
Regression-Based Online Situation Recognition

for Vehicular Traffic Scenarios

Daniel Meyer-Delius Jürgen Sturm Wolfram Burgard

Abstract—In this paper, we present an approach for learning
generalized models for traffic situations. We formulate the
problem using a dynamic Bayesian network (DBN) from which
we learn the characteristic dynamics of a situation from labeled
trajectories using kernel regression. For a new and unlabeled
trajectory, we can then infer the corresponding situation by
evaluating the data likelihood for the individual situation
models. In experiments carried out on laser range data gathered
on a car in real traffic and in simulation, we show that we
can robustly recognize different traffic situations even from
trajectories corresponding to partial situation instances.

I. INTRODUCTION

To act intelligently, an agent must be capable of recog-

nizing its temporal context or situation. Many real domains,

like car driving, present complex and time-varying dynamics.

Knowledge about the characteristic dynamics of a situation

can be used by an agent to improve its performance by,

for example, making informed decisions to avoid risks. A

driving assistant, for instance, could use this knowledge to

take actions to improve safety, for example turning on an

acoustic alarm or executing an emergency brake. Such sys-

tems were introduced by several automobile manufacturers

in the past few years. These systems, however, were designed

to recognize acute situations of immediate danger, like

wheel slippage or head-to-tail collisions, using specialized

hardware. So only a very limited number of hand-crafted

situation models have been implemented in today’s cars. It

is clear that a truly intelligent agent should be able to deal

with more complex situations.

In this work we present a framework for the modeling and

online-recognition of situations. As application and test-bed

for our approach, we consider a driver assistant application in

traffic scenarios and consider situations that typically occur

in highway-like driving settings, like for example, a passing

situation. Concretely, we deal with the problem of learn-

ing generalized models for our situations and recognizing

instances of those situations online.

In our approach, the model for a given situation is learned

from multiple trajectories of the corresponding situation. The

insight behind this approach is that, although instances of

a given situation are in general different from each other,

there is an inherent similitude that characterizes the situation.

Figure 1 plots multiple trajectories of a passing situation

together with the learned model. In our concrete example,

a trajectory is described by the bearing, distance, and speed

All authors are with University of Freiburg, Dept. of Computer Science,
D-79110 Freiburg, Germany.
{meyerdel,sturm,burgard}@informatik.uni-freiburg.de

-4

-2

 0

 2

 4

0 1 2 3 4 5 6

time (s)

rel. angle
rel. speed

rel. distance

Fig. 1. Regression model learned from trajectories corresponding to a
passing situation. The training trajectories are visualized as thin lines and
each color represents a different dimension (bearing, distance, speed of
the passing car relative to the car being passed) in state space. From
these trajectories, a generalized model for the passing situation was learned
using kernel regression, visualized by the thick line and the filled curve,
corresponding to the mean and variance respectively.

of the passing car relative to the car being passed. We can

clearly see that the different trajectories are similar; they

all present a distinctive form that characterizes the passing

situation. The learned model for the passing situation is

visualized in the figure by the thick lines and the filled

curves, corresponding respectively to the mean and variance

of the features in time.

Our approach is formulated as a dynamic Bayesian net-

work (DBN) that represents, in a factorized way, the relevant

aspects of the state of the system using random variables

and conditional probability distributions between these vari-

ables. A high-level state variable that represents the current

situation determines the dynamics of the lower-level state

variables. The dynamics are described by a function that

approximates the state of the system in time. This function

is learned from a set of labelled training trajectories using

kernel regression. Thus, each situation is modeled by an in-

dividual regression function that describes the characteristic

dynamics of the situation. Trajectories can then be classified

by evaluating their likelihood for the different models. This

can be done even for trajectories that correspond only to

a partial instance of a situation, allowing us to recognize

situations online.

