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Abstract— Topological visual maps contain different abstrac-
tion levels of information that can be used by robots to carry
out different activities. We propose here a new hierarchical
structure in which landmarks extracted from conventional
images are grouped creating a graph of planar regions. The
new hierarchy improves previous approaches based on images
reducing both, the size of the graph and its complexity. In
order to segment and group the planar regions of a sequence
of images a new approach based on the simultaneous matching
of two images and the previously extracted planar regions is
proposed. We also consider multi-plane restrictions so that the
method is robust to the appearance of new planes. The paper
presents two contributions. First the triple matching approach
to extract all the planes seen in the set of images and second a
new topological map construction based on a graph of planar
regions which can be used by mobile robots to localize and
move in the environment. Experiments with real images in both
indoor and outdoor environments show good performance of
our proposal.

Index Terms - homography, topological maps, planar re-
gions.

I. INTRODUCTION

In robotics, vision sensors are usually chosen due to its
low cost and the big amount of information they provide
compared with other sensors. In this context, images stored
in a visual memory have been extensively used. However, the
big amount of data managed with this kind of sensors makes
necessary to incorporate additional levels of organization.
Topological maps are an interesting way to organize the
visual information and are also very useful in the field
of robotics. When the size of a map is big enough, an
organization in different abstraction levels will make a robot
to lose less time in the search of the corresponding images
while it is performing its tasks. The information also must
be useful for the robot in order to self localize and move in
the environment with accuracy. Moreover, if a robot needs
to cooperate with a human or simply receive orders from
him it should be able to understand some basic human
concepts such us walls, rooms or buildings. A multiple layer
hierarchical representation can help to accomplish these two
different tasks. As we will see, the combination of visual
landmarks with a higher conceptual organization of this
landmarks in planar regions can benefit robotic systems in
many different ways.
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Organization of the information in hierarchical structures
is not a trivial question and several aspects must be consid-
ered. Murillo et al. present in [10] a hierarchical technique
to localize a mobile robot using omnidirectional images.
In a first step the robot detects the room where it is
located using a pyramidal matching and in a second stage it
recovers its metric localization using two reference images
by computing the 1D trifocal tensor. In this approach the
images of different rooms are manually sorted. Automatic
sorting of the reference images is a desirable characteristic
for the organization of the visual information. Zivkovic et al.
[17] describe a method in which images are automatically
sorted in a graph where each node represents an image and
each edge represents a geometric relation between the two
images defined by the epipolar geometry. The graph is later
clustered into non intersected regions representing convex
spaces. This kind of representation is very intuitive and has a
good performance, but there is still room for improvements.
We find two drawbacks in the use of maps made only by
images. First, in hierarchical maps created with images there
will be a lot of redundant information. Many features will
be seen in several images so that the map will take up a
lot of unnecessary space. The second disadvantage is the
density of the graph. In one room most part of the images
will have connections with all the other images in the same
room. This implies that working with an image graph will
be computationally expensive. We propose here an algorithm
to extract and arrange all the planes contained in the scene
in a similar graph, and, as we will show, with this approach
the size of the graph is reduced in space and complexity.

There are several works in the literature that assume the
presence of planes in the environment to solve different
robotic problems. In these cases a representation based on
planar regions can also help. For example [2], [4] and [8]
use planes and homographies to control robots with high
precision. In [11] and [3] graphs of images are used to move
a robot through different routes using also homographies.
In all these approaches the structure of the scene is not
required and only sets of coplanar features are used. Taking
this into account we have chosen not to compute or store any
additional information about the scene but just extract and
group sets of coplanar features in the image domain, which
also makes the approach faster. Moreover, other tasks like
structure reconstruction [13] or camera calibration [9] can
also benefit from the knowledge of the existence of planes
in the scene and can make use of the information provided.
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However, in order to build a topological map with one
layer representing planar regions it is still necessary to detect
all the planes that are visible in the images. The idea of
segmenting all the planes that appear in a set of images is not
new and there are several works in the literature that propose
different algorithms and approaches to make it possible. A
method for reconstructing the planar regions visible from two
oriented images from sparse correspondences is presented
in [6]. Zelnik-Manor and Irani [16] have shown that the
homographies of multiple planes across multiple views rely
in a 4-dimensional linear subspace and the new constraints
can improve the estimations of the homographies. In [14]
a method for detecting planes in images with a voting
procedure is proposed. The method requires an initial esti-
mation of the camera calibration and the motion between the
two images, which is not always possible. All the previous
approaches can benefit from the use of some knowledge of
the planes extracted in previous images. Our approach uses
this information to improve the quality of the computed
homographies. Using a triple set, plane-image-image, for
feature matching and homography computation we track the
planes over the sequence and also grow them up as new
features appear. Homology constraints allow us to detect new
planes and also give us a geometric criterion to relate the
planes in a hierarchical structure. The experimental results
with real images show the good performance of this new
algorithm.

