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Abstract—Recently, several robotic/intelligent wheelchairs
have been proposed that employ user-friendly interfaces or
autonomous functions. Although it is often desirable for user to
operate wheelchairs on their own, they are often accompanied
by a caregiver or companion. In designing wheelchairs, it is
important to reduce the caregiver load. In this paper we propose
a robotic wheelchair that can move with a caregiver side by
side. In contrast to a front-behind position, in a side-by-side
position it is more difficult for wheelchairs to adjust when the
caregiver makes a turn. To cope with this problem we present
a visual-laser tracking technique. In this technique, a laser
range sensor and an omni-directional camera are integrated
to observe the caregiver. A Rao-Blackwellized particle filter
framework is employed to track the caregiver’s position and
orientation of both body and head based on the distance data
and panorama images captured from the laser range sensor and
the omni-directional camera. After presenting this technique,
we introduce an application of the wheelchair for museum visit
use.

I. INTRODUCTION

Over the last decade, a variety of robotic/intelligent
wheelchairs have been proposed to meet the needs of an
aging society. The main topics of research are user-friendly
interfaces or autonomous functions such as moving toward
some goal while avoiding obstacles [1], [8], [9], [10], [12].
Although it is often desirable for users to operate

wheelchairs on their own, they are often accompanied by
caregivers or companions. Thus, in designing wheelchair
technology it is important to consider how to reduce the
caregiver load and support communication between user and
caregiver [5].
In this paper we propose a robotic wheelchair that moves

autonomously to collaborate with a caregiver based on visual
and laser sensing techniques. Moving autonomously with
the caregiver does not mean simply following the caregiver.
To support communication between caregiver and user, the
wheelchair moves with the caregiver side by side. To reduce
caregiver load, the wheelchair can see what the caregiver
is doing and respond appropriately. For example, when the
caregiver moves forward to push a button to call an elevator
or open a door, the wheelchair waits until the elevator comes
or the door is opened. Such actions can be done without any
caregiver commands.
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To confirm the advantage of side-by-side movement we
conducted a questionnaire. We showed 103 participants
two types of videos. In the first, the caregiver follows the
wheelchair from behind, whereas in the second, the caregiver
and wheelchair move side by side (Fig.1(b)). After they
watched the videos, we gave participants a list of adjectives
(in Japanese) and asked them to assign a value from 1 to
6 (6: definitely yes to 1: definitely no) that conveys their
feeling about the relationship between the caregiver and
user. Results are shown in Fig.1(a). Scores for moving side
by side are significantly higher than those for following
behind in all question cases (p < 0.05). For the direct
question,“Which wheelchair do you prefer?” 86 out of
103 participants selected the side-by-side case. These results
suggest an advantage to our proposal.

(a) Result of questionnaire (b) Sample of video
images

Fig. 1. Wheelchair moving with caregiver side by side

To develop a system that can support side-by-side move-
ment, we propose a novel visual-laser tracking technique.
A laser range sensor and an omni-directional camera are
integrated to track the caregiver’s position and motion. Both
devices are installed on top of the pole placed on the seat
back.
While several methods for tracking people using laser

range sensor have been proposed, most of these use fixed
laser range sensors placed near the floor, and track positions
of people by observing their legs [2]. Glas et al. [4] pro-
posed a particle filter based method that can track human
body motion using adaptive shape modeling. However they
assume observations from multiple fixed laser range sensors
distributed in the environment.
In contrast, we employ the Rao-Blackwellized particle

filter framework [11], [14] to track caregiver position and ori-
entation of both the body and the head based on the distance
data and panorama images captured from the laser range
sensor and omni-directional camera, respectively. Distance
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data is mapped onto a 2D image plane and used for the
likelihood evaluation in the Rao-Blackwellized particle filter
framework. The likelihoods of the hypotheses are evaluated
from the contour similarity between the model and the
caregiver’s upper body that is partially observed by a single
laser range sensor.
Cui et al. [3] reported a method to track people by using

laser range sensors and cameras. In their method, multiple
cameras are employed to identify the person being tracked.
Our approach is to integrate vision and laser based observa-
tions for precise tracking of behavior. Our method can track,
for example, face direction by integrating panorama images
from the omni-directional camera and distance data from the
laser range sensor.
We also present an application of our robotic wheelchair