The contribution of this paper is a practical approach

for modeling and recognizing situations. We show how

our framework can be used for learning models of typical

situations in a vehicular traffic scenario. We also describe

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 1711

how situation instances can be recognized while they are

developing. Experimental results using real and simulated

data show that our system can robustly recognize different

traffic situations even for partially observed instances.

The remainder of this paper is organized as follows. In

the next section we review related approaches. In Section III

we introduce our framework for learning generalized models

for situations from a set of training trajectories. We then

describe how the situation models are learned in Section IV

and in Section V we explain how to infer the current situation

using the data likelihood as measure. Finally, we present

our experimental results in Section VI and conclude in

Section VII.

II. RELATED WORK

The approach presented in this paper is similar, in essence,

to the problem of programming a robot by human demonstra-

tion [1], where a human performs an action or task multiple

times, and the robot must infer a generalized representation

of the task. We build upon the work of Eppner et al. [2],

where a framework for learning and reproducing tasks with

a robotic manipulator is presented. The fundamental differ-

ence between our work and these approaches is that they

focus on the learning and reproduction of the task, whereas

our approach concentrates on the classification and online

recognition of tasks (situations in our case) using the learned

models.

Our dynamic Bayesian network formulation of the system

where a high-level variable determines the dynamics of the

lower-level states is similar to the one made by the Switching

Linear Dynamic Systems (SLDS) models. By switching

between multiple linear dynamic models, an approximate

description of the continuous non-linear dynamics of the

system is obtained. Pavlović and Rehg [3] apply SLDS

models to the problem of classifying human motion. Oh et

al. [4] present an extension of the SLDS framework that

allows a parameterization of the duration model of standard

SLDS models. They apply their approach for decoding the

honeybee dance. In contrast to these SLDS-based techniques,

our approach learns the non-linear dynamics of the system

using individual regression models.

The hidden Markov model (HMM) is one of the most

popular probabilistic models for representing sequences of

states that have structure in time. Rabiner [5] gives an

excellent introduction to HMMs and its application in speech

recognition. HMMs have been used successfully in many

other different applications. Brand et al. [6], for example,

represent and classify sequences corresponding to T’ai Chi

Ch’uan gestures using a variation of the hidden Markov

model. Bennewitz et al. [7] present a complete framework

based on HMMs for recognizing gestures for human-robot

interaction. In a previous work [8] we used HMMs to

model and recognize vehicular traffic situations. The main

disadvantage of HMM-based approaches is that representing

trajectories using a finite (and usually small) number of

states imposes a sometimes unnatural discretization on the

trajectories.

Fig. 2. Structure of the dynamic Bayesian network (DBN) used in our
framework for learning the dynamics of the system in a given situation. For
time t, xt denotes the state of the system, zt the observation of the state,
and gt is a high-level state variable that represents the current situation and
determines the dynamics of the system.

III. FRAMEWORK OVERVIEW

Each type of situation is associated with a particular

system dynamics. The goal of our approach consists in

learning the system dynamics corresponding to a situation

from multiple training trajectories. Then, using the learned

system dynamics, we can infer the most likely situation type

for new trajectories.

In our framework, we model the system using a dynamic

Bayesian network (DBN) (see Figure 2). At each point in

time t, the random variable xt represents the state of the

system, zt represents the observation of the state, and gt is a

high-level state variable that represents the current situation.

The observation zt depends on the current state of the system

xt , which in turn depends on the previous state xt−1 and

the current situation gt . Our DBN encodes two conditional

probability distributions: the observation model p(zt |xt) that

represents the probability of observing zt from state xt , and

the state transition model p(xt |xt−1,gt) that corresponds to

the state transition probability of the system at time t, and

describes the dynamics of the system at that particular point

in time.

For a given situation S of length T , we learn a model

p(x1:T |g = S) that describes the dynamics of the state of the

system during the complete development of the situation.

