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Abstract— Sensorless localization of 3D objects has been a
significant research topic for many years. Researchers have
focused on this problem from both theoretical and practical
perspective where the goal is to reduce uncertainties in the
orientation of a 3D object. However, to the best of our
knowledge, no effective practical methods have been proposed
so far to localize a polyhedron from any initial orientation to
a unique orientation without sensors.

In our previous work [1], two broad classes of 3D objects
have been introduced, which can be localized from an arbitrary
state to a unique state on a flat plane (the surface resting on the
flat plane is established) without sensors. In this paper, a much
broader class of polyhedra is introduced, which can be localized
to a unique state without sensors. The main contributions of
this paper are given as follows:
• It is found that a polyhedron with an arbitrary initial state

on the flat plane can be rotated to a fixed orientation (the
orientation of the surface resting on the flat plane is fixed),
provided that the polygon corresponding to each surface
of the polyhedron can be oriented to a unique orientation
in a 2D space. The method of rotating the polyhedron to
a fixed orientation is given.

• Base on the above result, both conditions and the strategy
are given for a polyhedron to be localized to a unique
state.

• An example is given to show the validity of the strategy.

I. INTRODUCTION

In manufacture, three-dimensional objects often need to
be located and oriented to a fixed pose before assembly,
grasping and other manipulation. For example, in the motor
car manufacture, localizing a piston to a unique pose is
necessary to subsequent assembly process; in the automatic
case packing system, goods with different shapes should be
turned to a proper orientation; in military applications, some
high-precision manipulation also demands exact orientations.
In the foremost work on localizing objects, the orientation of
objects and other required information were often retrieved
by high-precision and high-speed sensors, which makes the
object localization system expensive and fragile. In some
situation, sensors may not be suitable for use. For example,
a vision system will not be effective in a dark environment; it
is also rarely used in food manufacture for sanitary purpose.
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Therefore, it is necessary to investigate how to localize an
object without sensors.

Orienting a planar polygonal object to a unique orien-
tation has been investigated for many years. Goldberg [2]
summarized some previous work on orienting polygons and
successfully designed a strategy to orient polygonal parts
without sensors. Chen et al. [3] proved Goldberg’s conjecture
that a polygon can be oriented in O(n) steps manipulation
and used the information of distance between the two parallel
jaws upon closure to distinguish a finite set of parts. In
addition, according to Goldberg’s planing algorithms [4], 2D
objects with a planar projection being a piecewise algebraic
convex hull can be oriented with two parallel jaws.

Sensorless localization of 2D polygons has also been
investigated from the aspect of application, including sensor-
less part sorting [5], stable alignment pushing [6], non-
prehensile manipulating [7], and feeder devices designing
such as curved fences [8], conveyor with fences [9] and one
joint robot [10]. Localization of 2D objects has also been
considered using attractive regions of the configuration space
[11]. Akella et al. [12] considered shape uncertainties of
polygonal parts and proposed a sensor-less orienting strategy
for a variety of classes of part shapes given a nominal part
shape and tolerance bounds.

In practical applications, a 3D object on a flat plane will
come to rest in one stable state [13]. For a 3D object in a
stable state, there are two kinds of uncertainties: the surface
resting on the flat plane and the orientation of the contact
surface are both unknown. Due to the interaction of these
two kinds of uncertainties, localizing a 3D polyhedral object
to a unique state cannot be simply decomposed into 2D
object localizations. Berretty et al. [14] have conducted a
theoretical study on localizing 3D polyhedra and proved that
one action exists which orients a polyhedron from any two
states to one state. Thus, a polyhedron with n stable states
can be oriented to a known state with O(n) manipulation
operations. They also provided a method of adjusting the
state of the polyhedron by pushing the polyhedron from
different directions.

