The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

Contact Point Clustering Approach for
5-Fingered Regrasp Planning

Thanathorn Phoka and Attawith Sudsang

Abstract— We propose a heuristic approach for a regrasp
planning problem. The input with a large number of discrete
contact points is considered. In this setting, traditional methods
of complete solution is not available. Based on wrench space
information of the input, our proposed algorithm clusters the
input into groups and chooses a representative contact point
from each group. A global graph structure for regrasp planning
is then constructed using all force closure grasps that can be
formed only by representative contact points. Also described are
approaches for finding a regrasping sequence from an arbitrary
grasp to a grasp in the global structure. Once such regrasping
sequences are found for linking the input initial and target
grasps to the global graph structure, the regrasp planning
problem can be solved as a graph search. The results from
preliminary experiments indicate that our method can solve
many problem instances efficiently.

I. INTRODUCTION

The central idea of manipulation is about restraining the
object being manipulated to have limited or no movement
possibility, typically by means of grasping. To verify stability
of a grasp, the force closure property is usually considered.
Achieving force closure guarantees that end effectors touch-
ing the object can exert any possible force and torque to the
object with complete restraint about contact points. Hence,
any external disturbance to the object can be counterbalanced.

Regrasp planning is inspired by the actual behavior of
human manipulation when the object goes through several
different grasping configurations while being kept in the hand
during the entire process. This ability is referred to as in-hand
manipulation. There are several complex tasks that involve
not one grasping configuration but a sequence of different
grasping configurations, or it might happen that the current
grasp is not suitable for the task to perform. This arises the
regrasp planning problem, given an initial grasp and a target
grasp, the goal is to compute a movement sequence of the
fingers’ contact points that changes the initial grasp to the
target configuration while still maintaining the force closure

property.

This research is financially supported in part by the Thailand Research
Fund through the Royal Golden Jubilee Ph.D. program under grant No. Ph.D.
1.0.CU/49/D.1 and the 90" Anniversary of Chulalongkorn University Fund
through the Ratchadapiseksomphot Fund, both are greatly appreciated.

T. Phoka and A. Sudsang are with the Department of Computer Engi-
neering, Faculty of Engineering, Chulalongkorn University, 10330, Thailand
thanathorn.p@gmail.com, attawith@gmail.com

978-1-4244-3804-4/09/$25.00 ©2009 IEEE

To achieve complete automation, it is vital for the robot
to be able to perform sensing by itself. Acquisition of object
spatial structure is usually done via range sensing devices
such as a laser range finder or stereoscopic cameras. The
data obtained through this method usually involve thousands
of surface points. To provide a trade-off between accuracy
and computational simplicity, Goldfeder et al. [1] applied
superquadric fitting to parameterize object shapes from the
point-cloud input. A grasp planning is performed in the
hierarchy of superquadrics from the coarsest to finer ap-
proximations. In [2], the minimum volume bounding box
approach is used to fit input data by primitive box shapes.
The result bounding boxes and data points are iteratively split
to yield better box approximations. A grasp planner exploits
the approximations as clues to synthesize grasps on arbitrary
objects.

While the grasp planning problem for discrete contact
points just recently began to receive more attention, the
regrasp planning problem in the same setting remains mostly
unexplored. The main contribution of this paper is to present
a novel method for organizing the input contact points to
facilitate the regrasp planning process. Our underlying idea
is to partition the input points based on their wrenches.
Contact points that can exert similar wrenches are grouped
together. For each group, a representative contact point is
selected. Every set of representative contact points that can
form a force closure grasp is then computed and referred
to as a representative grasp. Our idea is motivated by a
typical regrasping scenario when a supporting finger need
to be placed on the object before some finger in a force
closure grasp can be lifted off. Obviously, if the supporting
finger can exert wrenches similar to those by the finger to be
lifted off, it is likely that the object will still remain in force
closure after the finger swap. The most important product
of the proposed clustering strategy is the roadmap structure
that leads to significant reduction of the search space. This
structure is a graph that captures how representative grasps
can switch among one another via finger swapping. Since
each representative grasp roughly describes a different way
wrenches can be aligned to form a force closure grasp, the
roadmap somewhat approximates the global relationship that
describes how force closure grasps can be switched among
one another. Of course, an arbitrary force closure grasp may