Using a set of training trajectories x1
1:T 1 , . . . ,x

M
1:TM , where

each trajectory x1:T n = {x1, . . . ,xT n} consists of a sequence

of states corresponding to the same situation, we apply

kernel smoothing to obtain the model that best approximates

all trajectories. As the training trajectories are in general

of different lengths, we apply Dynamic Time Warping to

standardize them before learning the situation model. Finally,

we can also learn the prior over situations p(g) by counting

how many training trajectories belong to each different

situation type.

Given an observation sequence z1:t , the trajectory x1:t can

be estimated using the Bayesian recursive state estimation

scheme [9]. We can then select the model that best fits the

trajectory by computing the likelihood of each model S given

the data

p(g = S|x1:t) ∝ p(x1:t |g = S)p(g = S) , (1)

and selecting the model with the largest likelihood.

1712

IV. REGRESSION-BASED MODELING

We treat the problem of learning a model for a situation

as a non-linear regression problem. The goal is to estimate

the function f that approximates the state of the system x

as a function of time. Consequently, f will represent the

characteristic dynamics of the state for that situation. Given

a set of training trajectories we learn the function that best

approximates all of them.

Assuming that at every time step t the state xt of the

system is normally distributed over all training instances, we

formulate f (t) as

f (t) = N (µ(t),Σ(t)) , (2)

where µ(t) is the mean vector with the same dimensionality

k as xt and Σ(t) is the corresponding covariance matrix.

Accordingly, the problem of estimating f can be stated as

the problem of learning the mean µ(t) and covariance Σ(t)
of the normal distributions at each point in time t.

To estimate these parameters, we use kernel smooth-

ing [10] which is a non-parametric technique for approxi-

mating the density function of a random variable from a set

of sample instances. The idea is to approximate the value of

the parameters as the weighted average of the neighboring

sample points. These weights are given by a kernel function

parameterized by a distance measure in the domain of the

function. In our case, the weight of the samples depends

on the temporal distance of the samples. Given a set of D

trajectories corresponding to the same situation, each having

a length of T , and assuming that the state dimensions are

independent from each other, kernel smoothing estimates the

mean µi(t
′) for dimension i at time t ′ as

µi(t
′) =

∑D
d=1 ∑T

t=1K(t
′−t
h

)xid,t

∑D
d=1 ∑T

t=1K(t
′−t
h

)
, (3)

where xid,t is the value for the i-th dimension of the state

of the system in trajectory d at time index t, and K(u)
is a Gaussian kernel with bandwidth h. This bandwidth

determines how the influence of the neighboring samples

decreases with the distance in time. The variance σ2
i (t ′) for

dimension i at time t ′ is estimated as

σ2
i (t ′) =

∑D
d=1 ∑T

t=1K(t
′−t
h

)(xid,t −µi(t
′))2

∑D
d=1 ∑T

t=1K(t
′−t
h

)
. (4)

The result of applying kernel smoothing to the training

data is a function f (t) that describes, for each point in time

t, the characteristic state of the system by the mean µ(t) and
covariance Σ(t).

A. Aligning Trajectories

To be able to use the kernel density estimator method, the

training trajectories must be of the same length. To handle

temporal variations we apply Multi-Dimensional Dynamic

Time Warping (MD-DTW) [11], a variation of Dynamic

Time Warping (DTW) [12], to make all trajectories equally

long. We select a reference trajectory from the training set,

and all other trajectories are aligned to it. Kernel density

−1000100

0

50

100

150

200

250

0 50 100 150 200

−100

0

100

Fig. 3. Dynamic Time Warping between two different trajectories. The
figure visualizes the cost matrix induced by the recursive computation of
the cumulative warping cost. The bold white line in the figure corresponds
to the minimum-cost warping path.

estimation can then be directly applied on the aligned trajec-

tories.

