
 

Abstract—The ultimate success of a human-robot-interface 
system depends on how accurately user control signals are 
classified.  This paper is aimed at developing and testing a 
strategy to accurately classify human-robot control signals.  
The primary focus is on overcoming the dimensionality 
problem frequently encountered in the design of Gaussian 
multivariate signal classifiers.  The dimensionality problem is 
overcome by selecting, using  two different ranking criteria, a 
small set of linear combinations of the input signal space 
generated by the discrete cosine transform (DCT).  The 
application of the resulting DCT-Gaussian signal classification 
strategy is demonstrated by classifying tongue-movement ear-
pressure (TMEP) bioacoustic signals that have been proposed 
for control of an assistive robotic arm.  Classification results 
show that the DCT-Gaussian classifiers outperform classifiers 
described in a previous study.   Most noteworthy is the fact that 
the Gaussian multivariate control signal classifiers developed in 
this paper can be designed without having to collect a 
prohibitively large number of training signals in order to 
satisfy the dimensionality conditions.  Consequently, the 
classification strategies will be especially beneficial for 
designing personalized assistive interfaces for individuals from 
whom only a limited number of training signals can reliably be 
collected due to severe disabilities. 

I. INTRODUCTION 
he goal of this paper is to develop a strategy to 
accurately classify signals that are used to control 

assistive human-robot (or human-machine) interfaces 
(HMIs).  In general, devices for human-robot interface 
involve detecting an input from a user and converting that 
signal into a command signal, which in turn causes a desired 
event to occur.  However, nearly all of the mechanisms 
designed for human control of peripheral devices require the 
user to generate an input signal through bodily movements, 
most often with their hands, arms, legs, or feet.  Such 
devices predispose that the user is not utilizing their 
appendages for any other activity and clearly exclude 
individuals with impairments that cause painful or limited 
extremity control.  Spinal chord injuries (SCI), loss of motor 
control due to stroke, central nervous system (CNS) 
disorders, amputations, paraplegia, severe arthritis, and 
repetitive strain disorders (RSD) all represent examples of 
these impairments.   

A very large number of researchers have attempted to 
address this issue through the design of interfaces based on 
mapping input signals generated directly from the body. 
Examples of such interface control signals include speech 

[1]-[3], ear pressure signals [3, 4], electromyographic signals 
[5, 6], electroencephalogram (EEG) and event-related 
potential (ERP) brainwaveforms [6-9], gestures and motion 
tracking [10-12], and tracking of eye movement [13] (a brief 
survey is presented in [3]).  In such signal classification 
problems, the dimension of the input signal space is 
typically quite large.  It is often not possible to collect 
enough reliable signals to exceed the dimension of the signal 
space.  This is particularly true for interfaces designed to aid 
individuals with severe disabilities to communicate and/or to 
control devices.  For such cases, the implementation of 
multivariate parametric classifiers can be facilitated by 
decreasing the dimension of the signal space through feature 
selection [14].  Fusing a small set of features into a 
multivariate feature vector will definitely overcome the 
dimensionality problem; however, the performance of the 
resulting multivariate classifier will be dictated by the choice 
and discriminatory quality of the selected features. 

In this paper, we investigate the use of the well-known the 
discrete cosine transform (DCT) as means to decrease the 
dimension of the signal space for multi-class multivariate 
classifier design and evaluation.  Although the popular 
principal component transform (PCT) is optimal in the sense 
that it minimizes the mean-square error between the data 
reconstructed and original data, the drawback with the PCT 
is that its basis vectors are data dependent.  The DCT, on the 
other hand, is a data-independent sinusoidal transform and 
also has the information packing ability close to that of the 
optimal principal component transform (PCT). The 
information packing property and the ease of computing the 
DCT makes it an ideal candidate transform for 
dimensionality reduction.  We, therefore, investigate issues 
related to selecting DCT coefficients for the purpose of 
dimensionality reduction in multi-class signal classifier 
design.  We specifically focus on the design of Gaussian 
signal classifiers because one of the most often made 
assumptions is that the class-conditional density function of 
the feature vector is multivariate Gaussian [15, 16].  