4174

not be a member of the roadmap. Therefore, to utilize the
roadmap for regrasp planing from an arbitrary initial grasp
to a target grasp, we need regrasping sequences that bring the
initial and the target grasps to some grasps in the roadmap.
We will present methods for computing such sequences based
on the clustering information. Preliminary experimental re-
sults show that most regrasp planning problems can be solved
within a few seconds or a few minutes by our approach
whereas exhaustive search takes about a day or longer.

II. BACKGROUND ON GRASPING AND REGRASP
PLANNING

A grasp is defined by a set of contact points. Each contact
point can exert force and torque according to the contact
model. A grasp is said to achieve force closure when any
force and torque can be countered by positive combination
of force and torque exerted by the contact points defining the
grasp. In this work we assume hard contact with Coulomb
friction model. This model indicates that the ratio between
the tangential force and the normal force exerted by an end
effector cannot exceed the frictional coefficient to prevent
slippage. This condition constrains that the set of net forces
on each end effector form a cone. Under these assumptions,
it is well-established that four frictional contact points are
sufficient to achieve force closure grasp on any object [3].

There exist several works on the problem of force closure
analysis, i.e. asking whether a grasp achieves force closure.
This problem is very important in regrasp planning since we
have to determine the movement of end effectors such that
the resulting grasp still maintains force closure in every step
of the movement. For 3D frictional grasp, Zhu and Wang
[4] proposed Q-Distance algorithm which is based on two
linear programming problems. Niparnan and Sudsang [5]
proposed an algorithm to filter fault positive grasps based
on a necessary condition of positively span of force and
torques components. In this work, we apply the algorithm of
[5] for fast filtering grasps that do not satisfy the necessary
condition. Grasps that pass the filter are then verified for force
closure by applying the algorithm of [4].

Finger gaiting [6] or finger switching [7], on the other
hand, involves placing one additional end effector on a new
position and removing one of the initial end effector. Since
four end effectors are sufficient to achieve force closure, we
consider 5-finger grasp in this work so that one additional
finger can be used to perform regrasping. Assuming that
we wish to change from the grasp on point {pa, Db, Pe; Dd }
to {pv, Pe; Pd, Pe }» finger switching starts from placing one
additional finger on the new position (p. in this example)
and then removes the finger that is not included in the final
grasping position (p, in the example). It comes automatically
that two grasps sharing three contact points can be switched
to each other.

III. REGRASP PLANNING ON DISCRETE POINT SET

In this work, we assume that the model of the input
object is described by triangular meshes. This will result in
a polyhedron with a large number of triangular facets. Each
facet is usually very small relative to the entire object. We
use the centroid of each facet as a possible contact point. This
approach is also adopted in [8]. Since we consider discrete
contact points, finger rolling and finger sliding which require
continuous contact motion are not permitted. Only finger
switching is considered in the planning.

A. Representative-Level Roadmap

The first step of regrasp planning is to compute a roadmap
of all possible grasping configurations. Since we consider
4-finger grasps, a grasping configuration consists of four
contact points. A grasping configuration that satisfies force
closure induces a vertex in the roadmap and the configuration
is stored in this vertex. An edge joining two vertices exists
when two associated grasping configurations can switch to
each other. This work assumes five fingers for regrasping.
Four fingers are used to securely grasp the object. The
remaining finger is used for finger switching. This means
that two grasping configurations that have one distinct contact
point can perform finger switching which implies that there
exists an edge joining the two vertices corresponding to these
two grasping configurations.

