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Abstract— This paper presents the problematic of outdoor ve-
hicle localization under the IMM (Interacting Multiple Model)
approach. The IMM is now a well known modular approach,
which is based on the discretization of the vehicle evolution
space into simple maneuvers, represented each by a simple
dynamic model such as constant velocity or constant turning
etc. This allows the method to be optimized for highly dynamic
vehicles. Unfortunately classical IMM shows some drawbacks
concerning some real time multi sensors applications. In this
work, we focus on outdoor vehicle localization with asyn-
chronous sensors in order to report these drawbacks and then
propose a new solution. Many tests carried out with simulated
and real data confirm the interest for using such a solution in
our applications.

I. INTRODUCTION

Reducing vehicles localization error while increasing ro-
bustness is an always increasing requirement for the develop-
ment of the driving assistant systems. In order to reach this
goal, multi sensors data fusion techniques have been used
since some years [1], [2].
Among the methods of road vehicles localization now widely
presented in the literature, the IMM (Interacting Multiple
Model) approach, in addition to guarantee a greater robust-
ness to model unmatching, makes it possible to identify
the current dynamics through the various models activation
probabilities assessment. In fact, the use of this method con-
tributed to improve the localization robustness and integrity
[2], [3], through multiple model adaptation. The IMM was
mainly applied to solve problems of objects tracking with
strong nonlinear dynamics [4], [5].

However, using the traditional IMM algorithm for road vehi-
cle localisation as presented in [3] or [6] can reveal important
drawbacks coming from various sources of error. Firstly,
noisy sensors data used as inputs can cause the system drift.
Secondly, a wrong Markovian transition matrix, which means
wrong switching parameters, can provide a wrong model
probabilities evaluation. Nevertheless, these problems can be
solved either through sensors data preprocessing (denoising,
unbiasing, etc.), or through stability tests on the system [4]
However, the most critical drawback which is treated in
this work concerns the probability regime updating when
exteroceptive data are absent. Usually, the probabilities are
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updated by using the models likelihoods, derived from inno-
vations which are obtained only in presence of exteroceptive
sensors data, e.g. GPS. In case of GPS outage, for example,
probabilities are not updated and the system modeling will be
probably wrong. Commonly used solution is to synchronize
the used sensors to the GPS frequency [3]. Unfortunately, the
frequency of this sensor is weak in comparison with the iner-
tial sensors or odometers. In addition, the quality of the GPS
positioning depends on the conditions of the environment,
and can undergo maskings (in a forest, a tunnel or an urban
canyon). A robust solution to this problem is proposed in
this work. In such situations, we use proprioceptive sensors
data in order to design a new system modeling, which will
contribute to update various model probabilities.

This paper is shared into three parts. The next section is
dedicated to the presentation of the traditional IMM esti-
mator, and especially the parameters setting and application
to vehicle localization with drawbacks. Then the second
part presents the new likelihood updating approach that we
propose. Finally a conclusion is given.

II. REVIEW OF THE TRADITIONAL IMM APPROACH

A. Formulation

The limitations of traditional mono model Kalman filter
derivatives bring up a need to get a more robust estimator,
which is not based on the system model linearization [1].
Instead, several simple and linear kinematic models are
implemented in parallel. The process model equation for the
ith system approximation from a set of m vehicle candidate
models is described in equation 1, where f (i) is the ith process
function:

X (i)
k|k−1 = f (i)(X (i)

k−1|k−1,u
(i)
k ,w(i)

k ) i ∈ [1 · · ·m] (1)

and the observation model for this ith filter is given by
equation 2, where h(i) is the ith measurement function,

Y (i)
k = h(i)(X (i)

k|k−1,v
(i)
k ) (2)

X (i)
k|k−1 is the predicted state vector given by the ith model at

time index k:
X (i)

k|k−1 = [x(i)
k|k−1,y

(i)
k|k−1, ẋ

(i)
k|k−1, ẏ

(i)
k|k−1]

′
where [x(i)

k|k−1,y
(i)
k|k−1]

′
is

the position vector and [ẋ(i)
k|k−1, ẏ

(i)
k|k−1]

′
is the speed vector. u(i)

k

represents the inputs at time k. w(i)
k and v(i)

k are the process
and measurement noises, which are assumed white and
Gaussian. Y (i)

k is the measurement vector and (.)
′

represents
the transpose operator.
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B. Implementation

The jumps between the various system models are de-
termined following a Markov chain process [7]. The IMM
algorithm is implemented in four main steps, which are
summarized in the following:

• Interaction: Each filter estimate is mixed with others
using a predicted model probability and the Markov
transition probability π ji.