A. .  Organization of paper 
We begin by presenting an overview of assistive robotic 

interface architectures in Section II.  Section III focuses on 
the need for dimensionality reduction and on issues 
pertaining to the estimation of the parameters of the 
Gaussian discriminant functions.  The use of the  DCT to 
decrease dimensionality by forming features which are linear 
combinations of the discrete input signal space for single-

channel signals are described in Section IV.  The training 
and testing phases of the resulting DCT-Gaussian 
classification strategy is summarized in Section V while 
sections VI and VII map the implementation of the system 
to control a robotic arm through tongue movements.  
Conclusions are summarized in Section VIII. 
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II. HUMAN ROBOT INTERFACES 
Almost any system for human control of a robotic device 

will consist of three fundamental components: 1) the remote 
robot; 2) the communication link; and 3) the human-robot 
interface.  Applications can range from the control of 
wheelchairs using body movements, to direction of robotic 
assist mechanisms, to the direct communication with 
computers using brain waveforms.   

Control signal acquisition using a suitable sensor is the 
first step in the process and the following preprocessing 
operation typically includes filtering the acquired control 
signal.  Detection involves determining whether a control 
signal has been initiated by the user.  After a control signal 
has been detected, the start and end points of the control 
signal are estimated through segmentation. In the next step, 
features that distinguish different control signals are 
extracted.  Based on the features, a classifier is designed to 
determine the class of a control signal during operation.  The 
classifier output is used to generate a command signal to 
either communicate or to control a device.  The whole 
process, therefore, could be regarded as a mapping of an 
interface control signal to an robotic or peripheral command 
signal. 

III. DIMENSIONALITY ISSUES 
For a C-class classification problem, the most general 

form of the Gaussian discriminant functions can be written 
as [15] 
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where Z is a D-dimensional column feature vector, μc is 

the D-dimensional mean column vector of class c, Ψc is the 
(DxD) covariance matrix of class c, and Pc is the a priori 
probability of class c.  It is often assumed that the covariance 
matrices are equal for all classes, that is, Ψc=Ψ , c= 1,2,..C..  
For this case, Equation (1) can be written as 

CcPZZZg cc
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In practice, ensembles of each signal class are collected 

and used to estimate the classifier parameters and to test the 
classifier. The most commonly used technique to generate 
training and test sets is to randomly partition each ensemble 
into 2 equal-size sets.  Another technique that is often used 
is the ‘leave-one-out’ or ‘jackknife’ method [16].  The 
parameters of the classifier are estimated using the feature 
vectors in the training set.  Let the number of feature vectors 
in the training set of class c be Nc and the D-dimensional 
feature vector of pattern class c be Zc.  The parameters 
needed to implement the Gaussian discriminant function of 
Equation (1) for class c can be estimated as 
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where Zjc is the jth feature vector in the training set of 
class c.  The covariance matrix in Equation (3) can be 
estimated as 
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where N = N1 + N2 + …+Nc and Zj is the jth feature vector 

of the training set formed by pooling the zero-mean feature 
vectors of the C classes.  That is, the set used to estimate the 
common covariance matrix is given by 

}{...}{}{ 2211 CCZZZ μμμ −−− ∪∪∪                      (6) 
where the symbol ∪ is used to represent the pooling 

operation and {Zc - uc} represents the zero-mean training set 
ensemble of class c.  The estimate of the covariance matrix 
must be non-singular in order to determine the inverses. For 
the estimate to be non-singular, the dimensionality 
conditions Nc >D, c = 1,2,..C has to be satisfied in Equation 
(4) and the dimensionality condition N > D has to be 
satisfied in (5).  

It is often not be practical to collect enough training 
signals for N > D, especially from physically challenged 
individuals, to satisfy the dimensionality conditions [14].  
Consequently, estimates of the covariance matrices will be 
singular and it will not be possible to determine the 
discriminant functions in Equations (1) and (3).  The next 
section presents the DCT-based dimensionality reduction 
strategy. 