Suppose there are N contact points to consider. The
possible grasping configurations are as many as N*. For
each grasping configuration, there can be as many as 4N
other grasping configurations that can be reached directly by
finger switching. Consequently, size of a roadmap constructed
from a large number of contact points could easily become
larger than the memory space of an ordinary computer. To
overcome these limitations, we propose to cluster the input
contact points into groups. Instead of using all contact points,
one contact point is picked from each group to be a represen-
tative contact point for constructing the representative-level
roadmap. The number of groups is a user-defined variable
which indicates trade off between completeness and resource
used in the computation. Of course, the representative-level
roadmap does not cover grasping configurations consisting
of some non-representative contact points. A local planner is
required to compute a path from such grasping configurations
to a grasp in the representative-level roadmap.

B. Spectral Clustering for Contact Point Set

In this work, we apply spectral clustering algorithm to
partition the input contact points into meaningful clusters. In
spectral clustering, users are free to define how a cluster is
meaningful according to their task at hand. Our proposed idea
is to define meaningful clusters from similarity of wrenches
by means of grasping. Recall the finger switching operation:
the remaining finger is placed on the object then one finger

4175

is lifted to change grasping configuration. To maintain force
closure, a reasonable heuristic is to ensure that the chosen
contact point for the remaining finger and the contact point
of the finger to be lifted can produce similar wrenches.
Spectral clustering takes a contact point set as input to
compute an affinity matrix which embeds similarities of every
pair of contact points. The matrix is solved for eigenvectors
corresponding to the k largest eigenvalues. The eigenvectors
are then used to determine the clustering of contact points.

1) Affinity Matrix: Affinity matrix contains information
that reflects how contact points are grouped according to their
applicable forces and torques. Each pair of contact points
is measured for pairwise distance. The pairwise distances
of all pairs form a matrix that encodes similarity between
contact points. An affinity matrix is symmetric and denoted
by A € RV*N where 0 < a;; < 1 for all contact points
1 and j. Element a;; encodes the likelihood that contact
points ¢ and j can be clustered into the same group. Let
f;,r; be a unit force perpendicular to the object’s surface
and the position of ¢th contact point w.r.t. a reference point
o. The associated torque is ¢(f;,r;,0) = (r; — o) x f;. The
wrench generated by f; at this contact point i is therefore
w(f;,r;,0) = (£, t(f;, r;,0)). When friction is assumed, the
friction cone at contact point ¢ is approximated using an
m-sided pyramid bounded by fi1,..., fim- The associated
wrench cone is defined by w(f;1,r;,0),...,w(fi,,r;,0) and
called primitive wrenches.

Since a force closure test in the wrench space considers
only the directions of wrenches, the distance function is for-
mulated based on measuring the angle between two wrenches
from two distinct contact points, which can be calculated
from their inner product. However, the torque component
of a wrench depends on the choice of the origin assumed
in the torque calculation. We therefore use the centroid
¢ = (r; +r;)/2 of the contact positions r; and r; as the
reference origin. Since r;,r; and c are fixed in the object
frame, the toque components of these two wrenches are not
affected by any rigid transformation applied to the object,
i.e., independent from the object’s pose.

The proposed distance between two contact points ¢ and
7 considers the difference between wrenches that the two
contact points can exert. Roughly speaking, we compare the
geometries of the two wrench cones. Instead of integrating
all differences between all pairs of wrenches from the
two cones, approximation is taken by comparing only the
boundaries of the linearized wrench cones, i.e., angles
between the primitive wrenches from the two wrench cones
are measured. Each primitive wrench of ¢ is compared
with a primitive wrench of j. Obviously, there are many
ways to match pairs of primitive wrenches for comparison.
We have to select one matching that is appropriate for
the distance function. Since the linearization of a friction
cone is in either a clockwise or counterclockwise order, the

result primitive wrenches are arranged in the same order
and a reasonable matching of the primitive wrenches has to
preserve this order. The starting index for a wrench cone
in the comparison is however not necessary the first index
obtained from the linearization. The indices of the primitive
wrenches of a contact point can all be shifted by an integer
x while preserving the order. Without loss of generality, we
apply the shifting « for the primitive wrenches of the contact
point j. The angles between w(fi1,r;,c),..., w(fim,,r;,C)
and w(fj(1+a: mod m)s 55 C)? ce w(fj(m+a§ mod m)s 55 C)
are measured pair by pair (Fig. 1). The summation of these
angles defines our geometrical difference between these two
wrench cones. However, this value is varied by changing x.
We imitate the principal of the shortest distance between two
bodies in the Euclidean space: by varying z, the minimal
summation of angles is used as the pairwise distance.

