) and surface
orientation ψj is calculated from surface ID j.

E. Predicted recognition probability

In observation planning, it is important to predict the
probability of successful recognition for each observation. If
we knew the orientation of the object, we could predict the
number of SIFT matches using the corresponding appearance
model and determine if the recognition succeeds. Since
in reality, we can only determine the distribution of the
orientation (see eq. (3)), however, we predict the probability
of successful recognition Precog(Xc,Xobj) as the one that
the number of matches exceeds the threshold thmatch:

Precog(Xc,Xobj) =
N∑

i=1

P i
recog(Xc,Xobj , φi) (4)

P i
recog(Xc,Xobj , φi)

=
{
P (φi) ∃ j {ẑ(Xc,Xobj , ψj , φi) ≥ thmatch}

0 otherwise (5)

This predicted probability is used for the observation plan-
ning described below.

IV. OBSERVATION PLANNING METHOD

Two kinds of observation planning are performed corre-
sponding to the two phases in object detection (see Fig. 2).
The robot is given the shape and the size of the room for en-
vironment information summarization but not the placement
of objects inside. It thus needs to actively explore the room
to search for objects.

We use an occupancy grid map for geometric representa-
tion of the room. The cells of the map is classified into three
categories: free, obstacle, and unobserved. Since the current
summarization task requires detecting all specified objects,
the robot must not leave a part of the room unobserved.

The robot plans a sequence of subgoals, at which it
updates the occupancy map, detects object candidates, and
makes a plan for verifying the object candidates. This section
explains each step in detail. The planning for verification
is further decomposed into two subproblems: determining
the observation order of the candidates and determining the
viewpoint sequence.

A. Object candidate detection

In object candidate detection, the robot observes all unex-
amined regions visible from the current subgoal by changing
its viewing direction. If a candidate is found by using color,
the robot calculates its position using stereo and records it in
the map. The range of the size of search window for an object
is determined from the size of the object, which is known
in advance, and the distance information obtained from the
grid map.

B. Subgoal planning for observing unknown regions

The next subgoal is selected in the currently-known free
spaces so that the increase of the observed area divided by
the movement cost is maximized. The utility function is thus
defined as:

Usubgoal(X) =
ΔI(X)
C(X ,Xc)

, (6)

where ΔI(X) is the predicted area of newly observed region
by observing at X and C(X,Xc) is the cost to move from
the current position Xc to X (see Fig. 7).
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Fig. 7. Subgoal planning.

Xc

Xg
Object2

Object1
Object3

GroupB

GroupA

Fig. 8. Object grouping.

Xc

Xg

X

Sobs - { X }

Precog(X, Xobj)

1 - Precog(X, Xobj)

object

Fig. 9. One object verification.

C. Object candidate grouping

If two or more objects exist in a small region, the robot can
observe them from a single viewpoint. Such an observation is
sometimes effective in reducing the traveling cost. We thus
group objects which are near enough to each other. Each
object has the maximum recognizable range Rmax. If the
distance between two objects is less than the summation
of the maximum ranges of the objects, it is possible that
the two objects can be verified at a single viewpoint. The
object candidates are grouped which are connected with
the simultaneously-observable links. In Fig. 8, for example,
objects 1 and 2 forms a group and object 3 forms the other.

D. Determining the observation order for groups

Suppose there are Ng groups to observe. For an order
of observation, G1, G2, . . . , GNg , the total traveling cost is
given by:

Cgroup(Xc,Xg, G1, . . . , GNg )

= distg−p(G1,Xc) +
Ng−1∑
i=1

distg−g(Gi, Gi+1)

+distg−p(GNg ,Xg), (7)

where dist∗ is either the group-to-group or the group-to-
point distance defined as:

distg−p(G,X) = min
XG∈SG

dist(XG,X), (8)

distg−g(Gi, Gj) = min
XGi

∈SGi

distg−p(Gj ,XGi), (9)

SG = ∪kSobsk
, (10)

where Sobsk
is the set of observation candidate points (ex-

plained below in Sec. IV-E) for the kth object candidate in
group G.