IV. DISCRETE COSINE TRANSFORM (DCT) 
DIMENSIONALITY REDUCTION 

Because the DCT efficiently packs information into a few 
coefficients, the dimension of the input feature space can be 
decreased by discarding a large number of DCT coefficients 
that do not contain useful information.  The one-dimensional 
discrete cosine transform (DCT) of a sequence Z=z(j); 
j=0,1,…,(D-1) is given by 
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The inverse DCT is given by 
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The one-dimensional DCT may be written as the matrix 

operation 
ZZ Φ=~

                                       (10) 
where Φ is the (D x D) basis matrix whose elements are 

given by 
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The (D x D) linear transformation matrix Φ is fixed and 
does not have to be determined using a training set.  The 

dimension of the transformed feature vector Z~  is the same 
as that of Z, that is (D x 1).  The dimension of the 
transformed feature vector can be decreased to a specified d, 
d < D by selecting d rows of Φ according to a defined 
selection criterion.  The selection of rows (basis vectors) can 
in turn be based on selecting DCT coefficients.  The two 
criteria most often to select DCT coefficients are based on 
the magnitudes and variances of the coefficients.  Because 
each vector Z is transformed independently, the magnitude 
of each coefficient will very likely vary within the training 
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vectors of each class (intra-class variations) and across the 
classes (inter-class variations).  To accommodate these 
variations, the intra-class rank of each coefficient is 
determined from the rank of the intra-class rank-sum of the 
coefficient.  The intra-class rank of each coefficient is 
summed to obtain the inter-class rank-sum and the final 
interclass ranking is obtained by from the rank of the inter-
class rank-sum.  In a similar fashion, the final ranking of 
each coefficient is determined from the rank of the inter-
class rank-sum based on the intra-class variance for the 
variance criterion. 

V. CLASSIFICATION STRATEGY 
The complete multivariate DCT-Gaussian classification 

strategy based is summarized in Figures 1 and 2.   Figure 
1(a) shows the steps to determine the initial (d x D) 
dimensionality reduction matrix Φd.  The training sets of all 
C classes are grouped into {Zc}.  The estimation of the mean 
vectors and the covariance matrices needed to implement the 
discriminant functions of the multivariate Gaussian classifier 
are shown in Figure 1(b).  The procedure for classifying a 
test signal Zc into a class c* is summarized in Figure 2.       

(a) 

(b) 
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Transformation Matrix  
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Figure 1: Training phase of classification strategy 
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Figure 2: Testing phase of classification strategy 

In order to demonstrate the application of the DCT- 
Gaussian multivariate classifiers summarized in Figures 2 
and 3, the next section describes a HMI signal classification 
problem in which the dimensionality problem is known to 
frequently occur.  That is, the number of vectors in the 
training set is less than the dimension of input feature 
vectors.   

VI. CLASSIFICATION EXAMPLE FOR SYSTEM PERFORMANCE 

A. Tongue Movement Ear Pressure Signal Interface 
System 
In a previous study, we introduced a new tongue-

movement based concept for hands-free communication and 
control in robotic control applications [4].  It was shown that 
tongue movements within the human oral cavity create 
unique, subtle pressure signals in the ear that can be 
processed to produce command signals in response to that 
movement. The pressure changes that occur in the ear canal 
due to tongue movement were detected using a microphone 
inserted into the ear-canal.  It was demonstrated that the ear-
pressure signals are distinct for each tongue movement and 
the signals can be classified accurately.  Consequently, 

tongue movements can be mapped, via ear pressure signals, 
into HMI command signals without inserting any device in 
the oral cavity.  While many systems for severely disabled 
individuals have leveraged the oral cavity for control input 
(mouth joysticks, sip-and-puff tubes) this is the first system 
we are aware of capable of mapping tongue movements into 
command signals without inserting any device in the oral 
cavity and has resulted in the first available wheelchair 
control system that does not require bodily movement or 
insertion of a device in the oral cavity [17]. We have also 
demonstrated that spoken words can be recognized from the 
ear pressure signals [3].  Therefore, speech control signals 
can also be mapped via ear pressure signals into HMI 
command signals.  Figure 3 shows the microphone-earpiece 
housing, a test subject wearing the device, and a graphic of 
its insertion in the ear, respectively. 