The difference between two wrench cones is measured as
follows

M (%, j) = min Z angle(w(fir, rs, c), w(fj(k42), 15, €))
k=1

where 0 < z < m-—1and k + z € Z,,. Since value
of M(i,7) depends on the number of pyramid’s sides, the
distance function is normalized as d(i,j) = M (i,7)/m.

(b)

Fig. 1. Transformation distance : An example of cones in 3D where the
numbers show the order of comparison (a) x =0 (b) z = 2

The Gaussian similarity function is applied to encode
pairwise measures into the affinity matrix. It is formed by
an exponential function as

ali, j) = e~ 1027,

Clearly, 0 < a;; < 1, and contact points of which
their pairwise distance is smaller have larger affinities be-
tween them. The issue of choosing o is neglected. We
simply choose o as the average of all measures, i.e., 0 =

1 o
NZ E1gi,jg1v d(i, j).

2) Spectral Clustering Algorithm: The spectral clustering
algorithm in [9] is applied as follows.

i. Compute the affinity matrix A.

ii. Define D to be the diagonal matrix whose (4,7)-
element is the sum of A’s i-th row, and construct the
matrix L = D~1/2AD~1/2

iii. Compute the eigenvectors vy, ..
with the k largest eigenvalues.

., v of L associated

4176

iv. Construct the matrix V = [vivy...vi] € RV*F by

stacking the eigenvectors in columns.

v. Form the matrix U from V by normalizing the row

sums to have unit length, that is u;; = vy; /(3 v3)"/?
vi. Extracting each row of U as a point in R¥, cluster
them into clusters K7, ..., Kj by performing k-means
algorithm

vii. Assign the original contact point p; to cluster K; if
and only if row ¢ of the matrix U is assigned to cluster
K;.

After running the clustering algorithm, we need to con-
struct some structures for further uses in regrasp planning.
Let the input contact points be stored in a table denoted by
To. The output of the algorithm are not only the clusters but
also the centers of the clusters. The contact point associated
with the row vector of U that is closest to the center of K is
chosen to be the representative contact point of cluster K;.
We construct a matrix E to store Euclidean distances between
all row vectors of U and the centers of all clusters. A table
T is constructed to store representative contact points of all
clusters.

C. Constructing Representative-Level Roadmap

We are now ready to compute a roadmap for the rep-
resentative contact points. All vertices are constructed by
checking force closure grasp for every four contact points
in Tr. Each grasping configuration satisfying force clo-
sure is assigned to a vertex. The number of vertices in a
switching graph is equal to the number of grasps found
in force closure checking. An edge joining two vertices,
whose corresponding grasping configurations can switch to
each other, can be easily computed by checking the number
of common contact points between the two corresponding
grasping configurations. Since 4-finger force closure grasps
are considered, two grasping configurations can switch to
each other when they share three common contact points.
The computed representative-level roadmap is denoted by R.

D. Planning Regrasping Sequence

The regrasping sequence planning process is splitted into
two level search: in representative-level roadmap and in
local roadmap. In the previous section, the construction of
representative-level roadmap has been described. A regrasp-
ing sequence acquired from the representative-level roadmap
contains only configurations consisting of contact points in
Tr which is a subset of of the original contact point set
To. This means that traversal in the representative-level
roadmap does not cover grasping configurations that consist
of some contact points in Tp\Tr. Therefore, for arbitrary
initial and goal grasps, the regrasp planner has to find
regrasping sequences that link both grasps to some grasps
in the representative-level roadmap.