• Specific Filtering: The filter state and covariance matrix
are predicted, using the mixed states, covariances and
the filter inputs. Then, the corrective step including the
computation of the measurement residual, the residual
covariance, the estimate and its covariance are com-
puted.

• Model Probability update: Each predicted model prob-
ability is updated with respect to the measurement
residual, once an exteroceptive (GPS) measurement is
available. The mode likelihoods Λ(i)

k are computed in

equation 3, and then the model probabilities μ(i)
k|k are

updated in equation 4.

Λ(i)
k =

exp[−0.5(ỹ(i)
k )

′
(S(i)

k )−1ỹ(i)
k ]

|2πS(i)
k |1/2

(3)

μ(i)
k|k =

μ(i)
k|k−1Λ(i)

k

∑
j

μ( j)
k|k−1Λ( j)

k

(4)

where μ(i)
k|k−1 is the ith model predicted probability, ỹ(i)

k

measurement residual and S(i)
k the residual covariance

matrix.
• Estimate fusion: The filter output estimate X̂k|k and its

covariance matrix Pk|k are computed from a fusion of
the weighted state estimates.

More details on this filter implementation can be found in
[2]–[6].

In order to perform the vehicle localization with IMM, five
different vehicle models are used. These models include the
Constant Velocity Model (CV) for the free motion modes.
The longitudinal dynamics can be described by the Constant
Acceleration Model (CA) model. For the lateral dynamics,
we use the constant yaw rate with constant velocity model,
named the Constant Turn Model model (CT). Moreover, a
Constant Stop (CS) and a Constant Rear (CR) models are
used to describe stops and backwards driving situations,
respectively. Details on these models are found in [3], [8]
and [6].
Moreover, [8] and [9] present various ways to setup the
IMM filter, in terms of Markov transition matrix and the
noise covariance matrices.

C. Application to outdoor Vehicles Localization

Traditional IMM gives interesting results for outdoor
vehicle localization, particularly when provided data are
synchronized and available at the same frequency [2], [6].

In such cases, the various model probabilities are updated
at every time index, because the required updating data
are available. But when exteroceptive data (e.g. GPS) are
absent, in case asynchronous sensors are being used, these
probabilities are not updated. Hence defaults appear in the
system, as shown in the following experiments.

Scenario 1:
The experimental results that are presented in this section
are derived from two different scenarios. The first scenario
focuses on some parking maneuvers with stops, forward
and backward driving situations. This scenario describes a
complex situation: in this experiment, the embedded sensor
architecture provided data at different frequencies (acceler-
ations (8Hz), rotation rates (8Hz), odometric speed (25Hz)
and GPS position (5Hz)).

Fig. 1. Speed estimation : scenario 1

This scenario shows two backward driving stages (signed
speed is negative, see figure 1). By comparing the vehicle
speed with probabilities in figure 2 we can see an important
correlation. The various vehicle maneuvers can be globally
identified, except the first backward driving step at very
low speed (≈ 0.6m/s). During stop situations the CS model
probability is the highest, around 0.99. Similarly, the CR
model probability is around 0.90 during the second backward
driving step.
The speed estimation is globally acceptable. The maximum
speed error is about 0.5m.s−1, this value is obtained when
the vehicle switches from a stop to a forward or a backward
driving state (at time 12s, 28s and 40s). This deviation is
introduced by the system inertia when switching from a state
to another, and worsened by a lower frequency probabilities
updating. These probabilities describe staircases, since they
are updated every 200ms while the system output is available
every 40ms.

Scenario 2:
The second scenario is derived from simulations. It describes
a complex trajectory (straight lines and turns) which is
traversed in 200 seconds as shown in figure 3. GPS, IMU and
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Fig. 2. Probabilities : scenario 1

Odometer data are simulated and provided at the frequency
of 5Hz. GPS data have additional Gaussian white noise with
3m standard deviation.