dedicated to museum visit use. With the visual-laser tracking
technique, the wheelchair user and caregiver move together
side by side. When the caregiver stops close to an exhibit,
the wheelchair detects the exhibit with its other vision
system and moves to the position where the user can view
the exhibit. For this purpose our wheelchair is equipped
with a pan-tilt camera that moves synchronously with the
caregiver’s head motion. In addition, the wheelchair turns
towards the caregiver when the caregiver turns toward the
user to talk about the exhibit. In this way, our wheelchair
responds depending on the situation.
The remainder of this paper is organized as follows. In

the next section, we describe our tracking method using
integrated sensors. In section 3, we describe the method
for controlling the wheelchair. In section 4, we explain
our experiments and discuss about the experimental results.
In section 5, we propose an application of our robotic
wheelchair for museum visit. Finally, we summarize our
work.

II. TRACKING CAREGIVER
In this section we describe the method for tracking care-

giver position and motion. First, we introduce our integrated
device.
A. Device integration
Fig.2 shows an overview of our visual-laser tracker. An

omni-directional camera (WAT-240 by Watec) is installed
on top of a laser range sensor (URG-04LX by Hokuyo
Electric Machinery). This sensor can measure 270 degrees
and 20mm～4000mm in distance. The omni-directional cam-
era observes target appearances and the laser range sensor
measures target distance. Each device has a fully overlapping
field of sensing. As a result, our sensor setup is effective and
complementary.
In the following section we describe details of our track-

ing method based on the Rao-Blackwellized particle filter
framework.

B. Modeling caregiver as tracking target
The caregiver is modeled as shown in Fig.3(a). We as-

sume that the laser range sensor is placed horizontally on
the caregiver’s shoulder level so that the contour of the

(a) Device (b) Example of display image

Fig. 2. Visual-laser tracker

caregiver’s shoulder can be observed. When the distance
data captured with the laser range sensor is mapped onto
the 2D image plane (what we call a “laser image”), the
contour of the caregiver’s shoulder is partially observed as
shown in Fig.3(b). The contour of the caregiver’s shoulder
can be observed as a part of an ellipse. We use the ellipse
as the model to track the position and the direction of
the caregiver’s body. In Fig.3(b), points on the contour
indicate evaluation points, which are used in the likelihood
evaluation step. The caregiver’s head position and direction
are also tracked using an omni-directional camera. We use
an ellipsoid as a model to track the caregiver’s head.
We assume the coordinate system represented by their X-

and Y -axes aligned on the ground plane, and the Z-axis
representing the vertical direction from the ground plane.
We assume that the caregiver walks alongside with the
wheelchair without tilting his or her head. The model of the
tracking target is represented with center coordinates of the
ellipse [u, v], rotation of the ellipse φ, center coordinates of
the ellipsoid [x, y, z] and rotation of the ellipsoid around the
Z-axis θ. State variables of the tracking target are denoted
by

{
u, v, φ, x, y, z, θ

}
. Note that θ can take the value from

φ−90 to φ+90, because humans do not typically turn their
head more than 90 degrees.
In the next section we describe the method of tracking

using the Rao-Blackwellized particle filter.

(a) Human model (b) Body contour model

Fig. 3. Human body model

C. Rao-Blackwellized particle filter
Denotes the state to be estimated as X , and observation

Z, with subscript time index t. The key idea of the Rao-
Blackwellized particle filter (RBPF) is to partition the orig-
inal state space Xt into two sub-state spaces Rt (root vari-
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ables) and Lt (leaf variables). Factorization of the probability
is denoted by

p(X1:t|Z1:t)

=p(L1:t, R1:t|Z1:t) = p(L1:t|R1:t, Z1:t)p(R1:t|Z1:t). (1)

If we assume that p(L1:t|R1:t, Z1:t) can be computed
through a linear process, a non-linear non-Gaussian state
space is much smaller than p(X1:t|Z1:t). Thus the RBPF will
provide better performance than the regular particle filter [6]
while using the same number of particles. For this advantage,
the RBPF is known to be effective in tracking objects with
complex structures. Xu et al. [14] details the application of
RBPF in the field of visual surveillance.
When we assume that caregivers do not bend their body

while walking with the wheelchair, we can consider a strong
relationship between the center of the body and the center of
head. If the laser range sensor and omni-directional camera
are strongly calibrated with respect to each other, the object
that is observed with the laser range sensor is easily projected
onto the omni-directional camera image. Then, when the
center location of the body contour ellipse and the height
of the caregiver’s head are given, we can roughly estimate
the location of the caregiver’s head in the omni-directional
camera image. Based on this we can partition original state
space into two groups: root variables, Rt =

{
ut, vt, φt, θt

}
and leaf variables Lt =

{
xt, yt, zt

}
.