The planner performs Algorithm 1 which exploits a heuris-
tic of similarity in a cluster to determine which vertex in

the representative-level roadmap the initial grasp should be
switched to. Let g be the initial grasping configuration which
consists of contact points pg, pp, p. and pg. Let us denote
by pa,py,pes and pg the representative contact points
of the clusters that respectively contain p,,ppy, p. and pg.
Also denote by ¢’ the grasping configuration consisting of
Dar, Db s Per and pg. If ¢’ does not achieve force closure,
i.e. the vertex defining ¢’ is not in the representative-level
roadmap R, the planner then performs Algorithm 2. Oth-
erwise, a regrasping sequence from g to ¢’ is planned as
follows.

For each contact point p; of ¢’ (i = d/,...,d’), all contact
points in T that are in the same cluster as p; are copied to
the set S;. We then compute all possible 4-finger force closure
grasps such that the first, second, third and forth contact
points are picked from Sg/, Sy, S and Sy, respectively. A
local roadmap graph is then constructed such that each of its
vertices represents each force closure grasp mentioned above,
and each of its edges joins two vertices representing two
grasps with three common contact points (finger switching
is possible). With a local roadmap, any graph search can be
used to retrieve a path from the vertex representing ¢’ to
the vertex representing g. If no such path can be found, the
planner invokes Algorithm 2.

Algorithm 1
1: Determine pg/, ppr, per, P and g’
2: if ¢’ ¢ R then
3: Algorithm 2
4: else

5. Determine Sy, Sy, Ser, Sqr

6: L = ConstructRoadmap(S,, Spr, Ser, Sqr)
7. if path = FindPath(L, g, ') then

8: return path

9: else

10: Algorithm 2

11: end if

12: end if

Algorithm 2 again exploits the information of clusters.
It is invoked when ¢’ does not achieve force closure or
Algorithm 1 fails to find a regrasping sequence from g to
g'. The underlying idea of this algorithm is to relocate one
contact point of the given grasping configuration from its
cluster to another cluster that its representative contact point
can form a force closure grasp with the representative contact
points of the other unchanged clusters. A local planning,
is then performed among one changed cluster and three
unchanged clusters, which guarantees that g and the new
representative grasp are force closure. However, this method
perturbs the local properties of the changed clusters. To
minimize the effect of this transfer and to maximize the
use of local property, this algorithm aims to transfer one

4177

contact point in g to its second nearest cluster. The procedure
FindNearestCluster finds vertices in R that the associated
grasping configuration f’ has one distinct contact point from
¢'. Let p,s and p, be the distinct representative contact point
of ¢’ and f’. The associated contact point of p, is denoted by
pz- We query the matrix E for the distance between p, and
the center of cluster K+ of p,.. All grasping configurations in
R having one distinct contact point from ¢’ are used to query
the distances. There are many possible pairs of a contact point
and a cluster that the contact point will be moved to. We again
select the pair that induces the shortest distance between
them for locality reason. Now we redefine some notations
to understand the pseudocode. Let the selected contact point
be p,, its cluster be K/, its second nearest cluster be K,
and the grasping configuration possessing the cluster K, be
f'. This procedure returns the variable X which consists of
Dz Kpry Ky and f . If X is determined, we then temporarily
add p, into K. Let f’ consist of py, pr, ps, p:. We perform
a local roadmap construction and find a path between g and
f' which both are members of the local roadmap.