Some previous work focused on uncertainty reduction for
3D objects orientation in some special cases, which does not
require the object to be localized to a unique pose or which
restricts the initial state of the object in a subset of all the
states. For example, Erdmann et al. [15] utilized the method
of tilting the table to successfully reduce the uncertainty in
the 3D orientation of parts and proposed a directed-graph
constructing planner that determines a sequence of tilting
operations designed to minimize the uncertainty in the 3D
orientation of parts. Zhang et al. [16] proposed to move the
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polyhedron forward on step devices. Thus, the polyhedron
will slip to keep in the primary state or roll to an new state
by setting a different speed. For some polyhedral parts, using
the algorithm proposed in [16] a part can be oriented from
its most initial 3D orientations to a unique 3D orientation.
Manipulating 3D objects by rolling is an important and
effective approach to orient 3D objects. Ceccarelli et al. [17]
adopted a minimally complex robotic dexterous mechanism
to rotate a polyhedron about edges belonging to a fixed
surface from a given configuration to another reachable one.
These methods do not guarantee that a polyhedron can be
localized from any initial 3D orientation to the unique final
3D orientation.

On the other hand, many authors are concerned with the
design of devices which can be used to localize certain class
of 3D objects. Moll et al. [18] presented a component for the
automated design of parts-orienting devices and proposed a
method of orienting parts by minimizing the entropy of the
pose distribution. Recently, Goemans et al. [19] proposed
a new primitive which can feed a broad class of three
dimensional parts by reorienting and rejecting all but those in
the desired orientation. They also gave a practical algorithm
for its design.

In this paper, we study conditions and the practical strategy
for a polyhedron to be localized from an arbitrary initial state
to a unique state without sensors. An example is also given
to show the validity of the proposed strategy.

The rest of this paper is organized as follows. In Second II,
conditions are presented for a polyhedron to be localized to
a unique state: the first one is the condition for a polyhedron
to be rotated to a fixed orientation on a flat plane, and the
second one is the condition for a polyhedron to be localized
from an arbitrary state to a unique state on a flat plane. In
Section III, an example is given to show the validity of the
proposed strategy. Some conclusions are given in Section IV.

II. LOCALIZE A POLYHEDRON FROM AN ARBITRARY
INITIAL STATE TO A UNIQUE STATE

Usually, a polyhedron on a flat plane has two kinds of
uncertainties:

1) State Uncertainty: the bottom surface, which rests on
the flat plane, is unknown;

2) Orientation Uncertainty: the orientation of the polyhe-
dron (denoted by the orientation of the bottom surface)
is unknown.

In this section, we will give a new practical strategy by
which a polyhedron can be rotated from an arbitrary state
to a unique state where the bottom surface is fixed. This
strategy will be implemented in two steps:

1) Rotate a polyhedron with an arbitrary surface resting
on the flat plane to a fixed orientation;

2) Rotate a polyhedron from an arbitrary state to a unique
state.

A. Orient a polyhedron with an arbitrary surface resting on
the flat plane to a fixed orientation

In this subsection, the conditions for a polyhedron to be
rotated to a fixed orientation on a flat plane are investigated
(Lemma) and the corresponding strategy is given.

Firstly, several notations and definitions, which will be
used in the Lemma, are defined and explained as follows.

(1) Symbols Eij , Eb(ij), min
j
{φcij} and min

j
{φaij}.

Assume that a polyhedron has n surfaces and its ith surface
rests on a flat plane (Fig. 1). Denote by Eij the common
edge of the surfaces i and j and by Eb(ij) the jth edge
of the surface i. Denote by Oi the projection of the center
of gravity cg of the polyhedron on the ith surface and by
Vij the jth vertex of the ith surface, where Vij and Vi(j+1)

are conjunctive. Let us denote by φcij the clockwise angle
from OiVij to VijVi(j+1)(Eb(ij)) and by φaij the counter-
clockwise angle from OiVij to VijVi(j−1)(Eb(i(j−1)). Let
min

j
{φcij} be the minimal φcij of the ith surface and let

min
j
{φaij} be the minimal φaij of the ith surface.

Fig. 1. A polyhedron on a flat plane and its ith surface with φcij and
φaij

(2) Push action P [D(α0), α] denotes a flat-jaw normal
push to a polyhedron on a flat plane along the direction,
which has an angle α with D(α0). D(α0) is the initial
normal direction of the push jaw, which has an angle α0

with the reference direction (such as x-axis of the world
frame). The flat jaw moves with a fixed orientation along the
direction D(α0 +α) for a distance. The distance is specified
to be long enough to make one edge in the bottom surface
of the polyhedron aligned with the flat jaw (Fig.2).

