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Abstract— We report on a 12-axis accelerometer suite
which utilizes 12-axis linear acceleration measurements from
four 3-axis accelerometers. This system is capable of deriving
linear acceleration, angular acceleration and angular velocity
via simple matrix operations. It also releases the requirement
of accelerometer installation at the center of mass as well
as eliminates the necessity of gyro implementation as in
the traditional inertia measurement unit (IMU). An optimal
configuration of the system is proposed based on the analysis
of rigid body dynamics and matrix theory. We also report the
results of experimental evaluation. We believe the analysis
presented in this paper would benefit the practical design of
IMUs in the future.

I. INTRODUCTION
For several decades, inertial sensors [1] have been one

of the important categories of sensors utilized in vari-
ous applications, including navigation (robots, vehicles,
rockets, and etc) [2]–[5], state estimation for motion
analysis [6] or dynamic modeling, microsurgery [7], [8],
and sports injury avoiding [9], [10]. In modeling dynamics
of legged robots, information of external forces, position
and orientation states (including their 1st/2nd deriva-
tives) are usually required as essential information for
constructing 2nd-order dynamic models, and the inertial
sensors are the appropriate choices to provide some
essential information of states. A traditional inertial mea-
surement unit (IMU) is comprised of 3-axis acceleration
measurement by accelerometers installed at the center of
mass (COM) and 3-axis angular velocity measurement
by rate gyros. Though full position/orientation states
can be reconstructed by models and filter technologies
such as the Kalman filter [11], such systems usually yield
poor performance and generate unbounded integration
error due to their nature of unobservability [12]. Thus,
techniques of fusing IMU with other positioning sensors
(GPS [13], differential GPS, magnetocompass, and vision
system [14]) are widely adapted.

While translational displacement, velocity, and accel-
eration as well as orientation and angular velocity can
all be measured by commercially available sensors, the
only state left unknown is angular acceleration. To solve
this, accelerometer-based systems are widely investigated
because accelerometers are low-cost and easily calibrated
by gravity, and more importantly, the linear acceleration
measured by accelerometer is related to the angular
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acceleration and the angular velocity in a specific math-
ematical equation (total 9 scalar unknowns) based on
Newton Mechanics (detailed in (1)). Thus, for decades
researchers have tested various methods attempting to
recover all three states (totally 9 scalar unknowns) via a
minimum set of sensors together with specific computa-
tional algorithms. A system with 6 scalar measurements
can theoretically solve all nine unknowns, but in reality
integration error involved in the computation quickly
deteriorates the accuracy. King et. al. [17], [18] proposed
a 9-axis acceleration measurement system capable of
deriving bounded linear and angular acceleration, but
no information on angular velocity. Chen et. al. [19]
proposed a novel 6-axis system with bounded angular
acceleration, but linear acceleration became unbounded.
Park et. al. [20] improved the previous system with
three extra axes of measurements. Using the same cube-
shape geometric configuration of sensors as [19], [20],
later Parsa et. al. [21] proposed a system comprised
of twelve 1-axis accelerometers to yield all states. In
recent years with the advanced development in micro
electro-mechanical-systems (MEMS), multi-axis MEMS
accelerometers have become commercially available, low-
cost yet with promising performance. In addition, it also
grants the orthogonality among all three measuring axes.
All these reasons motivate authors to revisit the question
of how to select, place, and orient accelerometers, espe-
cially with multi-axis ones, to yield better performance
and feasible solutions for practical implementation.

Here, we investigate a 12-axis accelerometer suite
containing 12-axis linear acceleration measurements from
four 3-axis accelerometers at four distinct locations.
Comparing to the traditional IMU, this suite has fol-
lowing advantages: (1) it provides instant angular ac-
celeration and angular velocity derivation via linear
operation without any differentiation or integration; (2)
the positioning of four 3-axis accelerometers is flexible,
which releases the strong constraint of accelerometer
installation at COM in the traditional IMU; (3) it does
not require gyros; thus avoiding implementation of a
second type of sensors and its complicate calibration
procedure. Moreover, since all accelerometers are 3-
axis and mutually orthogonal to each other, the sensor
orientation error due to installation can be thoroughly
eliminated through a calibration procedure which defines
a rotational matrix relating the principal axes of the
body and the measuring directions of the sensor.

Section II introduces the idea of this 12-axis
accelerometer-based system based on the analysis of rigid
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body dynamics, followed by Section III which describes
the positioning of sensors in detail. Section IV reports
the technique of deriving angular velocity, and Section
V briefly describes the calibration procedure. Section
VI reports the results of experimental evaluation, and
Section VII concludes the work.