Dynamic Time Warping is a technique for aligning the

time axis of two time-indexed sequences. The algorithm

computes the minimum-cost alignment or warp between two

series x1:lx and y1:ly . Usually, the Euclidean distance is used

as the distance measure d(xi,y j) between the points in the

sequences. The minimum-cost warp is then efficiently found

using dynamic programming to compute the cumulative cost

γ(i, j) corresponding to the minimum-cost warp of the partial

sequences x1:i and y1: j. The value of γ(i, j) is recursively

computed as

γ(i, j) = d(xi,y j)+

min{γ(i−1, j),γ(i, j−1),γ(i−1, j−1)} . (5)

The cost CW of the minimum-cost warp is then given by the

value of γ(lx, ly) and the warp is constructed by tracing back

from γ(lx, ly) to γ(1,1). Figure 3 illustrates the cost matrix

induced by the recursive computation of (5). Each entry i, j
in the matrix corresponds to the value of the cumulative cost

γ(i, j) and the bold white line corresponds to the minimum-

cost warp.

Multi-Dimensional Dynamic Time Warping is a general-

ization of DTW for multi-dimensional sequences where the

distance between the points in the sequences corresponds

to the n-dimensional Euclidean distance. To meaningfully

compare different dimensions, each point xi in the sequences

is standardized as x′i = (xi−µ)σ−1, where µ and σ are the

sample mean and standard deviation, before computing the

distances. To make the alignments more robust, we compute,

for each point in the sequence, an approximation of the

derivative in each dimension as in [13]. This derivatives are

added to the dimensions of the state space and included in the

computation of the distance between the points, effectively

incorporating information about the shape of the trajectories

being aligned.

1713

V. RECOGNITION

Having trained a set of situation models, we want to select

the one that best describes any given trajectory x1:t . In other

words, we want to select the model S∗ such that

S∗ = argmax
S

p(g = S|x1:t) . (6)

According to (1) this involves the computation of the likeli-

hood p(x1:t |g = S) of the trajectory x1:t given the model S,

for each model.

Given a regression model f corresponding to a situation

S and a trajectory x1:t , the likelihood of the trajectory given

the model is computed as

p(x1:t |g = S) =
t

∏
t=1

p(xt | f (t)) , (7)

where

p(xt | f (t)) =
1

(2π)k/2|Σ(t)|1/2
e
− 1

2

(

(xt−µ(t))T Σ(t)(xt−µ(t))
)

. (8)

Equation (7) assumes that the states of the system are

independent from each other. This is in general not the case,

however, this approximation works well for our purposes and

is easily computed.

Using the likelihood as a measure of the quality of a

model, we can now select from a set of competing models,

the one that produces the highest likelihood for a given

trajectory. In this way, we can use our trained models for

classifying trajectories. Note, however, that before computing

the likelihood, the trajectory must have the same length as

the model. This is achieved as explained in Section IV-A by

aligning the trajectory against the reference trajectory for the

corresponding model using MD-DTW.

A. Recognizing Partial Instances

The previous discussion about recognizing situations im-

plicitly assumes that the start and the end of the trajectories

that are being evaluated correspond, respectively, to the start

and the end of the situation. For evaluating a trajectory that

corresponds only to an incomplete instance of a situation,

where the end of the instance doesn’t correspond to the

end of the situation, the MD-DTW approach as described

in Section IV-A can not be directly applied.

The MD-DTW algorithm finds the best global alignment

between two sequences. However, for aligning an incomplete

trajectory we need to find the best local alignment beginning

at the common starting point. Given an incomplete trajectory

x1:t and a reference trajectory y1:T , the minimum-cost local

warp is constructed by tracing back from γ(t, j∗) to γ(1,1)
where j∗ = argminγ(t, j) for j = 1 . . .T .
The warping algorithm can also be modified to include a

scaling cost that penalizes the stretching or contraction of

a sequence [13]. In this way, we can alleviate the problem

of over- or under-scaling a sequence. Once the incomplete

trajectory is aligned, its likelihood can be computed directly

using (7). In this way, we are able to recognize situations as

they are developing.

length of the instance (%)

following0
0.25
0.5

0.75
1.0

 0 10 20 30 40 50 60 70 80 90 100

aborted passing0
0.25
0.5

0.75
1.0

 0 10 20 30 40 50 60 70 80 90 100

passing0
0.25
0.5

0.75
1.0

 0 10 20 30 40 50 60 70 80 90 100

Fig. 4. Classification accuracy of the models for partial trajectories. The
figure shows the average accuracy and standard deviation for each model as
a function of the length of the partial trajectories (measured as the percentage
of the length of the complete trajectory).