The best order is currently found by an exhaustive search
because the number of groups to be considered at a time is
not large (usually two to three) in the current experimental
setting. Some approximate methods would be necessary in a
more complex environment.

In the case of Fig. 8, for example, there are two groups A
and B and two orders (the blue and the red path, respectively)
are possible. Since the red one is shorter, we first observe
Group A and then Group B.

Xc

Xg

12.5%

25%
87.5%

75%

Fig. 10. One object verification plan example.

E. Verification planning for one object

Each object candidate detected using color is verified using
SIFT features. To verify a candidate, the robot needs to
approach and observe it. Since one objective of the robot is
to detect all specified objects, it has to make an observation
plan for verification by considering the current position and
the position for verifying the next candidate (or the next
subgoal). Fig. 9 illustrates the case where the robot starts at
Xc, verifies an object, and move to the position Xg .

Let X be the position for verification. We define the set
Sobs of possible positions for verification as the 24 points on
three co-centric circles. The three radii are object specific,
determine by considering the SIFT appearance model of the
object (see Fig. 6).

The criterion used for verification planning is to minimize
the expected traveling distance from Xc to Xg . The mini-
mum of the expectation, C∗

obj is given by:

C∗
obj(Xc,Xg, Sobs) =
min

X∈Sobs

[dist(Xc,X) + Precog(X,Xobj)dist(X ,Xg) (11)

+ (1 − Precog(X ,Xobj))C∗
obj(X ,Xg, Sobs − {X})] .

Fig. 10 shows an example verification plan for one object.
The plan suggests three viewpoints to be tried subsequently;
once the object is successfully verified, the robot immediately
goes to the goal. The percentage of each edge of the graph
is the probability of the robot taking that edge.

F. Verification planning for multiple object candidates

When multiple object candidates are observable from
some viewpoint, we can seek several observation strategies.
Let us consider the case where there are two candidates. We
have two strategies: sequential and parallel.
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(a) Sequential strategy.

Xc

XgX

Object 1

Object 2

(b) Parallel strategy.

Fig. 11. Two observation strategies.

(A) (B) (C)

(D) (E)

Fig. 12. Patterns of viewpoint set. The object is at the center and small
black circles indicate possible viewpoints.

The sequential strategy observes two candidates one by
one. Fig. 11(a) shows an example. The minimum of the total
traveling cost is given by:

C∗
seq(Xc,Xg, {Obj1, Obj2})

= min
X∈Sobs1

[
C∗

obj1(Xc,X, Sobs1)+C
∗
obj2(X,Xg, Sobs2)

]
.(12)

This is actually the order for Objects 1 and 2; the cost can be
estimated for the other order and the smaller one is selected.

A naive calculation of this equation is very costly because
C∗

obs should be calculated for many times with similar
X’s. We therefore make look-up tables (LUT’s) for sev-
eral patterns of viewpoint set. An LUT is represented as
Ctable(Xs,Xg, Patj , φi) with four parameters: start posi-
tion, goal position, viewpoint pattern, and the object orienta-
tion. A viewpoint pattern indicates how possible viewpoints
are distributed determined by the space configuration around
the object. When an object is on a desk, for example, the
robot may be able to approach it only from one direction.
We currently use five predetermined patterns shown in Fig.
12 and the closest one is selected according to the actual
space configuration. Since we estimate the distribution of
object orientation every time a new observation is obtained,
this distribution is used for cost calculation using LUT’s
accordingly.

The cost Ĉobj using LUT is given by:

Ĉ∗
obj(Xc,Xg, Sobs) (13)

= min
Xp,Xq∈Ŝobs

[
dist(Xc,Xp) + dist(Xq,Xg)+∑N

i=1 Ctable(Xp,Xq, Patobs, φi)P (φi)

]
.

Using this cost, the cost for sequential observation (see eq.

(a) (b)

Fig. 13. Two experimental settings. Small rectangles indicate desks and
shelves. Black bold lines indicate partition walls which may occlude objects.
Objects to detect are put on desks.