II. CONSTRUCTION OF THE SENSING SYSTEM
The acceleration vector, ap, in an inertial frame W

of a point, p, rigidly attached to an accelerating body
frame B with origin, o, is a function of the body’s angular
velocity, ω, and angular acceleration, ω̇, as well as the
translational acceleration of the body origin, ao, given
by

ap = ao + ω̇ × rop + ω × (ω × rop), (1)

where rop, the fixed position vector of p relative to the
body, is presumed known á priori. In general, we are
interested in the motion of the body relative to the world.
Hence, we seek to extract from measurements of the
left-hand quantities to derive right-side unknown body
states, including the COM translational acceleration,
aCOM , (usually equal to the origin of body frame, ao),
angular acceleration, ω̇, and angular velocity, ω,

ao = aCOM =
[

ax ay az

]T

ω̇ =
[

ω̇x ω̇y ω̇z

]T

ω =
[

ωx ωy ωz

]T
.

Note that the angular velocity in (1) appears in a
quadratic form; hence, by defining a function

q(ω) =
[

ω2
i + ω2

j ωiωj

]T
i < j ∈ 1, 2, 3 (2)

where the six distinct second-degree monomials of ω×ω
formed from the three unknowns of ω, (1) is now linear
to 12 unknowns, xvar:

xvar =
[

aT
COM ω̇T q(ω)T

]T
, (3)

thereby establishing that the determination of the origi-
nal nine unknowns in (2) reduces to a linear computation
that we will proceed to detail, at the expense of requiring
three additional measurements beyond the nine intrinsic
dimensions of the data.

The 1-axis accelerometer installed at the point, p, on
the body measures the projected linear acceleration of
spatial body motion, bap, along the sensing direction ŝj ,

baj = ap · ŝj = [ao + ω̇ × rop + ω × (ω × rop)] · ŝj , (4)

where the motion is with respect to the inertial frame but
the coordinates are represented in the body frame (i.e.
letter ”b” on the upper left corner of the state). Since
the position vector, rop , and sensing direction, ŝj , are
invariant with respect to the body frame B, it motivates
us to represent the coordinate of dynamic equation (1)

at every instant in the body frame while the measured
states of the moving body are still with respect to the
inertial frame:

bap =b ao +b ω̇ ×b rop +b ω × (bω ×b rop). (5)

In the following text all the equations will be represented
in the body coordinates, and the notations ”b” on the
upper left corners will be omitted for clear equation
presentations.

Presumably we have twelve 1-axis linear acceleration
measurements from the accelerometers, am,

am =
[

a1 a2 ... a12

]T

with known sensor positions, rm, and orientations, ŝ, on
the body

rm =
[

rT
1 rT

2 ... rT
12

]T

ŝ =
[

ŝ1
T ŝ2

T ... ˆs12
T

]T
.

Without loss of generality, the sensing directions of
accelerometers, ŝk k=1,...,12, can be set to align with
three principal axes of the body frame, ŝk k=1,4,7,10 =
êx, ŝk k=2,5,8,11 = êy, ŝk k=3,6,9,12 = êz. Thereby, twelve
1-axis accelerometers measure the linear accelerations of
the body along the three principal axes directly, each
with four measurements for symmetrical consideration.
Instead of computing the inner product described in
(4), computation in the current arrangement of sensing
directions only requires the selection of one out of three
scalar components of the dynamic equation (5). Thus,
the left side of (5) can directly be represented by am, and
the system comprised by the above 12 scalar equations
can be represented as

am = S(rm)xvar. (6)

The 12 unknown scalar states, xvar, on the right-side
of the equation can thereby be linear computed by the
following matrix operation:

xvar = S(rm)−1am. (7)

Since rm is known a priori, the extraction of the desired
state, xvar, now hinges upon the rank and numerical
condition of the 12×12 ”structure” matrix S(rm), which
is solely a function of the positions of the accelerometers,
rm.

III. SENSOR ALLOCATION
The rise of MEMS sensing technology has yielded

commercially available low-cost MEMS accelerometers
that have better performance, lower prices, and smaller
packaging than those of a decade ago. More importantly,
the availability of multi-axis MEMS accelerometers1

1For example, Analog Devices Inc, Freescale Semiconductor, VTI
Technologies, Measurement Specialties Inc/Schaevitz, and STMi-
croelectronics all produce 3-axis MEMS-based accelerometers.
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significantly simplifies the original complicated electronic
design and spatial layout of multi-sensor systems for
multi-axis state measurements. Therefore, in the follow-
ing work we utilize four 3-axis accelerometers shown
in Figure 1 in the design of the 12-axis acceleration
measurement system described in the previous Section
II, and focus on how to appropriately allocate these
four accelerometers spatially so the system is capable
of yielding trustable numerical operations defined in (7).