VI. EXPERIMENTAL EVALUATION

Our framework was tested in a vehicular traffic scenario

using real data as well as a simulated driving environment.

As situations we considered three typical maneuvers: pass-

ing, aborted passing and following. The state of the system

xt was described by the bearing ψ , distance d, and speed v

of the neighboring cars relative to the reference car. These

features were sufficient to characterize the maneuvers, being

also robust against variations in the different instances.

We first trained a model for each situation type using 30

trajectories generated in the simulation environment. Each

trajectory started as soon as the neighboring car was closer

than 50 meters and ended when the car was more than 50

meters away. As reference trajectory we selected one with

average length. We then used MD-DTW to align the training

trajectories and generated the corresponding model applying

kernel smoothing. Figure 1 depicts some of the training

trajectories and learned model for the passing situation.

The likelihood for a set of 15 validation trajectories not

used for training was computed to evaluate the classification

performance of our models. For a better interpretation of the

data, the average Mahalanobis distance over the length of the

trajectory is used as fit error of a model. Table I presents the

average fit error of the validation set for the learned models.

As can be seen in the table, the smallest error is obtained

when the trajectories and the model correspond to the same

situation type, which is the expected result. This experiment

shows that our framework allows us to construct models that

represent the characteristic dynamics of the maneuvers and

could be used for recognition.

A. Recognizing Partial Instances

To evaluate how our approach performs at recognizing

trajectories that correspond to incomplete instances of a

situation, we repeated the previous experiment using only

the initial segment of the trajectories. Figure 4 plots the

the average accuracy and standard deviation for each model

1714

TABLE I

AVERAGE AND STANDARD DEVIATION OF THE FIT ERROR FOR THE MODELS LEARNED ON ARTIFICIAL DATA.

Θaborted passing Θfollowing Θpassing

ψ d v ψ d v ψ d v

aborted passing
0.94 0.87 0.95 6.49 2.58 4.22 6.74 2.53 2.64

± 0.42 ± 0.37 ± 0.34 ± 2.17 ± 1.31 ± 0.74 ± 0.51 ± 0.34 ± 0.43

following
2.09 3.74 3.04 0.80 2.43 2.48 8.28 9.08 4.26

± 0.20 ± 3.17 ± 0.76 ± 0.30 ± 1.44 ± 1.32 ± 0.22 ± 5.91 ± 0.91

passing
17.27 5.66 18.08 38.55 11.46 20.12 0.79 1.02 1.24
± 0.83 ± 0.82 ± 6.45 ± 3.28 ± 0.82 ± 7.94 ± 0.43 ± 0.15 ± 0.35

as a function of the length of the trajectory segments.

The classification results were evaluated using k-fold cross-

validation with k = 6.

As can be seen in the figure, 80% of the length of the

trajectory was enough to correctly classify all the segments.

Even 50% of the length was enough to obtain reasonable

classification results for all the models. Models correspond-

ing to complex situations require more evidence to correctly

classify a trajectory. This can be observed in the figure by the

poor performance for proportionally short trajectories of the

passing and aborted passing models. The following model,

on the other hand, describes a relatively simple situation. As

can be seen in the figure, the following model had a good

classification accuracy even for very short trajectories.