Microphone  
Figure 3:  Earpiece containing the microphone, Earpiece placed in the ear 

of a subject, Graphic of earpiece inserted in the ear canal  

B. Data Collection 
Data from 8 test subjects were used for application and 

evaluation of the DCT classification strategies developed in 
this paper and to compare the performances of these 
strategies with the results reported in our previous studies.  
The data consisted of tongue-movement ear-pressure 
(TMEP) signals of 2 female and 6 male (healthy) subjects 
corresponding to 4 tongue movement classes (Up, Down, 
Left, and Right tongue movements [4]).  The signals were 
sampled at 2 kHz.  Each movement was repeated at least 100 
times so that 100 tongue movements could be randomly 
selected to represent each tongue movement class.  The 
signals were filtered (passband of 150Hz) and segmented 
using the techniques developed in [4].  The durations of the 
TMEP segments were 200 msec. 

We now assume an additive signal plus noise model in 
which the ear pressure signal due to the tongue movement is 
deterministic and the background noise is random.  
Furthermore, we assume that the signal and noise are 
uncorrelated and that the background noise is statistically 
equivalent across the tongue-movement classes.  Therefore, 
the covariance matrix is the same for all classes and can be 
estimated using the mixture training vectors of all 4 classes 
according to Equation (5).  It is also assumed that the TMEP 
signals are equally likely for the 4 classes.   For each subject, 
the training set of each class contained 50 ear-pressure 
signals.  Therefore, the training set to estimate the 
covariance matrix of the discriminant function consisted of 
200 signals.  Consequently, the maximum dimension d of 
the feature vector for the classifier had to be less than 200. 

C. Recognition Accuracy 
For each subject, we selected the 199 highest ranked DCT 

coefficients out of the 400 DCT coefficients. The 
performance was then evaluated systematically to determine 
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the L coefficients (out of 199), that gave the best 
classification accuracy.  For each case, the dimension of the 
resulting Gaussian multivariate classifier was equal to the 
number of features selected.  When 1 coefficient was 
selected, the classifier was a univariate classifier.  The 
classification accuracies for the eight subjects are shown in 
Table I.  The best result for each subject is shown in 
boldface.  Also included is the value of L, in parentheses, 
that gave the best result reported in the table.   Each result in 
the table was averaged over 200 trials using random 
sampling to form the training and sets.  The table also shows 
the results of the best classifier (a decision fusion classifier) 
reported in the previous study for exactly the same data [4].  
Furthermore, for each subject, the Wilcoxon rank-sum test 
was performed on the classification accuracies obtained 
from the best DCT-Gaussian classifiers and the classification 
accuracies of the best classifiers from the previous study.  
When more than one classification accuracy was 100%, any 
classifier yielding 100% was selected as the best.  The 
differences between the new and previous best results are 
statistically significant.  It should be noted that though the 
mean differences are quite small, the standard deviations are 
also quite small, especially when the average classification 
accuracies are very high. 

Figure 4 shows examples of the classification accuracies 
as a function of the number of DCT coefficients selected 
using the maximum variance selection criterion; these 
criterion may vary based on the importance for each tongue 
movement.  In this work they were selected to give the 
maximum overall accuracy; they were not task dependent.  
For this particular case (Subject S3), the 46 highest ranked 
DCT coefficients gave the best results.  What is interesting 
to note is that the classification accuracies do not follow the 
trend of reconstruction errors.   That is, instead of increasing 
as more coefficients are added, the classification accuracies 
peak and then decrease.  The optimal amount may be found 
experimentally, however we not that the variance is quite 
low over a wide range of coefficients, which allows for 
reasonable and quick estimation.  These figures demonstrate 
another important difference between the selection of 
transform coefficients for compression and classification 
applications.  Also interesting to note is that only a small 
number of linear combinations of the input are needed. This 
is due to the high compaction of information into a small set 
of transform coefficients.  Therefore, a large number of DCT 
coefficients can be dropped to decrease the dimensionality. 
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Figure 4: Classification accuracies as function of the DCT coefficients 