Two contributions are presented in this paper. The first one
is the new approach for detecting all the planes in a set of
images and a set of coplanar features for robust matching
and homography estimation. The second contribution is the
new organization of visual information in a graph of planar
regions where there exists a geometric relation between the
different planes of the scene.

II. SEGMENTATION OF PLANES

We start with a set of ordered images I = {I1, .., In},
which correspond to a sequence captured with a camera on-
board a robot or a 6DOF camera in hand. We intend to extract
and organize the set of all the planes π = {π1, .., πm} in the
scene from the set of images I. For an easy understanding
of the paper, subscript indices will correspond to images in
the set whereas superscript indices will correspond to planar
regions, for example πk

i will represent the features of the kth

planar region seen in the ith image.
The only assumption made (apart from the presence of

the planar regions) is the rigidity of the scene. There is
no knowledge about neither the internal parameters of the
camera, represented by the calibration matrix K, nor about
the motion between consecutive frames, R and t. If one
plane, πk is visible in two images of the scene, Ii and Ij ,
it is possible to compute a projective mapping (inter-image
homography), Hk

ij , that relates the points belonging to the
plane, πk

i = Hk
ijπ

k
j . This homography is defined up to a scale

factor and has the form Hk
ij = K(Rij−(1/dk

j )tij(nk
j )T )K−1,

with dk
j and nk

j the distance and normal of the kth plane in
the jth frame respectively. The homography can be estimated
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Fig. 1. Scheme of the plane segmentation. a) Extraction of the initial planes.
b) Triple match Plane-Image-Image for speedy and robust homography
computation. c) Addition of new points to the existing planes and detection
of new planar regions within the remaining matches. The plane n is closed
because there are not matches belonging to it between I2 and I3.

from four correspondences without prior knowledge about
the scene or the calibration [7] and we will exploit this to
extract the different sets of coplanar features. In order to
make the process more robust, RANSAC [5] has been used.

In images where there are several planes the
DLT+RANSAC approach may fail due to bad election
of the random samples used to compute the homographies.
In addition, a high number of samples is required to have a
chance that the four points of a sample belong to the same
planar region. In order to avoid this problem only sets of
four non collinear points that are close to each other are
chosen as combinations for the algorithm. Closer points
will have a bigger chance to be coplanar than points that
rely in the image far from each other.

A. Triple matching Plane-Image-Image

The two initial frames of the sequence, I1 and I2 are
picked up and all the planes seen in both images (Fig. 1-a) are
extracted. Without loss of generality we explain the process
for one plane πm, being this process the same for every
other plane (and independent of the number of planes). The
homography between the images, Hm

12, and all the features
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that belong to πm, expressed in the reference image of the
plane, Irm are stored. The reference image of a plane is
defined as the first image of the sequence where the plane
has been seen. The identifiers of the features for every image
where the plane is observed are also stored so that the search
for these features in the future will be automatic. This last
information is stored only during the matching step, once
all the process has been finished it is erased, since it is no
longer necessary.

With the initial plane extracted the next image in the list is
picked up, I3, and the common matches with I2 are found.
From all the set of matches only those that belong to πm are
chosen, searching a new homography among this subset with
RANSAC. The number of combinations required to have a
probability, p, for one combination to be composed all by
inliers is

k =
log(1− p)
log(1− w4)

, (1)

where w is the probability that one feature is an inlier in the
plane. By taking the combinations only among a subset that
represents a planar region we are increasing w, consequently
reducing k, and therefore computing the homography in less
time. The homography with respect to the points in the
reference image of the plane, Hm

rm3, is also computed so that
the voting procedure is more robust, enforcing every feature
to support both homographies instead just one (Fig. 1-b). The
new homographies are then used to localize new features that
belong to the plane. The new features are added to the plane
using Hm

rm3. Once all the matches belonging to the existing
planes have been sorted we try to find new planes between
the remaining matches, adding new planes to the set (Fig 1-
c). The process is recursively repeated for all the remaining
images.

When in one image no feature adjusts to an existing plane
it means that this plane has gone out the field of view. We
define this plane as closed and it is no longer considered in
the matching process, which helps to speed up the process.
The list of identifiers of the features in every image can
also be used to keep a feature voting system among the
images. When one plane is closed, all the features that have
not received enough votes compared with the number of
images where the plane has been visible are discarded. So,
the method deletes possible outliers that may have passed the
previous constraints. Later we will discuss about the planes
that have been seen more than once so that they appear
repeated in the set of planes.