We assume a relationship between components as shown
in Fig.4. The caregiver’s body position and orientation and
head orientation at time t (Rt) only depends on the previous
state Rt−1, while the center of the head position at time t
(Lt) depends on the previous state Lt−1 and current root
state Rt. The observations at time t (Zt) depend on both
current states Rt and Lt.

Rt-1

Lt-1

Zt-1

Rt

Lt

Zt

Rt+1

Lt+1

Zt+1

Fig. 4. Dependency relationship between components for the RBPF

As regular particle filters, RBPFs represent posterior distri-
bution using a set of weighted samples St =

{
s
(i)
t , w

(i)
t | 1 ≤

i ≤ N
}
. R(i) in each particle s(i) is sampled from

p(R1:t|Z1:t) in a similar way as in the regular particle filter.
L(i) in each particle s(i) is generated by computing the linear
process corresponding to p(L1:t|R1:t, Z1:t).
Based on the dependency model (Fig.4), R̂

(i)
t in each

particle ŝ
(i)
t is sampled from:

R̂
(i)
t ∼ p(Rt|R(i)

t−1, Zt). (2)

This means that a hypothesis on a new body location and
orientation and head orientation will be propagated by the
motion model. Here we employ a simple random walk model
as the motion model R̂

(i)
t = R

(i)
t−1 + Nr, where Nr is a

random vector drawn from the system noise. Though we may
consider another motion model such as uniform motion, in
this case the system performs robust and stable tracking even
when we employ the simplest motion model.
The L̂

(i)
t is computed using:

L̂
(i)
t ∼ p(Lt|R(i)

t , L
(i)
t−1, Zt). (3)

This means that a new head location hypothesis L̂
(i)
t will be

generated based on the previous location of the head L
(i)
t−1

and current state R̂
(i)
t .

Here we employ the model in which the head location
on the XY plane x̂

(i)
t , ŷ

(i)
t is estimated by using Kalman

filtering based on the values û
(i)
t−1, v̂

(i)
t−1 in R̂

(i)
t−1 and û

(i)
t , v̂

(i)
t

in R̂
(i)
t . The head location along the Z-axis ẑ

(i)
t is the same

as the value of z
(i)
t−1 in L

(i)
t−1 with Gaussian noise Nl.

Now that all of the state variables in each particle ŝ
(i)
t

can be obtained, we can evaluate each particle the same as
a regular particle filter.

D. Likelihood evaluation

Here we evaluate particles based on the observations of
the laser range sensor and the omni-directional camera, and
then integrate the results of the evaluations.
Likelihood evaluation based on laser image

The likelihood is evaluated by the maximum distance be-
tween evaluation points and the nearest distance data using:

w
(i)
t,laser = exp

(−d2
max

σd

)
. (4)

Where w
(i)
t,laser is the likelihood score based on the laser im-

age. The dmax is the maximum distance between evaluation
points and the nearest distance data. At each time instance,
once the distance image is generated from the laser image,
each distance dn is easily obtained. The σd is the variance
derived from dn.
Conceptional images of evaluation process are shown in

Fig.5. The likelihood of each particle is evaluated as in
Fig.5(a). The likelihood score is maximized when the model
completely matches the laser image and we can also guess
the head position on the XY plane (Fig.5(b)).

(a) Evaluation based on maxi-
mum distance

(b) Completely matching case

Fig. 5. Likelihood evaluation
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Likelihood evaluation based on omni-directional cam-
era image
We use the state variables x̂

(i)
t , ŷ

(i)
t , ẑ

(i)
t and θ̂

(i)
t in particle

ŝ
(i)
t for evaluating a particle using the AdaBoost-based
cascaded classifiers [13]. Since our integrated device is fully
calibrated, we can project these variables onto the calibrated
omni-directional camera image. We evaluate particles by
applying the AdaBoost-based cascaded classifiers over the
projected image region and the number of stages passed in
the cascade is employed as the likelihood of a human head.
While an abstracted evaluation procedure is given below, the
detailed evaluation method is provided in [7].
Note that we use 7 classifiers and each classifier is trained

respectively to detect a human head of a particular direction
such as front, 90◦ left, 90◦ right and so on.
1) Project the state variables x̂

(i)
t , ŷ

(i)
t , ẑ

(i)
t and θ̂

(i)
t onto

the calibrated omni-directional camera image and ob-
tain a projected position and size of the head. By
considering the location and the direction of a head,
we can also calculate the direction of a human head
relative to the omni-directional camera θ̂

(i)
t,cam.