VII. SIMULATION CASE STUDY: CONTROL OF A ROBOT 
ASSISTED MANIPULATOR (PROSTHETIC) ARM 

In our past work, we have demonstrated the utility of 
TMEP signals to control mobile robots [3] and power 
wheelchair systems [17].  The more powerful recognition 

accuracies lent by the new classifier, however, open a new 
breadth of potential applications.  To demonstrate the 
performance of this new classification strategy for use in 
robotic assistive technology, we introduce its integration for 
simulated control of a 4 degree of freedom robotic 
manipulator.  The design of the manipulator arm (Figure 5) 
was based upon anthropomorphic dimensions including a 
shoulder, elbow and wrist joint with attached gripper to 
allow for arm and object elevation in a two-dimensional 
programming environment.  Physical constrains were 
applied to the maximum and minimum joint flexure in the 
same manner a human arm is constrained enabling the arm 
to be envisaged more as a prosthetic aid then simply a 
robotic manipulator [18].  The task outlined for this 
simulation was designed to be challenging to ensure the 
robustness of the classifier was exercised allowing the 
potential of this classification strategy within a real time 
assistive system to be forecast.  The control scheme shown 
in Table 2 was chosen to map the tongue movements to the 
kinematics of the arm with no sensory feedback involved, so 
that the completion of the task would rely completely on the 
classification process and follow the desired trajectory 
blindly.  The arm moved in discrete time steps, thus did 
nothing in the absence of control input.  Experiments were 
performed in simulation to allow several trials to be 
conducted rapidly for statistical analysis. 

In addition to utilizing the new classification system, we 
also implemented a control system for the manipulator 
utilizing data from our previous research using our decision 
fusion classification algorithm.  The accuracy of this 
algorithm [4] makes it an ideal benchmark with which to 
compare the new DCT classification scheme.    

 
Figure 5: 2D simulation of robotic manipulator arm (prosthetic arm) 

Subject Table 1: DCT Classification accuracies  
MAG p-value VAR p-value 

Acc (%) Acc(%) 
S1 99.82 (20) 9.6496e-027 99.76 (28) 1.2e-023 

S2 99.73 (23) 1.1477e-048 99.62 (35) 7.0454e-046 
S3 99.33 (48) 1.7448e-020 99.27(46) 3.2134e-021 
S4 99.76 (26) 0.0001 99.77 (27) 0.0005 
S5 100.0 (15) 1.2714e-075 100.0 (19) 7.0989e-075 
S6 99.96 (35) 2.3309e-072 99.96 (35) 2.3309e-072 
S7 100.0 (16) 9.5903e-028 100.0 (19) 5.3083e-029 
S8 99.91 (18) 3.3801e-049 99.85 (17) 8.5068e-045 

Ave 99.81  99.78  
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Trigger/TMEP  Response  Target 

1 (L)  Incrementally 
rotate by 5 
degrees 

Shoulder 
2 (D)  Elbow 
3 (R)  Wrist 

4 (U)  Change 
direction  

Rotation 

4,4 (Compound)  Open/Close  Gripper 

Table 2: Control scheme mapping kinematics of robotic 
manipulator arm to tongue actions 

The task selected involved a complex act of controlling 
the dextrous manipulator to pick up a small round object 
from a surface, and shift it to a container. The task itself 
involved the arm starting in full downward extension; the 
arm is then rotated clockwise and the gripper brought up 
using the elbow joint. The arm can then move anticlockwise 
pass the table top surface where the gripper can be opened 
using a compound (double) movement of the fourth (up) 
action, and then brought down to the ball (object) using a 
combination of wrist and elbow movements. Once the ball 
has been gripped, the motions of the arm are reversed 
allowing it to be brought back towards its starting position 
where the ball can be dropped into the target bin. Snapshots 
of the arm whilst performing the task are shown in Figure 6 
with the target number of tongue movements for a perfect 
run being 120 (note that TMEP signals can be produced and 

recognized in approximately 300 ms) . The task itself was 
chosen to mimic an everyday task that could be performed 
by a normal person such as picking up an object from the 
table and dropping it into a bin and targets future 
applications for control of prosthetic limbs. If a mistake is 
made then the control system accounts for this and has to 
correct the mistake using specific combinations of the 
appropriate movements to bring the arm back to the correct 
orientation. There are certain critical points associated with 
the task (highlighted by red circles in Figure 6) where if an 
error is made by the classifier then it can lead directly to a 
collision or even complete task failure. For instance when 
trying to grip the object, a compound movement of signal 
four is required, which significantly increases the probability 
of misclassification; if either of these actions is wrongly 
classified then the ball and arm could easily collide or the 
arm be knocked into the table resulting in complete task 
failure. 