B. Constraints between planes

Additional constraints can be imposed in order to obtain
more reliable results in the segmentation. Since most part
of the images will contain two or more planar regions,
multi-plane constraints can be a very useful tool to improve
the results. An homology matrix, also called “relative ho-
mography” captures the relative motion between the images
through two planes visible in the two images. Let us suppose
that πm and πn are both visible in Ii and Ij . The homology
is obtained by multiplying one of the homographies with the

inverse of the other one, Hmn
ij = (Hm

ij )−1Hn
ij . The homology

has some properties that can be useful for our purpose. Using
the Sherman-Morrison formula [15], as in [16], the homology
matrix can be decomposed in Hmn

ij = I + vpT , where

v = (v1, v2, v3)T = K
R−1

ij tij

1 +
(nm

j )T

dm
j

R−1
ij tij

(2)

is a view dependent vector and

p = (p1, p2, p3)T = (
(nm

j )T

dm
j

−
(nn

j )T

dn
j

)K−1 (3)

is a plane dependent vector. The homology can be used
to separate real planes from false and repeated ones. This
is done using its eigenvalues. The eigenvalues of a correct
homology must have the form (1, 1, 1+v1p1 +v2p2 +v3p3).
This knowledge is used by the proposed algorithm to classify
the extracted planes. If the three eigenvalues are close to the
unity it means that the two planes are actually the same one
(the homology is an identity matrix), so instead of creating
a new plane, the new features are added to the existing one.
On the other hand, if two of the three eigenvalues are not
close enough to the unity we have an homography that is not
describing a real plane. In this second case the new plane is
ignored. The more planes visible in two images the more
homology tests will be computed and the results will be
better. Let us notice that the test is pure image-based and
the method still does not need any information about neither
the camera calibration nor the motion between the images.

III. CREATION OF THE TOPOLOGICAL MAPS OF PLANAR
REGIONS

The idea of sorting the planes extracted from the reference
images in a hierarchical structure to connect them has a great
interest. An easy and formal way to do this is using a graph.
One graph, G = (N , E), can be represented by a finite non
empty set of nodes N and a set of edges E ⊆ N × N
that connect the elements of the set of nodes. The set of
edges is usually represented by its adjacency matrix, A,
a |N |x|N | matrix, where the element A(m,n) shows the
relation that exists between the nodes m and n of the set of
nodes. In our case each node represents a plane of the scene
whereas an edge E(m,n) between two nodes shows if the
corresponding planes are co-visible or not. Two planes πm

and πn are co-visible if and only if it is possible to compute
an homology (Hmn) between them in the set of reference
images, which means that there are at least two consecutive
images with enough features of both planes. The idea of
co-visibility has a great interest in navigation tasks. If the
robot has localized one plane of the set it will know which
other planes it might see next to it when it moves, and so
the space searched during the navigation will be reduced. In
the following, instead of considering the set of edges we
will work with the adjacency matrix, A. We choose this
representation because some operations in the graph, such
as adding a new plane to the graph or merging two planes
can be done easily by multiplying different matrices. With
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Fig. 2. Example of a 2D map with the planes numbered (left) and the
topological graph of planes associated (right)

this representation if the planes m and n are co-visible then
A(m,n) = 1, whereas it will be equal to 0 otherwise. An
example of a topological map made by planes can be seen
in Fig. 2.

Due to the definition of the nodes and the edges, all
the created graphs will have two properties. Firstly, all
the graphs will be undirected graphs which means that
the adjacency matrix will be symmetric because if we can
compute any homology, Hmn, its inverse also exists. The
second property is the absence of self loops in the graph,
since it is not possible to compute an homology with only
one homography.

In order to create the graph, the set of reference images is
explored. For every image the method looks for the planes
in it. Those which were not yet in the graph are added. The
chosen information to represent one plane is the following:
• The identifiers of the images where the plane has been

seen (the images are not necessary but the identifiers are
required in order to determine where two planes have
been seen together). One of the images is chosen as the
reference for the plane.

• The set of features that belong to the plane. The
coordinates of each feature are expressed in the image
chosen as reference for the plane.

• The homographies that transform the features from any
image where the plane has been seen to the reference
image of the plane.