2) Extract an image region corresponding to the head and
extend it into a normal image based on its position and
size.

3) Resize the extracted image region to input the classifier
(e.g.24×24 pixel). We then obtain the classifier input
image g

(i)
t .

4) Select a classifier by considering the direction of a
human head relative to the omni-directional camera
θ̂
(i)
t,cam. For example, if we use three classifiers such as
front, 90◦ left and 90◦ right, then the front is selected
in the case of −45◦ ≤ θ

(i)
t,cam ≤ 45◦, the 90◦ left is

selected in the case of 45◦ < θ
(i)
t,cam ≤ 135◦ and so

on.
5) Apply the selected classifier to the image region g

(i)
t

and obtain the likelihood score of a human head
w

(i)
t,cam.

Likelihood integration
To obtain the weight w

(i)
t for the particle s

(i)
t the weights

w
(i)
t,laser and w

(i)
t,cam are consolidated using:

w
(i)
t = w

(i)
t,laser · w(i)

t,cam. (5)

These likelihood evaluation procedures are repeated for
each particle. The estimation of the state at time t is
calculated as the expectation of the weights over particles.

III. CONTROLLING THE WHEELCHAIR
A. System overview
Fig.6 shows an overview of our robotic wheelchair. For

the autonomous function, we attach the visual-laser tracker
on the rear pole as shown in Fig.6. This integrated device
is used to track the caregiver. A pan-tilt camera is also
attached on top of the rear pole to detect an object. The
wheelchair has another range sensor (UTM-30LX by Hokuyo
Electric Machinery) facing forward to detect pedestrians and
obstacles.

Fig. 6. Overview of our robotic wheelchair

B. Controlling wheelchair from PC
Our wheelchair can be controlled with a joystick con-

troller. We attach an extension unit to the joystick for
controlling the output signal. This unit is connected to a
laptop PC with serial connection and is controlled by our
software. The relation of the joystick position and output
signal is shown in Table I. This output signal is controlled
using two output voltage values that are a front-back control
voltage and a left-right control voltage. These voltage values
are controlled using the extension unit that includes a D/A
converter.

TABLE I
VOLTAGE AND CONTROL SIGNAL

Voltage 0-1.7[v] 1.7-2.9[v] 2.9-5[v]
Front-Back Control Backward Neutral Forward
Left-Right Control Right-side Neutral Left-side

C. Following the caregiver
Our robotic wheelchair usually moves with the care-

giver side by side. The speed and direction of the robotic
wheelchair are controlled using the information of the care-
giver (Fig.7). We take the X axis in the left-right direction
of the wheelchair and the Y axis in the front-back direction.
The initial position (u0,v0) of the caregiver is assumed to be
the standard location of the caregiver (Fig.7(a)). The speed
is controlled based on the difference (Δu,Δv) of the current
caregiver’s position from the initial position. If the difference
is positive, the speed is increased, whereas if it is negative,
the speed is decreased. When the current position is not
different from the previous position, the system considers
that the caregiver is moving at the same speed and the robotic
wheelchair is following him or her at the same speed.
The moving direction is controlled based on the caregiver’s

position and body direction. When the caregiver turns his or
her body near the wheelchair the wheelchair also turns in the
same direction. If the caregiver turns towards the wheelchair,
the wheelchair slows down and waits a bit for the caregiver
because the wheelchair will be in the caregiver’s path if it
does not slow down.

IV. EXPERIMENTAL RESULTS
We set up our visual-laser tracker on the top of the camera

mount (130cm high) to confirm the tracking performance. A
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(a) Initial position (b) Difference cue

Fig. 7. Wheelchair moving by difference cue

person walking on the previously determined trajectory is
tracked using our tracker. We assign the parameter σd the
value 5 for computational convenience. As shown in Fig.8(a),
our tracker successfully tracks the person who is walking
while changing body direction. The average Euclidean dis-
tance between the tracked position and the ground truth for
the XY plane is 5.8 cm.
We also confirm the tracking performance of the body and

head direction. The person rotating in front of our tracker is
recorded by the video camera mounted on the ceiling looking
downward. Tracking errors are shown in Fig.8(b) where the
error value is obtained by comparing the tracking result and
the manually extracted direction. The average error of the
body direction is 5.2 degrees and head direction is 23.4
degree. The body direction of the person is precisely tracked.
The head direction is also precisely tracked considering the
low resolution of images captured with the omni-directional
camera.
We conducted an experiment on our robotic wheelchair

that follows the caregiver side by side. Fig.9 shows tra-
jectories of the caregiver and wheelchair. The wheelchair
successfully follows the caregiver even when the caregiver
turns towards the left or right. It is difficult to turn towards
the left when the wheelchair moves along the left side of
the caregiver because the caregiver cannot move towards the
left due to the wheelchair being in caregiver’s path. We can
deal with this situation by considering the caregiver’s body
direction.