(a) Initial relative position of push
jaw and the polyhedron

(b) Rotate the push jaw at an angle
α to the push direction

(c) Push along the direction D(α0 +
α) to make the polyhedron aligned
with the push jaw

Fig. 2. Denotation of P (D(α0), α)

(3) Relative-Orientation Transference Mapping. A
polyhedral object on the flat plane is pushed by P (D(α0), 0)
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to the orientation in which one edge Eb(ij) of the bottom
surface is aligned with the push jaw. Then the polyhedron
can be reoriented by P (D(α0), α) from the current orienta-
tion (denoted by Eb(ij)) to another orientation (denoted by
Eb(ix)), which can be expressed as

fr : (Eb(ij), P (D(α0), α)) → Eb(ix) (1)

The mapping fr in Eq. (1) is defined as the Relative-
Orientation Transference Mapping. We have that

a) if −(π/2−ϕcij) < α < π/2−ϕai(j+1), then Eb(ix) =
Eb(ij);

b) if π/2−ϕai(j+1) < α < 3π/2−ϕai(j+1)−ϕci(j+1)−
ϕai(j+2), then Eb(ix) = Eb(i(j+1));

c) if −(3π/2 − ϕcij − ϕaij − ϕci(j−1)) < α < −(π/2 −
ϕcij), then Eb(ix) = Eb(i(j−1));

d) if α > 3π/2 − ϕai(j+1) − ϕci(j+1) − ϕai(j+2), then
Eb(ix) = Eb(i(j+l+)) (l+ > 1); and

e) if α < −(3π/2−ϕcij−ϕaij−ϕci(j−1)), then Eb(ix) =
Eb(i(j+l−)) (l− < −1).

Lemma. For a n-surface polyhedron with an arbitrary
surface Sb(k) resting on the flat plane, if satisfying:

a) min
j=1,···,mi

{φcij} is unique for i = 1, · · · , n, where

mi is the vertex number of the surface Sb(i), and
min

j=1,···,mi

{φcij} > ϕcij + ϕaij + ϕci(j−1) − π, or

b) min
j=1,···,mi

{φaij} is unique for i = 1, · · · , n and

min
j=1,···,mi

{φaij} > ϕai(j) + ϕci(j) + ϕai(j+1) − π,

the polyhedron can be oriented with the push P (D(α0), α)
to a fixed orientation of the push jaw, i.e. the edge Eb(kjk)

aligned with the push jaw is established for each Sb(k).
Proof. Since the proofs for the lemma with the condition

a) and b) satisfied are similar, we just give the proof for the
lemma with the condition a) satisfied as follows.

Firstly, we give a strategy by which the polyhedron can be
rotated on the flat plane from an arbitrary initial orientation
to a fixed orientation. In this strategy, α0, φcij , n, mi are
the inputs.

(i) Set i = 1, and push the polyhedron with P (D(α0), 0),
where α0 is an arbitrary angle. Without loss of gener-
ality, we set α0 = 0.

(ii) Set α = −(π
2 −min

j
{φcij}) + ε, l = 1.

(iii) Push the polyhedron with P (D(α0), α).
(iv) α0 = α0 + α. l = l + 1. Go to (iii) until l = mi.
(v) i = i + 1. Go to (ii) until i = n.
Assume that the n surfaces of the polyhedron are sorted

by min
j
{φcij}:

min
j
{φcij} < min

j
{φc(i+1)j}

We also assume that the polyhedron initially rests on the kth

surface Sb(k). k is unknown and the orientation of the kth

surface is also unknown.
In the case with k = 1,
• when i = 1, the rotational angle satisfies: |α| =

π
2 − min

j
{φc1j} − ε, so the polyhedron will rotate to

a fixed relative orientation of the push jaw(This has
been proved in [6], and the proof is briefly given in
the Appendix).

• when i > 1, the rotational angle α = −(π
2 −

min
j
{φcij}) + ε, and satisfies: 0 > α > −(π

2 −
min

j
{φc1j}). According to the Relative-Orientation

Transference Mapping

fr : (Eb(ij), P (D(α0), α)) → Eb(ij),

the relative orientation between the polyhedron and the
push jaw will not change.