Fig. 1. 12-axis accelerometer suite: four 3-axis accelerometers are
located at four distinct positions on the body, and each accelerom-
eter measures linear accelerations in the directions parallel to the
three principal axes of the body frame.

In the IMU system comprised by four 3-axis accelerom-
eter, the twelve 1-axis scalar acceleration measurement,
am, is represented by four 3-axis acceleration measure-
ments

am =
[

aT
1 aT

2 aT
3 aT

4

]T

ak =
[

akx aky akz

]
k=1,2,3,4,

and rm is comprised of four distinct spatial positions of
accelerometers

rm =
[

rT
1 rT

2 rT
3 rT

4

]T

rk =
[

rkx rky rkz

]
k=1,2,3,4.

(8)

In this scenario, the system of equations shown in (6)
is composed by four copies of dynamic equations shown
in (5), and the structure matrix, S(rm), can further be
represented as

S(rm) =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 −r1z r1y 0 0 −r1x r1y r1z 0
0 1 0 r1z 0 −r1x 0 −r1y 0 r1x 0 r1z

0 0 1 −r1y r1x 0 r1z 0 0 0 r1x r1y

1 0 0 0 −r2z r2y 0 0 −r2x r2y r2z 0
0 1 0 r2z 0 −r2x 0 −r2y 0 r2x 0 r2z

0 0 1 −r2y r2x 0 r2z 0 0 0 r2x r2y

1 0 0 0 −r3z r3y 0 0 −r3x r3y r3z 0
0 1 0 r3z 0 −r3x 0 −r3y 0 r3x 0 r3z

0 0 1 −r3y r3x 0 r3z 0 0 0 r3x r3y

1 0 0 0 −r4z r4y 0 0 −r4x r4y r4z 0
0 1 0 r4z 0 −r4x 0 −r4y 0 r4x 0 r4z

0 0 1 −r4y r4x 0 r4z 0 0 0 r4x r4y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We observe that the determinant of this structure ma-
trix S(rm) with 12 scalar position variables, det(S(rm),
is given by the determinant of the ”sensor simplex” array,
det(R),

det(S(rm)) = (2det(R))3,

where R =
[

r2 − r1 r3 − r1 r4 − r1

]
. Therefore, as

long as the accelerometer suite shown in Figure 1 defines
a spatial tetrahedron with nonzero volume (that is, the
four 3-axis accelerometers are in a general position,
such that there is no coplanar subset of any three of
them), it provides, in principle, a complete ”Advanced
IMU”: a means of extracting full 6-dimension rigid-body
acceleration and 3-dimension angular velocity data, with
no recourse to rate gyros at all.

Although the determinant of the structure matrix
S(rm) can be shown to reduce to that of the ”simplex
matrix”, its condition number2 determined by high-order
polynomials (in the entries of the tetrahedron) is more
complicated function of the shape of the tetrahedron
the simplex matrix defines, yet there is every reason
to validate that the condition number would be very
sensitive to the ”shape” and ”size” of the tetrahedron
and its location relative to COM. In practice, numerical
exploration suggests that the optimal condition occurs
when four 3-axis accelerometers are placed symmetrically
coincident with the corners of a cube shown in Figure 2,
which yields the best condition number

√
2.

Fig. 2. The position allocation of the four 3-axis accelerometers
which yields the best condition number of the structure matrix
S(rm).

Interestingly, the structure matrix combines entries
with and without physical scale — for example, ”1” in
the first 3 × 3 identity matrix are dimensionless, but
the second 3 × 3 skew-symmetric matrix has unit of
”length”, as well as the third and fourth 3× 3 matrices.
Thus, it turns out there is actually a preferred linear

2Defined as the ratio of the largest to the smallest singular values
of the matrix, and singular values are equal to the square roots of
eigenvalues of the symmetric square ST S.
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dimension of this cube at which the resulting condition
number is optimal. For example, a physical installation
of sensors with l = 10cm should use ”decimeter” as the
unit which sets l = 1, not centimeter (l = 10), or meter
(l = 0.1) which yield large condition number ”10

√
2” and

”10”, respectively. The condition number of the matrix
is purely determined by the relative magnitude of its
matrix elements; thus, choose a right unit so that the
magnitude of the elements close to the optimal condition
will reduce the additional error induced by the matrix
inversion.