B. Real-time Recognition

To evaluate the complete situation recognition approach

in a real-time setting, we integrated our framework into a

driving simulator (TORCS [14]) which features a simple 3D

physics model and provides us with the absolute position

and velocity of the vehicles at 50Hz. At every time step,

that is, every 0.02 seconds, the state of the neighboring

vehicles is computed. This means that, for each vehicle, the

relative bearing, distance, and speed is estimated, and added

to the corresponding trajectory. Then, after standardizing the

state’s values and computing the derivatives, the trajectories

are aligned and the likelihood computed for every situation

model.

Figure 5 shows a series of screenshots of the simulation

environment in a two vehicle scenario together with the

results of our situation recognition framework. The images

show a car (orange) passing another one (yellow). The bars

in the plots correspond to the normalized likelihood of the

trajectory of the passing car for the passing (red), aborted

passing (green), and following model (blue). As can be seen,

at first, in the leftmost image, the following situation is

the most likely, but as the maneuver develops (from left to

right in the images), the passing situations becomes more

likely. The framework was also tested in scenarios with

up to 9 vehicles (plus the reference one). The experiments

showed that our approach can be used in such scenarios,

where multiple vehicles are being simultaneously tracked,

over extended periods of time.

The most time demanding step in the whole process is

aligning the trajectories to the situation models. If the length

TABLE II

AVERAGE AND STANDARD DEVIATION OF THE FIT ERROR FOR THE

MODELS LEARNED ON REAL DATA.

Θfollowing Θpassing

ψ d v ψ d v

following
0.84 0.87 0.84 2.61 7.03 1.47

± 0.33 ± 0.39 ± 0.45 ± 0.49 ± 3.12 ± 0.51

passing
8.23 1.4 2.59 0.73 0.84 0.81

± 2.53 ± 0.19 ± 1.71 ± 0.57 ± 0.31 ± 0.6

of the reference trajectory of a model is N and the length

of the trajectory being aligned is M, the time complexity for

the alignment is O(NM), that is, O(N2). However, since the

cumulative cost γ(i, j) can be incrementally computed as new

states are added to the trajectories, the important factors in

the performance of the approach are the number of situation

models, the length of their reference trajectories, and number

of neighboring vehicles.

C. Real Data

The framework was also evaluated using real data. Two

SICK laser range scanners were mounted on a convertible as

illustrated in Fig. 6. Data was gathered by driving over more

than 50 kilometers on highways and state roads at velocities

of up to 110 km/h. Note that in this work, we do not deal with

the recognition and tracking of vehicles, and the trajectories

were manually extracted from the data.

Due to the technical limitations of the sensors together

with their arrangement, many situation instances could not be

captured, or were captured only partially. From the gathered

data, only 19 (10 passing and 9 following) useful trajectories

could be extracted. Table II presents the fit error of the

training set for the two trained models. As can be seen, the

smallest error lies on the diagonal of the table where the

sequence and the model correspond to the same maneuver

type.

We also evaluated the classification accuracy of the models

trained on real data against the trajectories generated in the

simulation environment and vice versa. It must be noted

that the trajectories from the real data where sampled at

75Hz while the ones obtained from the simulator were

sampled at 50Hz. Also, because of the configuration of the

lasers, the trajectories corresponding to passing maneuvers

where truncated when the passing vehicle was left of the

1715

Fig. 5. Screen shots of the simulation environment showing a car (orange) passing another one (yellow). The bars in the plots correspond to the likelihood
of the trajectory of the passing car for the passing (red), aborted passing (green) , and following (blue) model. At first, in the leftmost image, the following

situation is the most likely, but as the maneuver develops (from left to right in the images), the passing situations becomes more likely.

-40

-20

 0

 20

 40

-40 -20 0 20 40

m

m

Fig. 6. Left: arrangement of two SICK laser range finders on a convertible (middle) used for gathering real data. Each laser has a field of view of 180
degrees and can detect objects as far as 80 meters with an angular resolution of 1 degree at 75Hz. The arrangement of the two lasers provided a 340
degree field of view (right).