In the case with k ≥ 2,
• when i < k, the rotational angle α satisfies: −(3π/2−

ϕckj−ϕakj−ϕck(j−1)) < α < −(π
2−min

j
{φckj}). Ac-

cording to the Relative-Orientation Transference Map-
ping

fr : (Eb(ij), P (D(α0), α)) → Eb(ij−1),

each push(P (D(α0), α)) will change the polyhedron
from one relative orientation of the push jaw to another.

• when i ≥ k, the orientation change of the polyhedron
is the same as that in the case with k = 1, i ≥ k.

Therefore, the final relative orientation between the poly-
hedron and the push jaw is fixed. 2

The strategy in the proof of Lemma is named as
Orientation-fixed Strategy. After the strategy,
• the final push direction is known and marked as D(αf );
• for each Sb(k), the edge Eb(kjk) aligned with the push

jaw is determined and defined as Orientation-fixed
Edge.

In the next subsection, we will investigate how to eliminate
the uncertainty of Sb(k).

B. A broad class of polyhedra which can be rotated to a
unique state without sensors

In this subsection, we give conditions and a strategy for a
polyhedron to be rotated from an arbitrary state to a unique
state. To this end, several terms are needed which are defined
and explained as follows.

(1) Transitional Angle. The polyhedron rotates around
an edge from resting on one surface to resting on another. A
rotational angle which is equal to or a little greater than θij

can cause the polyhedron to over-rotate from surface Sb(i) to
surface Sb(j). The angle θij is defined as the ”Transitional
Angle”. This definition is the same as the definition of the
transition angle in Ref. [15].

(2) Stable-state Transference Mapping. Assume that the
polyhedron will only be transferred from its current stable
state to another stable state by a rotation around one edge of
the bottom surface. The new stable state (denoted by Sb(x))
after the rotation is determined by the current stable state of
the polyhedron (denoted by Sb(i)), the pivot edge (denoted
by Eij) and the rotating angle θ and can be expressed as

f : (Sb(i), Eij , θ) → Sb(x) (2)
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The mapping f in Eq. (2) is defined as the Stable-State-
Transference Mapping. We have that
• if 0 < θ < θij then x = i, Sb(x) = Sb(i); and
• if θij ≤ θ < θij + δ then x = j, Sb(x) = Sb(j), where

δ is a small positive number.
(3) Stable-state Transference Graph. We first define a

set of edges:

SE = {Eb(ijT i)|
fr : (Eb(iji), P (D(αf ), αT )) → Eb(ijT i),
Eb(iji) is the Orientation-fixed Edge of Sb(i),
i = 1, 2 · · ·n, 1 ≤ ji, jTi ≤ mi, αT ∈ [0, 2π)}

= {Eik|fr : (Eij , P (D(αf ), αT )) → Eik,
Eij is the Orientation-fixed Edge of Sb(i),

i = 1, 2 · · ·n, 1 ≤ j, k ≤
n∑

i=1

mi/2, αT ∈ [0, 2π)}.

Stable-state Transference Graph is a directed graph and is
defined as

GS(αT ) = (VS , AS)
= {(Sb(i), 〈Sb(i), Sb(k)〉)|Eik ∈ SE},

where 〈Sb(i), Sb(k)〉 denotes a directed arc from Sb(i) to
Sb(k).

Remark: According to Relative-Orientation Transference
Mapping a)−e), we can obtain that jTi

= ji + l (l =
−(ji − 1), · · · , 0, · · ·mi − ji). In the case with Eb(iji) and
αf fixed, for any αT ∈ [0, 2π), l has a unique value, which
determines a unique edge Eb(ijT i) of the surface Sb(i). Thus,
Eb(ijT i)(Eik) is the ground-touching edge of the surface
Sb(i), around which the polyhedron rotates to the next stable
surface Sb(k), and Sb(k) is uniquely determined by Eik.

Theorem. A n-surface polyhedron on a flat plane can be
rotated without sensors from any initial stable state to a
unique stable state if the polyhedron satisfies:

a) the conditions of the Lemma, and
b) there exists αT ∈ [0, 2π) such that GS(αT ) has only

one loop Gs = (Vs, As) (Gs ⊆ GS).
c) there is only one maximum in {θij |〈Sb(i), Sb(j)〉 ∈

As}.
Proof. Assume that all the surfaces of the polyhedron are

numbered differently with i = 1, 2 · · ·n. It is also assumed
that the initial state of the polyhedron is the state where
Sb(K1) lies on the flat plane. K1 and the orientation of surface
Sb(K1) are unknown. Define two sets Θ, Θs as follows:

Θ = {θij |〈Sb(i), Sb(j)〉 ∈ AS},
Θs = {θij |〈Sb(i), Sb(j)〉 ∈ As}.