Algorithm 2
1: Determine py’, Py, Per s Pd’
2: X = FindNearestCluster(py’, py’, Pe’ s Pa)
3: if X is not determined then
4: Algorithm 3
5: else
6: Add p, into K,
7.
8
9

Determine S, Sy, S, St
L = ConstructRoadmap(Sy, Sy, S, St)
if path = FindPath(L, g, f’) then

10: Remove p, from K
11: return path

12: else

13: Remove p, from K,
14: Algorithm 3

15: end if

16: end if

If finding a path from ¢ to f’ still does not achieve,
Algorithm 3 is applied by updating the representative-level
roadmap. The contact points pg, Py, Pc, Pg are now considered
as representative contact points. Let T be a set of the contact
points {pa,Ps, Pe, Pa}- All grasping configurations partially
consisting of some contact points in 7 are verified for force
closure condition and reported as new vertices in R. New
edges are computed among the new vertices and between
the new vertices and the recent vertices of R to complete
updating R. Clearly, g is associated with a vertex in R.
Therefore, a path from g to any grasp in R can be computed
by a graph search.

In conclusion, the overall algorithm firstly clusters the in-
put contact points. Then a representative-level roadmap R is

Algorithm 3
1. Tg = {Ppa;> Py P, Pd}
2. Ty =TrUTg
3: L = ConstructRoadmap(T'4, Ta,Ta, 1)
4: Update R by adding L and linking L to R

constructed from the representative contact points. To query
a regrasping sequence from an initial grasping configuration
g to a goal grasping configuration h, they have to be linked
with R by using Algorithm 1 and 2. These algorithms find
a path between g to a vertex in R and so on for h. If the
algorithms fail to report a path, Algorithm 3 is performed by
adding g or h into R. Finally, a graph search is then applied
to find a path connecting two grasps in R.

IV. EXPERIMENTS AND RESULTS

The test objects are shown in Fig. 2. They are modeled with
about 500 triangular meshes. All objects are clustered into 50
groups for regrasp planning. All run times are measured on
a PC with a 2.4 GHz CPU.

Q=

(a) (b) (©

(hl

——T

w &) e
{) . 4
(C)) (O] ()
Fig. 2. Test objects

Table I shows the results from the construction of
representative-level roadmaps. The results present for each
test object the number of force closure grasp vertices of
the resulting representative-level roadmap, time spent in the
construction and the number of connected components of the
roadmap.

The results of local planning are shown in Table II. For
each object, we sample 10,000 force closure grasps. For
Algorithm 1, each sampled grasp is verified whether the
associated representative contact points form a force closure
grasp. The numbers of force closure grasps found are shown
in percent. For Algorithm 2, the procedure FindNearestClus-
ter is executed for each sampled grasp. A grasp passes the
verification if the variable X is determined. Then 30 grasps
are randomly picked from the sampled grasps that pass the
verification for each algorithm. Each grasp is planned for
a regrasping sequence that joins it to the representative-
level roadmap. The results list the numbers of grasps (out
of 30) for which such sequence are found. To measure the
efficiency of Algorithm 3, 30 sampled grasps that do not
pass the verifications of Algorithm 1 and 2 are randomly
picked. We then perform Algorithm 3 for each of them and
verify whether it connects with part of the representative-
level roadmap that exists before the update by Algorithm

4178

3. The results show the low passing rate of the verification
by Algorithm 1 for some objects. Most grasps that pass the
verification however can be connected to the representative-
level roadmap. Algorithm 2 appears to be more effective
than Algorithm 1. The passing rates for the verification of
Algorithm 2 are significantly higher than those of Algorithm
1, (with slightly fewer regrasping sequences found). However,
Algorithm 1 is still needed because of its considerably higher
verification speed. Likewise, although applying Algorithm 3
can connect all grasps to the representative-level roadmap, it
takes much longer to update the representative-level roadmap
than to run both Algorithms 1 and 2 (the running times are
not shown here).

Table III presents the result from querying regrasping
sequences. We randomly choose 30 pairs of force closure
grasps to serve as the initial and target grasps for each
query. Although the number of connected components of
the representative-level roadmaps are quite large for some
objects, successful regrasping sequences can be found for
most pairs of grasps. This implies that the majority of grasps
lie in the same connected component. Minimum, maximum
and average querying times are also shown in this table. An
example of a regrasping sequence is presented in Fig. 3.