Each subject would be judged on overall accuracy, total 
tongue movements needed, number of collisions, and 
whether the task was completed. Training data was collected 
generically, without targeting this task.  Data was collected 
in an open lab (uncontrolled) environment.  Results for eight 
subjects performing the task 15 times are presented Table 3.  

The results of the simulation show this classification 
strategy to be extremely robust, even when performing in an 
environment where misclassifications can be critical.  It also 
helps to highlight the possibility of its integration into a real-
time assistive technology control system with a 100% (15 
out of 15) completion of the arduous task set out and a total 
of only one collision across the whole results set.  With such 
a simple controller implemented and with zero feedback 
within the system both internally and externally (visually), it 
meant that the output of the task relied completely on the 
classification obtaining an average accuracy of 99.85% (with 
a standard deviation of less then 0.3%) across the eight 
subjects tested. 
 

Table 4 presents results for the same task with the same 
test subjects simulation using the results obtained previously 
based on our past decision fusion classification (DFC) patter 
recognition algorithm (note that data for Subject 5 was 

 
Figure 6: Snapshots of the robotic manipulator arm performing the task with red circles indicating critical areas (start point - 

top left, end point - bottom right) 

Subject 

Average Number 
Actions Correctly 

Classified to 
Complete Task 

No. of 
Collisions 
per Run 

No. of Times 
Task 

Completed 

1  120.2 1  15 
2  120.7 0  15 
3  121.9 0 15  
4  120 0 15  
5  120  0  15  
6  120  0  15  
7 120 0 15 
8 120.1 0 15 

Avg 120.4  0.125  15 
Table 3: Task results for eight test subjects over fifteen test runs 
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unavailable for this test due to data corruption during 
collection).  This algorithm had shown the highest ever 
previously recorded results for TMEP recognition.  As can 
be seen from Table 4, the classifier is capable of completing 
the prescribed task 80% of the time compared with 100% 
with the DCT algorithm.  Furthermore, it requires 
significantly more tongue actions and results in a higher 
number of collisions.   

VIII. CONCLUSIONS 
Implementing Gaussian multivariate classifiers for control 

signal classification is quite straight-forward when there is a 
sufficient number of training vectors to ensure that the 
estimate of the covariance matrix is non-singular.  However, 
when the number of training vectors used to estimate the 
covariance matrix is less than the dimension of the training 
vectors, the discriminant functions cannot be implemented 
because the estimates of the covariance matrices are 
singular.  In such cases, which frequently occur in the design 
of communication and control systems for individuals with 
severe disabilities, the most promising solution is to decrease 
the dimension of the signal space. This work has shown that 
the DCT basis vectors selected using the class-dependent 
ranking criteria are quite effective in decreasing the 
dimension for multivariate classifier development.  In terms 
of implementation, the DCT based classifiers are quite 
simple because the DCT transformation matrices are fixed.    
It is important to note that the classifiers can be specifically 
developed for an individual without having to collect a 
prohibitively large number of training signals simply to 
satisfy the dimensionality conditions.  Therefore, the 
Gaussian multivariate signal classification strategies based 
on the DCT dimensionality reduction techniques developed 
in this paper should be especially beneficial for designing 
assistive robotic interfaces  for individuals from whom only 
a limited number of training signals can be collected due to 
severe disabilities.  Moreover, the formulations of the 
strategies are quite general and can, therefore, be applied to 
a wide range of problems involving the classification of 
multivariate signals.  In this work, we have specifically 
demonstrated the algorithm’s utility for a complex task of 
controlling a robotic arm through tongue-movement ear 
pressure (TMEP) signals.  We envision this work to form the 
basis of a new control system for assistive robotic 
mechanisms, including potential application to prosthetic 
arms.  
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Subject Average Number 
Actions Correctly 

Classified  

No. of 
Collisions 
per Run 

No. of Times 
Task 

completed 
1 140.2 10 9 
2 121 0 15 
3 232 1 14 
4 136.3 0 15 
6 139.4 0 15 
7 143.4 14 8 
8 150 11 5 

Avg 152.1 4.2 12 
Table 4: Decision Fusion Classification (DFC) results for manipulator 

control 
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