Comparing to other arrangements of twelve 1-axis ac-
celeration measurement system (i.e. twelve 1-axis, six 2-
axis,etc), the usage of four 3-axis accelerometers requires
less space and simpler electronic design. In addition, with
the availability of acceleration measurements in all 3 axes
at each sensor location, orientational installation error of
sensors (i.e. measuring directions are not aligned with the
principal axes) can be easily compensated by a simple ro-
tational operator, which relates the orientational relation
between directions of measurements of sensors and those
of the principal axes of the body frame. This system
with calibration significantly improves the accuracy of
the measurements.

IV. DERIVATION OF THE ANGULAR VELOCITY

The process to obtain an invertible mapping for this
quadratic system from ω × ω to ω can not be solved
kinematically by the six available equations alone since
there exists at least one sign ambiguity for the unknowns.
In general, this kind of quadratic systems can be solved
by the common numerical methods (ex: The Newton-
Raphson Method, Secant Method, and etc). However,
in our implementation on the embedded system with
1kHz sampling rate, the computation power of the
microprocessor onboard is not high enough to finish the
above numerical search of solutions in time.

Here we explore a simpler method which utilizes the
initial conditions and the intrinsic integration-derivation
relation between the angular velocity and the angular
acceleration which is derived simultaneously in the same
12-axis accelerometer suite. Without loss of generality,
assuming the angular acceleration and angular velocity
are available at time ti, the procedure to solve angular
velocity at ti+1 is described as follows. First, combine
both ω2

i + ω2
j and ωiωj derived in xvar to construct a

set of complete-square equations, (ωi + ωj)2 i<j,i,j=1,2,3:

ω1 + ω2 = ±√
a

ω1 + ω3 = ±√
b

ω2 + ω3 = ±√
c,

(9)

where a, b, and c are values derived from the computed
last six variables of xvar (i.e. q(ω)). Second, derive the
”estimated” angular velocity at ti+1 from the values of
the angular velocity at ti and the angular acceleration
at both ti and ti+1,

ωi+1 = ωi +
1
2
h(ω̇i + ω̇i+1), (10)

where h denotes the sampling period 3. (10) represents
prediction of the angular velocity prediction via trapez-
ium rule. Third, adopt the sign of ”estimated” angular
velocity derived in (10) as the correct sign to clear out
the sign ambiguity shown in (9). Thus, the estimated
angular velocity derived from integration is only used for
sign check, and the magnitude of the angular velocity is
still determined by the values derived from q(ω) shown
in (2).

V. CALIBRATION

If the sensing directions of the sensors do not align
perfectly with their assigned directions (here, the prin-
cipal axes), the sensors will respond to the accelerations
in other axes, which cause severe state reconstruction
errors, especially when the accelerations in different
principal axes varying significantly with time. Assuming
the 3-axis measurements in the MEMS accelerometers
are mutually orthogonal to each other, the relation of
these axes to the principal axes of the body frame is
a rotation matrix. The parameters of the matrix can
be found by performing a 3-dimensional rotation of the
system: first, align the principal axes of the system to
those of the world frame. Second, rotate the system
slowly along with three principal axes of the world
frame sequentially; in the meantime collect data of sensor
measurements and actual body orientation in order to
yield acceleration due to gravity. Then perform the least
square technique to find the parameters.

VI. EXPERIMENT RESULTS

A benchtop apparatus with one controllable rotational
degree of freedom shown in Figure 3(a) was utilized
for experimental evaluation of the proposed system.
The required measurements of four 3-axis accelerations
of the IMU system were measured by four 3-axis ac-
celerometers (ADXL330, Analog Device). In addition,
a complete traditional IMU was also mounted for
performance comparison (one ADXL330 accelerometer
and three ADXRS610 gyros, Analog Device). A real-
time embedded control system (sbRIO-9632, National
Instruments) running at 1kHz was in charge of sinusoidal
motion generation and sensor signal collection. All the
body state (aCOM , ω̇ , and ω) were also computed
and updated in the same embedded system at the same
sampling rate. The 3-axis ADXL330 accelerometer chip
itself (range 3g) have output noises 0.0742m/s2 in X
and Y directions and 0.1039m/s2 in the Z direction,
and the average measured root mean squared noises
of the complete 3-axis accelerometer sensor module in
X,Y and Z directions are about doubled — 0.1625m/s2

3Thus, the initial condition of the angular velocity is required.
For example, ω1 =

[
0 0 0

]
if the computation starts when

the body is static.
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and 0.1803m/s2, respectively. The noises of the linear
accelerations derived from 12-axis system decrease to
0.0640m/s2 and 0.0914m/s2, comparable to the noises
of the chip itself.