The following strategy will localize the polyhedron from
resting on surface K1 to a fixed state. In the strategy, αT ,
Θ, Θs, m and n are the inputs.

(i) Set k = 1, θ = max{Θ}+ ε.
(ii) Execute Orientation-fixed Strategy and P (D(αf ), αT ),

where D(αf ) is the push direction after Orientation-
fixed Strategy is executed.

(iii) Rotate the polyhedron at an angle θ around the edge
aligned with the push jaw.

(iv) k = k + 1. If k ≥ n, θ = max{Θs} − ε. Go to (ii)
until k = n + m − 2, where m is the number of the
nodes Vs in the graph Gs.

In the above strategy, after (iii), the polyhedron will be
rotated to a new state or stay in the same state. This can be
classified into three cases:

Case 1, k <= n− 1. The rotational angle θ:

θ = max{Θ}+ ε > θij .

According to the Stable-state Transference Mapping

f : (Sb(i), Eij , θ) → Sb(x),

the polyhedron will be rotated to the new state, where Kk+1

lies on the flat plane.
Case 2, n ≤ k ≤ n + h1 − 1 (1 ≤ h1 ≤ m − 1). The

rotational angle θ:

θ = max{Θs} − ε > θij(θij ∈ Θs\max{Θs}).
The polyhedron will be rotated to the new state where Kk+1

lies on the flat plane.
Case 3, n + h1 ≤ k ≤ n + h2 − 1 (h1 < h2 ≤ m − 1).

The rotational angle θ:

θ = max{Θs} − ε < max{Θs}.
The polyhedron will stay the same.

Therefore, no matter what K1 is at the beginning and
which orientation the surface K1 has, there exists a sequence
of surfaces Sb(K1), Sb(K2) · · ·Sb(Kl) (1 ≤ l ≤ n + m −
1, Sb(Kk) ∈ VS , 1 ≤ k ≤ n + m − 2). It can be proved that
Sb(Kn) ∈ Vs and Kl is unique, which is given as follows.

i) The Proof for Sb(Kn) ∈ Vs: assume that Sb(Kn)∈Vs.
Define a set SN .

SN = {Sb(Lv)|Sb(Lv) ∈ VS , v = 1, 2 · · · ,
f : (Sb(Lv), ELvLv+1 ,max{Θ}) → Sb(Lv+1)}.

Gs is a loop subgraph of GS , so we can obtain:

Sb(Lv) ∈ Vs ⇒ Sb(Lv+1) ∈ Vs (3)
Sb(Lv+m) = Sb(Lv) (4)

Thus, we can define a subset of SN :

SM = {Sb(Lv)|Sb(Lv) ∈ Vs, v = 1, 2 · · · , (5)
f : (Sb(Lv), ELvLv+1 ,max{Θ}) → Sb(Lv+1)}

According to Eq. (3), (5) and Case 1, we can obtain:

Sb(Kk) ∈ SM ⇒ Sb(Kk+1) ∈ SM ⇒ · · · ⇒
Sb(Kn) ∈ SM (Kk 6= Kk+1, 1 ≤ k < n) (6)

According to the assumption that Sb(Kn)∈Vs and Eq. (6),
we can obtain:

Sb(Kn)∈SM ⇒ Sb(Kn−1)Kn−1∈SM ⇒ Sb(Kn−2)∈SM

· · · ⇒ Sb(K1)∈SM (Ki 6= Kj , i, j ∈ {1, · · ·n}, i 6= j).