(12)) is approximated by:

Ĉ∗
seq(Xc,Xg, {Obj1, Obj2})

= min
X∈Sobs1

[
Ĉ∗

obj1 (Xc,X, Sobs1)+Ĉ
∗
obj2(X,Xg, Sobs2)

]
.(14)

The parallel strategy observes two object from one view-
point. The region of possible such viewpoints is the in-
tersection of two observable regions (see Fig. 11(b)). We
discretize the intersection region to determine the set Spar

of viewpoints. For keeping the planning cost tractable, we set
a limitation that a simultaneous observation of two objects
is performed once for a pair of objects. If both objects are
not verified, we switch to the sequential strategy. The cost
of the parallel strategy is given by:

C∗
par(Xc,Xg, Spar, {Obj1, Obj2}) = (15)

min
X∈Spar

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dist(Xc,X)
+Precog(X ,Xobj1)Precog(X ,Xobj2)dist(X,Xg)
+(1 − Precog(X,Xobj1))Precog(X,Xobj2)·

Ĉ∗
obj1

(X,Xg, Sobs1)
+Precog(X ,Xobj1))(1 − Precog(X,Xobj2))·

Ĉ∗
obj2

(X,Xg, Sobs2)
+(1−Precog(X ,Xobj1))(1−Precog(X,Xobj2))·

Ĉ∗
seq(X ,Xg, {Obj1, Obj2})

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We compare the two strategies and select the better one.
When more than two candidates exist in a group and if
all candidates are observable from a single viewpoint, we
conduct a similar calculation for the parallel strategy; that
is, we try to verify all candidates simultaneously and if all
are not verified, we take the sequential strategy.

V. EXPERIMENTAL RESULTS

A. Experimental setting

We show results of environment information summariza-
tion of a room of 7.0 [m]× 5.5 [m]. We use the robot shown
in Fig. 1. The objects shown in Fig. 4 are put in the room
but the number of objects is not given to the robot. We used
two configurations shown in Fig. 13.

B. First experiment

We use configuration (a) in Fig. 13. There are four objects
to detect and two of them (objects A and C) are at almost
the same position. The results of planning and execution are
summarized in Fig. 14.
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Step 1

(a) (b) (c)

(a) observe the environment at the initial
position (red mark). (b) made a free space
map, found three object candidates (green
marks), and determined the next subgoal
(pink mark). (c) made a plan for verifying
two candidate on the right.

Step 2

(d) (e) (f)

(d) tried to verify two candidates. (e)
successfully verified object C but failed
to verify object A. (f) made a plan for
verifying object A.

Step 3

(g) (h) (i)

(g) moved to the planned verification po-
sition. (h) verified object A. (i) made a
plan to verifying the remaining candidate
(object B).

Step 4

(j) (k)

(j) moved to the candidate. (k) verified
object B.

Step 5

(l) (m) (n)

(l) observe the unknown region. (m) up-
dated the free space map and found an-
other candidate (green mark). The verified
objects are indicated by blue marks. (n)
made a plan for verifying object B.

Step 6

(o) (p) (q)

(o) moved to the candidate. (p) verified
object B. (q) made a plan to go back to
the initial position because there remain
no unknown region nor unverified candi-
dates.

Step 7

(r) (s)

(r) came back to the initial position (i.e.,
the goal position). (s) the final summa-
rization result.

Fig. 14. Experimental result for the configuration shown in Fig. 13(a).
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Fig. 15. Comparison results. The red and the blue path are by the planning
with object appearance models and the one without models, respectively.

The process of environment information summarization is
as follows:
Step 1: The robot observed the environment at the initial
position, found three candidates, and made the first plan for
verifying two of them.
Step 2: The robot tried to verify two objects simultaneously
but failed to verify one of them.
Step 3: The robot verified the remaining one by moving
closer to observe. After that, the robot made the plan for
verifying the third candidate.
Step 4: The robot verified the object.
Step 5: The robot updated the map with a new candidate,
and made a plan for verifying it.
Step 6: The robot verified it and made a plan to the goal
position (i.e., the same as the initial position) because there
remained no unknown regions nor unverified candidates.
Step 7: The robot finished the task and obtained the sum-
marization result; it describes both the approximate shape of
the room and the placement of the specified objects.