The node n is formally added to the graph by{
A = [IN | 0]T A [IN | 0] ,

N = N ∪ {πn},
(4)

with IN the identity matrix of |N | × |N | dimensions and 0
a null vector of dimension |N |. Finally for all those planes
which have been detected together in two images (it exists
a correct homology between them) the algorithm sets the
edges connecting them to 1:

A(m,n) = A(n,m) = 1⇔ ∃ Ii ∈ I | ∃ Hmn
i−1i (5)

Let us notice that this process can be done simultaneously
with the extraction of planes from the images.

A. Fusion of planes

It may happen that in the sequence of images one plane
leaves the field of view and later enter again in it (loop
closing). If this happens the proposed segmentation algorithm
will find twice the same plane so the graph will contain two
nodes which actually are the same one. In order to solve this

problem, once all the planes have been extracted and stored
in the graph a fusion algorithm is run to merge the repeated
planes. The method matches the features of every couple of
planes (πm,πn) which are not co-visible, A(m,n) = 0,
and tries to compute a robust homography between them
using DLT+RANSAC. If that homography exists and it is
supported by most of the matches it means that both planes
are the same and must be merged. The merging process
consist in the creation of a new graph G′ = (N ′,A′) erasing
from N the repeated node. The edges that contain the erased
node must be trespassed to the remaining nodes in such a way
that for those nodes l such that A(n, l) = 1 then A(m, l) = 1,
and for those that A(l, n) = 1 then A(l,m) = 1. This is
formally described with the following expressions

N ′ = N \ {πn}
A′ = In(A ∨ PmnA ∨ APmn)IT

n ,
(6)

where Pmn is a permutation matrix of the rows m and n
and In is an identity matrix where the nth row has been
deleted. The symbol ∨ represents the or operation between
the matrices, which can be done taking into account that all
the elements of the matrices are in the set {0, 1}.

B. Overview of the method

All the method can be summarized in the Algorithm 1

Algorithm 1 Overview of the algorithm
1: Extract planes from I1 and I2
2: Create G with the initial planes
3: A(m,n) = A(n,m) = 1 ∀m 6= n
4: for Ii i = 3..n do
5: Match features in Ii−1 and Ii

6: for all opened πm ∈ N do
7: Select the matches that belong to πm

8: Compute Hm
i−1i and Hm

rmi with DLT+RANSAC
9: Add new features to πm from image i using Hm

rmi

10: end for
11: Search for new planes in the remaining matches
12: Add the new planes to G (eq. (4))
13: Modify A with the new homologies (eq. (5))
14: end for
15: for all πm, πn ∈ N do
16: if A(m,n) = 0 then
17: Try fusion of πm and πn (eq. (6))
18: end if
19: end for

IV. EXPERIMENTAL RESULTS

Several experiments have been carried out in order to ana-
lyze the properties and the behavior of our proposal. We have
tested the methods using different data sets composed by
real images. The data sets correspond to different locations
where the proposals may be useful due to the plenty of planar
regions.

The first data set has been recorded inside of one of the
authors home (House data set), so it is a realistic scenario.
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The camera used has been a Panasonic Lumix FX-500
camera freely moved with 6DOF and 3600 frames have
been stored from different rooms. The second data set has
been recorded outside the building where we work (Ada
Byron data set) moving a robot with a Canon VCC4 camera
onboard. The set contains 900 images captured along a planar
path on the floor. In all the cases we have used SURF
features [1] for the matching and the computation of the
homographies. If the camera frame rate is high enough the
motion between the images will be small and will be closer to
a rotation motion. When the camera motion is a pure rotation
all the features can be fitted in the same homography and
the plane segmentation will fail. To avoid this problem we
have followed the idea of [12] to select key frames among
the sequence:
• There are as many images as possible between the key

frames Ii and Ii−1.
• There are at least M matches between the key frames
Ii and Ii−1.

• There are at least N matches between the key frames
Ii and Ii−2.

With this selection there is a higher chance to avoid pure ro-
tations and then to obtain better results. We have divided the
results in two subsections, one concerning the segmentation
of the planar regions and the other deals with the construction
of the graph of planes. An additional subsection shows how
the new organization improves robot global localization in
the environment, even when using images captured with a
different camera than the one used for recording the reference
sequence.

A. Segmentation of planar regions

We have tested our approach to segment the planar regions
in both data sets getting good results. The House sequence
has helped us to test the plane detection since it has a lot
of different planar regions. In Fig. 3 some of the segmented
regions are depicted. We observe that although the method
detects several planes which are the same in the ceiling, there
are no wrong planes segmented.