There are at least n different surfaces in VS\Vs, i.e.
N{VS\Vs} ≥ n. There are n and m surfaces in VS and
Vs respectively, so there are n −m surfaces in VS\Vs, i.e.
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TABLE I
THE EDGES OF ALL THE SURFACES OF THE HEXAHEDRON

Surfaces&Edges Edges Length Surfaces&Edges Edges Length

S1

V11V12 v1v2 10.00
S4

V41V42 v3v4 7.07
V12V13 v2v3 4.12 V42V43 v4v8 4.68
V13V14 v3v4 7.07 V43V44 v8v7 3.24
V14V11 v4v1 5.39 V44V41 v7v3 4.35

S2

V21V22 v1v2 10.00
S5

V51V52 v4v1 5.39
V22V23 v2v6 4.58 V52V53 v1v5 5.10
V23V24 v6v5 5.00 V53V54 v5v8 3.13
V24V21 v5v1 5.10 V54V51 v8v4 4.68

S3

V31V32 v2v3 4.12
S6

V61V62 v5v6 5.00
V32V33 v3v7 4.35 V62V63 v6v7 2.58
V33V34 v7v6 2.58 V63V64 v7v8 3.24
V34V31 v6v2 4.58 V64V61 v8v5 3.13

N{VS\Vs} ≤ n−m. However, m > 0, the above two results
conflicts with each other. Therefore, Kn ∈ M .

ii) The proof that Kl is unique: assume that the only one
state with max{Θs} is Sb(Lf ), so Sb(Lf ) ∈ SM .

It can be proved that Sb(Lf ) can be achieved from SKn

by at most m − 1 rotations of the polyhedron around
Eij(〈Si, Sj〉 ∈ As), i.e. h1 ≤ m−1: assume that Kn = Lw;
according to Case 2 and Eq. (4), if w > f , h1 = m−w+f <
m; if w < f , h1 = f − w < m; so h1 ≤ m− 1.

Also, it can be prove that Sb(Kl) = Sb(Lf ): according to
Case 3, when n + h1 ≤ k ≤ n + h2 − 1(h1 ≤ h2 ≤ m− 1),
the polyhedron will stay in the same state, i.e. SKl

= Sbf
.

2

III. LOCALIZATION OF A POLYHEDRAL OBJECT WITH
THE PROPOSED STRATEGY

In this section, as an example, a polyhedron (Fig. 3)
is localized with the proposed strategy, which shows the
validity of the strategy.

Fig. 3. The polyhedron to be localized to a unique state without sensors

The shape parameters of the polyhedron are listed in
TABLE I, where VijVi(j+1) is the jth edge of the ith surface
of the polyhedron.

First, φcij and min
j
{φcij} are computed and listed in

TABLE II.
By comparison, we find that min

j
{φcij} in each surface is

unique (Note that the condition a) of the Lemma is satisfied).
The parameters (Sb(i), φi,mi, Eb(iji)) are listed in TABLE
III, where

TABLE II
φcij AND min{φci}

Surfaces φcij
Radian
of φcij

Surfaces φaij
Radian
of φaij

S1

φc11 0.40∗

S4

φc41 0.63
φc12 0.86 φc42 0.50∗
φc13 0.59 φc43 0.84
φc14 1.29 φc44 1.16

S2

φc21 0.43∗

S5

φc51 1.26
φc22 0.62 φc52 0.41
φc23 0.57 φc53 0.36∗
φc24 1.61 φc54 0.95

S3

φc31 0.79

S6

φc61 0.49∗
φc32 0.21∗ φc62 0.86
φc33 0.96 φc63 0.68
φc34 1.41 φc64 1.06

TABLE III
Sb(i) , φi , EDGE NUMBER mi OF EACH SURFACE AND THE

ORIENTATION-FIXED EDGE Eb(iji)

Surfaces(i) min
j
{φcij} Sb(i) φi mi Eb(iji)

S1 0.40 Sb(3) 1.17 4 v1v2

S2 0.43 Sb(4) 1.14 4 v1v2

S3 0.21 Sb(1) 1.36 4 v3v7

S4 0.50 Sb(6) 1.07 4 v4v8

S5 0.36 Sb(2) 1.21 4 v5v8

S6 0.49 Sb(5) 1.08 4 v5v6

• Sb(i) denotes the ith one of all the surfaces sorted
by using min

j
{φcij} in the manner that min

j
{φcij} <

min
j
{φci+1j},

• φi = π
2 −min

j
{φcij} and φi > φi+1,

• mi is the number of the vertices in Sb(i), which denotes
the replications of P (D(α0), φi), and

• Eb(iji) is the Orientation-fixed Edge of Sb(i).