After the first turn, a GPS outage is simulated between
tMiGPS = 105s and tM fGPS = 175s (see figure 3). During this
period, models probabilities are not updated and IMM runs
only with proprioceptive sensors data.

= 105s

= 175s

GPS updating

IMM : localization with constant probabilities

GPSMit

GPSMit

Fig. 3. Simulated test track: scenario 2

Figure 3 shows the traditional IMM positioning output. At
time tMiGPS , the vehicle follows a straight line at constant
speed, thus the CV model probability is the most important,
about 0.8. During the GPS outage, various models probabil-
ities remain constant (see figure 4), so the CV remains the
dominant model. This directly derives into a wrong modeling
of the second turn. In such a situation, traditional IMM
cannot solve the localization problem on a complex track.
Therefore in order to implement a reliable IMM for outdoor
vehicles localization, it is necessary to update the various
model likelihoods even when only proprioceptive data are
available. Our solution in order to solve this issue is de-
scribed in the next section.

Fig. 4. Probabilities: scenario 2

III. LIKELIHOOD UPDATING WITH PROPRIOCEPTIVE

SENSORS

A. Introduction

In outdoor vehicle localization applications, the use of
asynchronous sensors data enables to exploit almost all
the collected data without re-sampling. As shown in the
previous section, it is difficult to use traditional IMM with
asynchronous sensors for real time vehicle localization. In
fact, the model likelihoods remain constant as long as
GPS data are absent. However, it is possible to evaluate
these likelihoods with only proprioceptive sensors, as we
will show in the following. Considering the same evolution
models that previously, we define new non homogeneous
constrained state vectors, which result from the modeling
of the proprioceptive sensors behaviors. For example, the
constrained constant acceleration state vector is derived from
accelerometers global behaviors.

B. Proprioceptive sensors behavior modeling

For this new system modeling, proprioceptive sensors
global behavior is used to describe the system maneuvers.
The various sensors behavior modeling is set in the normal-
ized the interval [−1, 1]. In order to refine this modeling,
sub-models are defined, represented by normal distributions
centered at mi (the most likely point for the given sub-
model), with variance σi. The resulting sensor behavior
modeling therefore obeys the following scheme.

• Sensor behavior modeling for data at zero, d0: in
such a situation, the sensor behavior is represented by
a normal distribution centered at 0, with the variance
σsub−model : this is the central distribution in figure 5.

• Sensor behavior modeling for data close to zero, dm

(absolute value):
Many normal distributions (sub-models) are set around
0 according to the following rule: given two sub-
models g0 and g1 with respective parameters (m0,σ0)
(known values) and (m1,σ1) (to be determined): in
order to avoid local minima, while describing the global
sensor behavior model, it is suggested that g0 and g1

should have as intersection, the most likely point of g1,
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combined to a fraction α > 1, between both variances.
Therefore distribution g1 can be obtained as a function
of m0, σ0 and α , according to equations 5

σ1 = ασ0

and
m1 = m0 +σ0

√
2logα

(5)

The resulting distributions are represented in figure 5.
In this example, α equals 1.5. The values of alpha are
experimentally determined and constitutes the charac-
terizing parameters of the modeling. Indeed, more α is
close to 1, more the variances of successive sub-models
centers are close to one another. In this case, the number
of distributions becomes important and the system is
not discriminating. In our experiments, α = 1.5 gave
the best results.

Fig. 5. Sensor behavior modeling for measurements close to 0: dm, α = 1.5

• Sensor behavior modeling for data greater than 0, dM

(absolute value):
The sub-models are obtained in a similar way as in
the previous case. The difference is that for the given
normal distributions g0 and g1, the intersection should
be the most likely point of g0, then 0 < α < 1. Knowing
g0, distribution g1 is obtained according to formulas in
equations 6.

σ1 = ασ0

and
m1 = m0 +ασ0

√−2log(α)
(6)

An illustration is given in figure 6. For our experiments,
α = 0.6 gave the best results, in terms of switching
regime from one models to another.