The Ada Byron sequence has less planar regions than
the house sequence but the planes are seen in more images
and the initial observed region of the planes usually has no
overlapping with the final observed region of the same plane.
With this sequence we have tested how the method tracks and
grows the number of features of the planes. Fig. 4 shows two
extracted facades. The results are not as precise as in the
other sequence, but this is caused by the relative distance to
the planes with respect to the distance between consecutive
images. Even when there are more outliers the results are
still quite good and, what is more important, we observe
that the method follows the planar regions correctly adding
new features as they appear.

B. Topological map of planar regions

Using the planar regions extracted with our algorithm
from the data sets, we have computed the associated graph
of planes using the technique proposed in section III. We

Fig. 3. Planar regions extracted from the House sequence. Each region is
represented with a different color. In the bottom figure we have added points
corresponding to the ceiling transformed with the computed homography.

TABLE I
RESULTS FOR THE HOUSE SEQUENCE

Nodes Edges Features Feats/node Size (MB)
Image Graph 140 1728 78124 558 29.0
Plane Graph 30 78 10832 361 4.0

have compared the resulting graphs with the graphs made
by images [17] imposing the homography constraint between
frames to observe the pros and cons of using one approach or
the other. Tables I and II show the comparison for the House
sequence and the Ada Byron sequence respectively. In both
cases the graph made of planes has less nodes and edges
than the graph composed by images. The amount of space
for storing the information was drastically reduced using our
approach. Finally, the time required for computing the graph
of planes (' 300 sec) is quite smaller than the time required
for the graph of images (' 600 sec). This reduction is
caused because in order to construct the graph of images it is
necessary to compare every image with each other (quadratic
cost in the number of images) whereas for the construction

TABLE II
RESULTS FOR THE ADA BYRON SEQUENCE

Nodes Edges Features Feats/node Size (MB)
Image Graph 181 9062 117987 651 43.9
Plane Graph 22 88 4589 208 1.7
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(a) (b) (c) (d)
Fig. 4. (a) Robot used in the experiment. (b) Planar regions extracted from the Ada Byron sequence. (c) One planar region seen in the reference image
(20 images are overlapped). (d) Trajectory followed by the robot (magenta line) computed using a structure from motion method.

TABLE III
RESULTS LOCALIZING THE ROBOT

Mean time used in the localization
Images Graph 62 sec
Planes Graph 5 sec

of the graph of planes we just compare each image with the
previous and the next one in the sequence (linear cost). If
one plane appears twice or more it is merged in the final
fusion stage. The only drawback of the new approach is
that the size of each node is not bounded and there can
be big differences between nodes. In a visual memory made
by images all the nodes will have similar size (the features
per node can be assumed to be bounded) whereas the graph
made of planes may contain very small planar regions with
just a few features and other nodes can represent large planar
regions with thousands of features and many homographies.

C. Localizing the robot

One last experiment was performed to measure the time
used to localize the robot within the environment (the
kidnapped robot problem). We have taken some images of
the Ada Byron building using the Panasonic Lumix FX-500
camera (the reference sequence was taken with the Canon)
and we have searched among the set of planes/images
selecting the most similar. The results are shown in Table
III. The time invested searching in the set of planar regions
was smaller than the time invested in the set of images
whereas the accuracy remains the same (in all the cases the
plane/image selected from the reference set contained high
overlapping with the captured image). Since in this work
we are not considering any metric information about the
scene the localization algorithm only finds the planar region
with more matches in the current image. In order to have a
metric comparison of the accuracy in the localization metric
information about the parameters of the planes should be
computed.

V. CONCLUSIONS

We have presented an algorithm for topological map
building using planar regions. The planar regions are ex-
tracted from a set of ordered images taking advantage of the
information about planes in previous images performing a
triple matching Plane-Image-Image that allows to track and
grow the plane regions as new areas of the plane become

visible. Extracted planar regions are used to build a graph,
which can be built simultaneously to the extraction. The
idea of using planes instead of images presents several
advantages. It reduces the size of the graph and also its
complexity. In addition, the knowledge of the planes in the
scene can improve the robot localization as well as other
tasks. Experimental results with real images indoors and
outdoors show the good performance of the method.
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and L. Van Gool. From omnidirectional images to hierarchical
localization. Robotics and Autonomous Systems, 55(5):372–382, 2007.

[11] A. Remazeilles and F. Chaumette. Image-based robot navigation from
an image memory. Robot. Auton. Syst., 55(4):345–356, 2007.

[12] E. Royer, M. Lhuillier, M. Dhome, and J.M. Lavest. Monocular
vision for mobile robot localization and autonomous navigation. Int.
J. Comput. Vision, 74(3):237–260, 2007.
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