TABLE I
RESULT OF REPRESENTATIVE-LEVEL ROADMAP CONSTRUCTION

Fig. | #vertex | #CC | time(s)
(a) 25160 1 38.98
(b) 6602 5 9.95
(c) 2148 13 4.02
(d) 2571 15 4.80
(e) 2372 21 4.38
) 19317 1 28.85

TABLE I
RESULT OF LOCAL PLANNING

Fig Algorithm 1 Algorithm 2 Algorithm 3
" | %run | #connect | %run | #connect #connect
(a) | 35.18 30 91.21 30 30

(b) | 34.29 30 87.92 30 30

(c) 10.02 29 81.15 29 30

(d | 10.77 30 81.55 29 30

(e) 8.94 30 77.87 28 30

(f) | 45.67 30 91.20 30 30

V. CONCLUSION

We have proposed a new approach to solve the regrasp
planning problem. Our approach provides trade off between
completeness and the resource used in the computation. It
clusters the input using spectral clustering. The representative
contact points from all clusters are used to constrain possible
search space. The underlying idea is similar to that of the
classical motion planning problem. We construct a partial

TABLE III
RESULT OF PLANNING REGRASPING SEQUENCES

Fig. | #connect . time(s)
min max average
(a) 30 7.80 109.49 80.31
(b) 30 11.55 43.74 25.77
(©) 29 2.14 11.07 5.42
(d) 30 2.17 14.51 6.99
(e) 29 1.84 9.22 491
(f) 30 31.37 | 145.32 80.07
\
& N
A
(a) (b) ©) (d)
> <,
% N
S N
(©) () (g)

Fig. 3. A regrasping sequence for the object in Fig. 2(b)

solution, called a representative-level roadmap. This allows
the original problem to be divided into three parts: planning
regrasping sequence from the starting grasp to the roadmap,
planning regrasping sequence in the roadmap and, finally,
planning regrasping sequence from the roadmap to the target
grasp. Since the set of representative contact points contains
much fewer contact points, solving the problem on the
roadmap is much less complex. Nevertheless, this is achieved
at the cost of completeness.

REFERENCES

[1] C. Goldfeder, P. K. Allen, C. Lackner, and R. Pelossof, “Grasp planning
via decomposition trees,” in IEEE Int. Conf. on Robotics and Automa-
tion, April 2007.

[2] K. Huebner, S. Ruthotto, and D. Kragic, “Minimum Volume Bounding
Box Decomposition for Shape Approximation in Robot Grasping,” in
IEEE Int. Conf. on Robotics and Automation, 2008.

[3] J. Ponce, A. Sudsang, S. Sullivan, B. Faverjon, J.-D. Boissonnat,
and J.-P. Merlet, “On computing four-finger equilibrium and force-
closure grasps of polyhedral objects,” International Journal of Robotics
Research, vol. 16, no. 1, pp. 11-35, February 1997.

[4] X. Zhu and J. Wang, “Synthesis of force-closure grasps on 3-d objects
based on the q distance,” IEEE Transactions on Robotics and Automa-
tion, vol. 19, no. 4, p. 669, August 2003.

[S] N. Niparnan and A. Sudsang, “Positive span of force and torque
components of four-fingered three-dimensional force-closure grasps.”

[6] L. Han and J. Trinkle, “Dextrous manipulation by rolling and finger
gaiting,” in IEEE Int. Conf. on Robotics and Automation, 1998.

[7]1 A. Sudsang and T. Phoka, “Regrasp planning for a 4-fingered hand ma-
nipulating a polygon,” in IEEE Int. Conf. on Robotics and Automation,
2003.

[8] M. Roa and R. Suarez, “Independent contact regions for frictional grasps
on 3d objects,” in IEEE Int. Conf. on Robotics and Automation, 2008.

[9] A.Y.Ng, M. L. Jordan, and Y. Weiss, “On spectral clustering: Analysis
and an algorithm,” in Advances in Neural Information Processing
Systems 14. MIT Press, 2001, pp. 849-856.

4179