C. Second experiment

We compared our method with a simple planning method
which does not use object appearance models. Without
appearance models, the robot does not know in what distance
range an object can be recognized and, therefore, it moves
to the closest viewpoint for the object. A comparison was
made for the configuration shown in Fig. 13(b). The planned
and executed paths for the methods is shown in Fig. 15.
The traveling distances are 8.15 [m] and 11.45 [m] for the
method using the appearance models and the one without
the models, respectively. This shows the effectiveness of
appearance model-based observation planning.

VI. CONCLUSIONS AND FUTURE WORK

This paper has described an observation planning method
for environment information summarization. The planning
problem includes subgoal planning for space exploration and
candidate detection and viewpoint planning for object verifi-
cation. The second planning problem is further decomposed
into two subproblems: determining the observation order
of the candidates and determining the viewpoint sequence.
We developed object appearance models which represent
the relationships between the observation condition and the
recognizability. The models are used for considering the
trade-off between the visual data quality and vision cost.
We successfully applied the proposed method to actual
environment summarization task using a humanoid robot
with vision and range sensors.

Currently, the number of objects to detect is limited.
We need to add models for more complex environments
with various objects; adding visual features to use could
be necessary to discriminate many objects. Improving the
planning and the recognition algorithms is also important
for more efficient summarization.

An interesting extension of the research is to consider time
limit. The current planning algorithm makes a plan to explore
the entire space and to verify all candidates detected. If the
time for summarization is limited, it becomes necessary to
choose regions to explore and objects to verify. This will be
a challenging problem.
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Madrigal, and J. González. Multi-Hierarchical Semantic Maps for
Mobile Robotics. In Proceedings of the 2005 IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, pp. 3492–3497, 2005.

[8] A.A. Makarenko, S.B. Williams, F. Bourgault, and H.F. Durrant-
Whyte. An Experiment in Integrated Exploration. In Proceedings
of 2002 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp.
534–539, 2002.

[9] V.A. Sujan and M.A. Meggiolaro. Intelligent and Efficient Strategy
for Unstructured Environment Sensing Using Mobile Robot Agents.
J. of Intelligent Robotic Systems, Vol. 43, pp. 217–253, 2005.

[10] P. Wang, R. Krishnamurti, and K. Gupta. View Planning Problem with
Combined View and Traveling Cost. In Proceedings of 2007 IEEE
Int. Conf. on Robotics and Automation, pp. 711–716, 2007.

[11] Y. Ye and J.K. Tsotsos. Sensor Planning for 3D Object Search.
Computer Vision and Image Understanding, Vol. 73, No. 2, pp. 145–
168, 1999.

[12] K. Shubina. Visual Search for an Object in a 3D Environment Using
a Mobile Robot. Technical Report CSE-2008-02, Department of
Computer Science and Engineering, York University, April 2008.

[13] F. Saidi, O. Stasse, K. Yokoi, and F. Kanehiro. Online Object Search
with a Humanoid Robot. In Proceedings of 2007 IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, pp. 1677–1682, 2007.

[14] J. Miura and Y. Shirai. Vision and Motion Planning for a Mobile
Robot under Uncertainty. Int. J. of Robotics Research, Vol. 16, No. 6,
pp. 806–825, 1997.

[15] V.V. Vinod and H. Murase. Image Retrieval Using Efficient Local-
Area Matching. Machine Vision and Applications, Vol. 11, pp. 7–15,
1997.

[16] D.G. Lowe. Distinctive Image Features from Scale-Invariant Key-
points. Int. J. of Computer Vision, Vol. 60, No. 2, pp. 91–110, 2004.

[17] A. Shibata and J. Miura. Vision Planning for Object Search using
Multiple Visual Features. In Proceedings of 14th Korea-Japan Joint
Workshop on Frontiers of Computer Vision, pp. 214–219, 2008.

5800