For a given measurement, the chosen sub-model should
provide its maximum likelihood. In figure 5 for example, the
chosen distribution for dm is centered at m2 (red colored);
and in figure 6 the chosen distribution for dM is centered
at m2 (red colored). Consequently, the following models are
set, as a derivation of various sensors behavior modeling:

Low speed(Odometer) : Vmk�N (m(k)
V ,σ (k)

mV ) (7)

High speed(Odometer) : VMk�N (M(k)
V ,σ (k)

MV ) (8)

Fig. 6. Sensor behavior modeling for measurements greater than 0: dM ,
α = 0.6

Longitudinal accelerometer : γxk�N (m(k)
γx ,σ (k)

γx ) (9)

Lateral accelerometer : γyk�N (m(k)
γy ,σ (k)

γy ) (10)

Yaw rate(Gyro) : ωk�N (m(k)
ω ,σ (k)

ω ) (11)

The center and variance values of these sub-models are used
to define the subsequent constrained state vectors and the
covariance matrices. In fact, the centers of these distributions
can be gathered in only one constrained state vector that

describes the system : Xc
k =

[
m(k)

γx m(k)
γy m(k)

ω mM(k)
V

]′
, where

mM(k)
V is the speed component (low and high speed) derived

from odometer behavior modeling. The other terms are
defined from equations 7 to 11. Consequently, each model
being a partial representation of the total evolution space, will
have a state vector which is a partition of the total vector Xc

k .

C. Proprioceptive sensors-based System Modeling

This new system modeling is based on the hypothesis that
the vehicle dynamics can be represented by both inertial
and signed vehicle speed measurements: accelerations γx and
γy, yaw rate ω and vehicle signed speed V . Therefore, the
following rules and constrained models (state vectors Xc(i)

and covariance matrices Pc(i)) are set and used to describe
various vehicle maneuvers.
• An important longitudinal and lateral acceleration de-

rives in an constrained accelerated evolution mode: cCA
model

XcCA
k = [m(k)

γx m(k)
γy ]

′
(12)

PcCA
k = q(CA)

k

(
σ2(k)

γx 0

0 σ2(k)
γy

)
(13)

• An acceleration vector close to 0, combined with a weak
yaw rate describe a straight line evolution at constrained
constant speed: cCV model

XcCV
k = [m(k)

γx m(k)
γy m(k)

ω ]
′
= [0 0 0]

′
(14)

PcCV
k = q(CV )

k

⎛
⎝ σ2

acc γx
0 0

0 σ2
acc γy

0
0 0 σ2

gyro ω

⎞
⎠ (15)
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where σ2
acc γx

is the variance on X-axis accelerometer
sub-model, σ2

acc γy
the variance on Y-axis accelerometer

and σ2
gyro ω denotes the gyro sub-model variance.

• An important lateral acceleration combined with a high
yaw rate derives in a constrained turn: cCT model

XcCT
k = [m(k)

γy m(k)
ω ]

′
(16)

PcCT
k = q(CT )

k

(
σ2(k)

γy 0

0 σ2(k)
ω

)
(17)

• A non zero negative speed implies a constrained back-
wards driving scenario: cCR model

XcCR
k = [−M(k)

V ] (18)

PcCR
k = q(CR)

k σ2(k)
MV (19)

• A zero acceleration vector, a zero yaw rate and a near
to zero vehicle speed describe a constrained stop: cCS
model

XcCS
k = [m(k)

γx m(k)
γy m(k)

ω m(k)
V ]

′
= [0 0 0 m(k)

V ]
′

(20)

PcCS
k is very similar to PcCV

k . However, this covariance
matrix also includes a term derived from the odometer
behavior modeling: σ2(k)

mV .

D. New model likelihoods computation

1) Measurement models: The various system measure-
ment models are defined. These models depend on the
sensors that are used to describe every maneuver of the
vehicle described by a constrained evolution model. In this
new approach, we define the observation vectors Y (i)

k as
the measurement vector from exteroceptive sensors, used
for the given sensors behavior. The covariance matrices of
the measurement noise R(i)

k is derived from corresponding
sensors errors.