The COM of the IMU system was positioned on the
rotating apparatus with designated distance, not at the
rotation center of turntable as shown in Figure 3(b).
Thus, the simulated COM was subjected to tangential,
normal, and angular accelerations while the turntable
rotated. A PD position control was utilized to drive the
turntable in the sinusoidal motion, and the ”desired”
acceleration was derived from position sinusoidal curve
directly. In the first set of measurement, direction of
the rotating axis of the apparatus was parallel to the
direction of gravity, so the acceleration induced by
gravity did not affect the experimental measurements. In
the second set of measurement the turntable was tilted
while rotating, so in this scenario the motion acceleration
and gravity induced acceleration are coupled. We utilized
a 2-axis inclinometer (SCA100T-D02, VTI) which was
capable of detecting the direction of the gravity. The
gravity acceleration was compensated from measured
acceleration before the data was imported into the
proposed algorithm.

Fig. 3. The experiment apparatus: (a)picture (b)system arrange-
ment

Figure 4 illustrates the body states of desired and
experimental measurements, including data from the
12-axis accelerometer suite and the traditional IMU.
Because of the unavoidable vibration of apparatus during
reciprocal rotational motion as well as the simple PD po-
sition control, the experimentally measured states yield
slightly measurement noises comparing to the desired
curve, but all states display similar measurement from
that of the traditional IMU. The 12-axis accelerometer
suite delivers reliable measurement of the linear acceler-
ation at COM compared with that from the traditional
IMU which directly measures the state at the COM.

Fig. 4. Plots of the desired (dashed lines) and the experimental
measured body states (solid lines: the 12-axis accelerometer suite;
dotted lines: the traditional IMU).

Figure 4(a) and (b) indicate that one of the merits of
the 12-axis accelerometer suite can indeed be achieved
— releasing the necessity of direct linear acceleration
measurement at the COM as in the traditional IMU, and
the root mean squared errors (RMSE) between these two
are 0.0609m/s2 (tangential) and 0.0567m/s2 (normal),
respectively. While the traditional IMU derives noisy
angular acceleration via differentiation of the angular
velocity measurement from the rate gyros, the 12-axis
accelerometer suite validates the second merit — the
angular acceleration can be derived by simple linear
computation shown in Figure 4(c). The comparison
of these two to the desired curve are 6.5789rad/s2

(12-axis system) and 64.71rad/s2 (traditional IMU),
respectively. In addition, Figure 4(d) indicates that the
12-axis accelerometer suite delivers comparable angular
velocity measurement in comparison with that from the
rate gyro (RMSE: 0.167rad/s). This confirms the third
merit of the 12-axis IMU — obtaining accurate angular
velocity without the rate gyro installation.

Figure 5 shows the acceleration of COM in the
sinusoidal rotation test while the turntable was tilted.
Gravity induced sinusoidal acceleration was clearly ob-
served in the uncompensated curves. Accelerations in the
compensated system performed much better in tracking
the desired curve, but not as good as the previous
test due to extra errors resulted from the inclinometer.
We are currently investigate suitable orientation sensors
with higher bandwidth for better performance of gravity
compensation.

VII. CONCLUSIONS AND FUTURE WORKS

We have investigated a 12-axis accelerometer suite
which utilizes acceleration measurements from four 3-
axis accelerometers. Construction of this IMU system
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Fig. 5. Plots of the theoretical (dash lines) and the experimental
measured body states (solid lines: gravity compensated; dash-
dotted lines: uncompensated).

was based on the analysis of rigid body dynamics and
matrix theory, and an optimal configuration of the
system was proposed. We have reported a simple and
efficient technique of deriving the angular velocity from
its quadratic formulation in the dynamic equation. The
experimental results confirmed several benefits of this 12-
axis accelerometer suite. First, though the accelerometers
are not installed at the COM, it is still capable of
delivering measurement of the linear acceleration at the
COM with comparable accuracy in comparison with
that measured by the traditional IMU. Second, it yields
correct measurement of the angular acceleration via
simple matrix operation without any differentiation or
integration process. Third, it is capable of deriving
bounded angular velocity, without any consolation of
gyros; thus avoiding the possible saturation problem and
complicated calibration procedure of the gyros.

Currently we are in the process of testing the system
in reality under various different accelerating conditions.
In the meantime, we are searching for suitable position
and orientation sensors to be fused with the proposed
suite, thus to better compensate the gravity effect and to
construct an observable system capable of delivering ac-
curate full body state estimation for analysis of dynamic
locomotion in the legged robots.
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