With the strategy presented in the Lemma, the polyhedron,
which initially rests on Sb(k), can be oriented to a fixed
orientation, which is determined by Eb(kjk) (1 ≤ k ≤ n).

We now localize the polyhedron from resting on the kth

surface (k is unknown) to a unique state.
By a discrete search for αT in [0, 2π), we obtain that there

exists αT = 0 such that GS(αT ) has only one loop. By using
the mapping

fr : (Eb(kjk), P (D(α0), 0)) → Eb(kjT k),

we obtain that
Eb(kjT k) = Eb(kjk)).

Note that Sb(k), Eb(kjk), Sb(l) and θkl are given in TABLE
IV, where

• Sb(k) is the surface resting on the flat plane,
• Eb(kjk) is the edge of Sb(k) to determine the pivot edge

around which the polyhedron rotates out of its kth state,
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TABLE IV
Sb(k) , Eb(kjk) , Sb(l) AND θkl

Sb(k) Eb(kjk) Sb(l) θkl

Sb(1) v3v7 Sb(6) 0.25
Sb(2) v5v8 Sb(5) 0.30
Sb(3) v1v2 Sb(4) 0.86
Sb(4) v1v2 Sb(3) 0.96
Sb(5) v5v6 Sb(4) 0.58
Sb(6) v4v8 Sb(2) 0.88

• Sb(l) is the conjunct surface of Sb(k) at Eb(kjk) (i.e.
Ekl), and

• θkl is the Transitional Angle from Sb(k) to Sb(l).
By using the mapping

f : (Sb(i), Eij ,max{θij}) → Sb(j),

we can get the following Sb(i) ⇒ Sb(x) state-transference
sequences:
• Sb(1)⇒Sb(6)⇒Sb(2)⇒Sb(5)⇒Sb(4)⇒Sb(3)⇒Sb(4),
• Sb(2)⇒Sb(5)⇒Sb(4)⇒Sb(3)⇒Sb(4)⇒Sb(3)⇒ Sb(4),
• Sb(3)⇒Sb(4)⇒Sb(3)⇒Sb(4)⇒Sb(3)⇒Sb(4)⇒Sb(3),
• Sb(4)⇒Sb(3)⇒Sb(4)⇒Sb(3)⇒Sb(4)⇒Sb(3)⇒Sb(3),
• Sb(5)⇒Sb(4)⇒Sb(3)⇒Sb(4)⇒Sb(3)⇒Sb(4)⇒Sb(3),
• Sb(6)⇒Sb(2)⇒Sb(5)⇒Sb(4)⇒Sb(3)⇒Sb(4)⇒Sb(3).
The loop subgraph of GS can be obtained:

Gs = {(Sb(3), 〈Sb(3), Sb(4)〉), (Sb(4), 〈Sb(4), Sb(3)〉)}.
Thus, Θs = {θ34, θ43} and θ34 < θ43 (max{Θs} is unique).
Therefore, the polyhedron will finally be localized to the
unique state, where Sb(4) rests on the flat plane.

IV. CONCLUSIONS

In this paper, a new practical strategy was proposed to
localize a polyhedron on the flat plane from an arbitrary
state to a unique state without sensors. The strategy can
be implemented in two steps: eliminating the uncertainty of
polyhedral bottom-surface orientations and eliminating the
uncertainty of polyhedral states.

Firstly, based on the analysis of the 2D-polygon orienting
methods, it is found that an arbitrary one of multiple poly-
gons can be oriented to a fixed orientation provided that each
of these polygons can be oriented to a unique orientation in
a 2D space. Based on this result, conditions have been given
for a polyhedron to be oriented to a fixed orientation on the
flat plane, and an approach has been presented to eliminate
the orientation uncertainty of the polyhedron.

Secondly, from the fixed orientation established above,
a polyhedron on the flat plane can be rotated to other
desired orientations. Thus, for each state of the polyhedron,
different transitional directions from this state to others
can be achieved by the rotation of the polyhedron on the
flat plane. By the study of the transference of polyhedral
states along different transitional directions, we obtained the
conditions for a polyhedron to be localized to a unique state

without sensors. A strategy was further proposed to localize
the polyhedron.

Finally, an example was given to show the validity of the
proposed strategy.
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