2) Likelihoods computation formulas: Given a specific
filter i, considering the above proprioceptive sensors behavior
modeling, the likelihood is obtained according to the formula
in equation 21.

Λc(i)
k =

−0.5(ỹc(i)
k )

′
(Sc(i)

k )−1ỹc(i)
k√

2π det(Sc(i)
k )

(21)

where ỹc(i)
k is the ith constrained model innovation

ỹc(i)
k = Y c(i)

k −Xc(i)
k|k−1 (22)

and Sc(i)
k the ith innovation covariance matrix

Sc(i)
k = Pc(i)

k +Rc(i)
k (23)

3) System output computation: Once the various con-
strained model likelihoods have been computed, these values
are directly affected as the traditional model likelihoods :
Λ(i)

k ← Λc(i)
k . Therefore, the model probabilities are obtained

according to equation 4.
Finally, the system output is computed as in the tradition-
nal IMM approach, using MMSE and MSE estimators, as
described in [8].

E. Application to vehicle localization

The new system modeling presented above was applied to
both scenario 1 and scenario 2. As shown in the following,
by improving the model probabilities estimation in absence
of GPS, the IMM position and speed estimations were
improved.

Scenario 1:
Figure 7 represents the probability regime derived from

CS

CT

CR
CS

CA
CV

CT

CR

Fig. 7. IMU-Odometer based probabilities: scenario 1

Fig. 8. IMM speed estimation: scenario 1

the constrained system evolution modeling, based only on
the proprioceptive noisy sensors data. From this figure, it is
possible to identify the various vehicle evolution modes. This
means, that the constrained evolution model probabilities
obtained with IMU and Odometer are globally very similar
to those obtained with GPS (see figure 2). Exception appears
around the first stop around 10s. At this point, the constrained
modeling allows to identify the slowing down maneuver
before the stop, as well as the short backward driving after
this stop.
Consequently, the speed estimation shown in figure 8 is
better than that obtained when only GPS is used to update
likelihoods. We now observe almost no deviation when the
vehicle moves from a stop situation.
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Scenario 2:
As shown in figure 9, it is remarkable that by using the

CS

CA
CV

CA

CT

CV CT
CV

CA

CS

GPSMit
GPSMft

Fig. 9. GPS-IMU-Odometer based probabilities: scenario 2

GPSMit

GPSMft

Fig. 10. Positioning with non constant mode likelihoods: scenario 2

constrained system modeling presented above, the second
turn that occurs during GPS outage is clearly identified
(around point 150s). This figure differs from figure 4 through
the Constant velocity and Constant Turn model probabilities
between tMiGPS and tM fGPS . With system constrained modeling
and the proprioceptive sensor-based likelihood computation,
these model probabilities are not constant during the GPS
outage. This period is characterized by a constant speed and
a turn. Accordingly, the CV and CT models probabilities al-
ternate. With a better evaluation of these model probabilities,
the IMM-based vehicle positioning is improved (see figure
10). In fact, with the new system modeling, we don’t observe
the system drift and the IMM output trajectory is very close
to the reference, even during the GPS outage.

IV. CONCLUSION

This paper has presented a novel approach for IMM mode
likelihoods updating by using only proprioceptive sensors
data. Usually in the autonomous vehicles applications, the
mode likelihoods are obtained through model innovations
computation, using a GPS position as real observation.
Unfortunately in outdoor environments or real time safety

applications, many situations can hinder a continuous
likelihoods updating. In this paper two limitations are
shown: firstly, a low GPS frequency can derive in low
frequency likelihoods updating, with probabilities having
staircases shape; secondly, a GPS outage or GPS signal
blocking can cause the system drift when a nonlinearity
occur during this outage.
In order to overcome these limitations, a new system
modeling was proposed and applied to outdoor vehicle
localization. This method uses proprioceptive sensors
behavior modeling in order to design new models, that
describe constrained evolution modes. With this approach,
it was possible to identify various system evolution modes
and to estimate the probabilities with or without GPS data.
The resulting IMM algorithm that is used for a more robust
outdoor vehicles localization has two ways for likelihood
updating: in presence of GPS data, traditional IMM is
applied; in absence of GPS data, the new modeling with
constrained evolution modes is used.
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