(a) Trajectory errors

Head Body
 50

 40

 30

 20

Front

LeftRi
gh

t

10

(b) Direction errors

Fig. 8. Tracking Performance

V. APPLICATION FOR ART APPRECIATION
In this application the wheelchair user and caregiver

normally move together side by side. When the caregiver

Fig. 9. Trajectories of caregiver and wheelchair

finds an exhibit and stops close to it, the wheelchair detects
this and moves to a position where the wheelchair user can
view the exhibit.

A. Detecting a painting
Since we propose an application for supporting art ap-

preciation in a typical scenario, here we assume that the
exhibit is a painting so that can be detected using template
matching. We have prepared four template-images to detect
four corners of the target painting in advance. The system
searches for the four template-image locations in the image
captured with the pan-tilt camera. After the locations are
detected, the system detects the painting by considering the
consistency of arrangement of the four corners. The ratio
of right and left edges of the painting is used to estimate
the relative position of the wheelchair with respect to the
painting.

B. Moving to viewing position
Fig.10 and Fig.11 show an example of a sequence of

actions to support viewing an exhibit. Figs.11 (a)-(d) show
images at points (a)-(d) in Fig.10, respectively.
When the wheelchair detects that the caregiver has stopped

walking, the visual-laser tracker detects the face direction of
the caregiver. The system then tries to detect the object that
the caregiver is looking at using the pan-tilt camera that is
synchronized with the caregiver’s head direction. The direc-
tion in where the caregiver is looking can be used to restrict
the search region to detect an exhibit (Figs.10,11(a)). Then,
the wheelchair starts moving to a position where the user
can view the painting (Figs.10,11(b)-(c)). The wheelchair
controls its motion using visual feedback. It adjusts its
position until the four corners of the painting come to the
center of the image captured with the pan-tilt camera at the
original pan-tilt position (Figs.10,11(d)).
When the caregiver turns towards the wheelchair user to

talk about the painting, the wheelchair turns towards the
caregiver. When the caregiver turns towards the painting
again, the wheelchair makes the same action.
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Fig. 10. Wheelchair movements in painting appreciation

(a) (b)

(c) (d)
Fig. 11. Example of supporting art appreciation

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proposed a visual-laser tracking
technique applied to a collaborative robotic wheelchair.
A laser range sensor and an omni-directional camera are
integrated to observe the caregiver’s behavior. The RBPF
framework is employed to track the caregiver’s position and
orientation of the body and head. The likelihood of particles
is evaluated based on the distance data from the laser range
sensor and panorama images from the omni-directional cam-
era. In addition, we proposed a robotic wheelchair system
based on the proposed tracking techniques. The wheelchair
follows the caregiver side by side. When the caregiver turns
his or her body towards the wheelchair, the wheelchair slows
down and waits for the caregiver in order to avoid obstructing
the caregiver’s path. The wheelchair successfully follows
the caregiver even when the caregiver turns towards the
left or right. We have also proposed an application of our
robotic wheelchair for supporting the viewing of exhibits in
museums. In particular, when the caregiver stops in front of
an exhibit, the wheelchair moves autonomously to a position
suitable for viewing the exhibit.
In future work, we are planning to give our wheelchair

functions for avoiding moving obstacles such as pedestrians.
We have begun to deal with this problem by tracking
pedestrians based on the Kalman filter and have started
to conduct trials (Fig.12). We also consider developing
recovering functions. When the wheelchair has lost track of
the caregiver, the system tries to detect the caregiver based
on appearance and spatio-temporal cues. In other future work
we would like to establish a method to identify the caregiver

among people around the wheelchair, because the system
needs to track the caregiver continuously even when he or
she is temporary occluded by obstacles.

(a) Pedestrian tracking (b) Avoiding pedestrian

Fig. 12. Wheelchair avoiding obstacles
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