TABLE III

CLASSIFICATION ACCURACY OF MODELS TRAINED AND EVALUATED

WITH REAL AND ARTIFICIAL DATA.

real training artificial training

following
- 0.77 real testing
1.0 - artificial testing

passing
- 0.80 real testing

0.57 - artificial testing

reference one. Thus, the corresponding models only de-

scribe the maneuver until that point. When evaluating the

trajectories generated in the simulation against the models

trained with real data, we only considered the first half

of the trajectories. This affected the classification accuracy,

as shown in the previous experiment. Despite all these we

obtained reasonable classification results as can be seen in

Table III

VII. CONCLUSIONS

In this paper, we presented a general framework for

modeling and recognizing situations. We take a model-based

approach in which each situation type is described by an

individual regression model that describes the characteristic

dynamics of the system over time. We formalize the problem

using a DBN and learn the characteristic dynamics of a

situation from training instances. We then use the likelihood

of the data as criterion for model selection and describe how

to classify trajectories online. The approach was evaluated

experimentally using real and simulated data in the context of

a driver assistant application in traffic scenarios. The results

show that our approach can robustly recognize different

traffic situations even from partially observed instances.

REFERENCES

[1] S. Calinon and A. Billard, “Stochastic gesture production and recog-
nition model for a humanoid robot,” Intelligent Robots and Systems,

2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International Con-

ference on, vol. 3, pp. 2769–2774 vol.3, Sept.-2 Oct. 2004.
[2] C. Eppner, J. Sturm, M. Bennewitz, C. Stachniss, and W. Burgard,

“Imitation learning with generalized task descriptions,” in Proceedings

of the IEEE Int. Conf. on Robotics & Automation (ICRA), Kobe, Japan,
2009.

[3] V. Pavlovic and J. M. Rehg, “Impact of dynamic model learning on
classification of human motion,” in CVPR, 2000, pp. 1788–1795.

[4] S. M. Oh, J. M. Rehg, and F. Dellaert, “Parameterized duration
mmodeling for switching linear dynamic systems,” in CVPR (2), 2006,
pp. 1694–1700.

[5] L. Rabiner, “A tutorial on hidden markov models and selected appli-
cations in speech recognition.” in Proceedings of the IEEE, vol. 77
(2), 1989, pp. 257–286.

[6] M. Brand, N. Oliver, and A. Pentland, “Coupled hidden markov
models for complex action recognition,” in CVPR, 1997, pp. 994–999.

[7] M. Bennewitz, T. Axenbeck, S. Behnke, and W. Burgard, “Robust
recognition of complex gestures for natural human-robot interaction,”
in Proc. of the Workshop on Interactive Robot Learning at Robotics:

Science and Systems Conference (RSS), 2008.
[8] D. Meyer-Delius, C. Plagemann, and W. Burgard, “Probabilistic sit-

uation recognition for vehicular traffic scenarios,” in Proceedings of

the IEEE Int. Conf. on Robotics & Automation (ICRA), Kobe, Japan,
2009.

[9] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Prentice-Hall, Englewood Cliffs, NJ, 2003.

[10] E. Nadaraya, “On estimating regression,” Theory of Probability and

Its Application, vol. 9, pp. 141–142, 1964.
[11] G. A. ten Holt, M. J. T. Reinders, and E. A. Hendriks, “Multi-

dimensional dynamic time warping for gesture recognition,” in In

Proc. of the conference of the Advanced School for Computing and

Imaging (ASCI 2007), 2007.
[12] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimiza-

tion for spoken word recognition,” Acoustics, Speech and Signal

Processing, IEEE Transactions on, vol. 26, no. 1, pp. 43–49, Feb
1978.

[13] E. J. Keogh and M. J. Pazzani, “Derivative dynamic time warping,”
in In Proceedings of First SIAM International Conference on Data

Mining (SDM’2001), 2001.
[14] E. Espié and C. Guionneau, “Torcs - the open racing car simulator,

http://torcs.sourceforge.net/.”

1716

