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Abstract— This work considers robot localization with an
action-associated sparse appearance-based map, under condi-
tions with dynamic change in the environment. In this case, two
significant problems must be solved for robust localization. The
first involves variations in the environment caused by dynamic
objects and changes in illumination, and the second arises from
the nature of sparse appearance-based map. That is, a robot
must be able to recognize observations taken at slightly different
positions and angles within a certain region as identical. In
this paper, we address a possible solution to these problems on
the basis of a probabilistic model called the Bayes filter. Here,
we propose an observation model based LeTO2 function and
an action-associated sparse appearance-based map to be used
for prediction, update, and final localization steps. In addition,
multiple visual features are used to increase the reliability of the
observation model. We performed experiments to demonstrate
the validity of the proposed approach under various conditions
with regard to dynamic objects, illumination, and viewpoint.
The results clearly demonstrated the value of our approach.

I. INTRODUCTION

Most of the existing work on visual localization assumes

that robot works within a static environment[1],[2],[3]. How-

ever, this assumption does not hold for many real-world

environments. For example, the appearance of a location

is associated with variations in the environment due to dy-

namic factors, such as people, or changes in illumination. In

appearance-based robot localization, a new image is matched

with every image in the database. Thus, it is important to

reduce the number of images in this database with minimal

loss of the ability to accomplish the task.

In the cases mentioned above, there are two significant

problems for visual localization by a mobile robot. The first

is that the robot must recognize different visual features

caused by dynamic changes in the environment as being the

same, and the other arises from the nature of the sparse

appearance-based map. That is, a robot must be able to

recognize observations taken at slightly different positions

and angles within a certain region as identical. In this

paper, we describe how to achieve localization using sparse

appearance-based map with dynamic changes in environ-

ment.
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Here, we present a possible solutions to these problems

in the well known probabilistic framework called the Bayes

filter[4]. In this framework, we propose an observation

model based on LeTO2(likelihood of the location being true

location of the robot based on a visual similarity relative to

a certain location) function for update step and an action-

associated sparse appearance-based map for prediction, and

final localization steps. The LeTO2 function converts a

matched result between two images to likelihood the two im-

ages are taken from same location, One of the main concept

is that the LeTO2 function considers the effects of dynamic

factors and viewpoint changes to convert the matched result.

Based on the action-associated sparse appearance-based map,

an action-based view transition model is constructed. The

transition model allows the combination of information over

time. For more reliable localization, multiple visual features

is fused in the update step and a final localization step is

added to the process of the Bayes filter.

We represent environments implicitly as a database of

features derived from a set of images in the framework

of appearance-based localization[5],[6],[7],[8]. Here, images

are collected at each location in a training phase, and

scale-invariant feature transform(SIFT) descriptor[9] and ho-

mogenous texture descriptor (HTD)[10] are employed as

multiple visual cues. For localization, the robot acquires an

image at the current location from which features are then

extracted. These features are compared with those stored in

the database.

This paper is organized as follows. Section II explains the

action-associated sparse appearance-based map and visual

similarity used in this work. Section III describes the details

of the proposed approach. Section IV presents some exper-

imental results. Finally, Section V outlines our conclusions

and perspectives for future work.

II. ACTION-ASSOCIATED SPARSE APPEARANCE-BASED

MAP AND VISUAL SIMILARITY

This section provides a basis to understand the proposed

approach and the experimental results presented later in the

paper. The action-associated sparse appearance-based map

and visual similarity used in this work are formally described

below.

A. A. Action Associated Sparse Appearance-Based Map

Our action-associated sparse appearance-based map is

composed of several nodes, each of which consists of a set

of views. We consider each node as a circle with a radius
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Fig. 1. Example of action-associated sparse appearance-based map, in
which there is one node ni and each reference view is located at interval
of 30

◦ within the node.

of about 1m1 and each view is the basic unit of location

for recognition. At each view, only one image is captured

by a robot in the sense of a sparse appearance-based map.

Specifically, to build the proposed map, a robot is moved

to to a manually selected node position, rotates through a

certain number of degrees at the center of the node, and then

acquires an image. This is repeated until the robot returns to

the original orientation.

The proposed map is defined explicitly as follows:

• A node is denoted by ni, i ∈ {1, ..., N}, where N is

the number of nodes in the map. The sum of prior

probabilities of all nodes equals 1.

• A view is denoted by v(i, j), where i and j are the

indices of node and of view, respectively. A node

is composed of a set of reference views: rv(i, j) ∈
ni, ni = {rv(i, 0), rv(i, 1), ..., rv(i,K)}. Here, K =
360/∆v−1 and ∆v denotes the degree of rotation of the

robot. The sum of prior probabilities of all views within

node ni equals 1, and the sum of prior probabilities of

all views within the map also equals 1.

Fig. 1 shows an example of an action-associated sparse

appearance-based map. Note that the map is associated with

robot action, and we represent the location as a view and not

a node[11],[12]. Based on the map, the metric ranges of a

location for localization are formally described as follows:

• Position and orientation of the robot are represented by

pose P = (X,Y, θ). Let Prv = (Xrv, Yrv, θrv) be the

pose of the robot when the image was taken at the

reference view rv and let Pv = (Xv, Yv, θv) be the

pose of the robot at the actual view v, in the case where

the robot is located at the view rv, which is formally

defined as follows:

Pv
∼=Prv, if θrv−15◦ < θv ≤ θrv+15◦ and

distance(Pv, Prv) ≤ 1m. (1)

• In the case where the robot is not located at view v,

1If the size of a node is larger, variation in sensor data obtained within
the node also becomes larger, decreasing the performance of localization.

which is formally defined as

Pv ≇Prv, if θrv−15◦ ≥ θv or

θrv+15◦ < θv or

distance(Pv, Prv) > 1m. (2)

B. Visual Similarity

The appearance-based localization used in this work de-

parts from a set of training images I = (I(i, 0), ..., I(i,K))
taken at locations ni = (v(i, 0), ..., v(i,K)) for all i ∈ N . A

set of features f(i, j) = (f(i, j)1, ..., f(i, j)C) is extracted

from the image I(i, j), for all i ∈ N, j ∈ K, where C is

the number of visual cues. We employ two types of visual

cues: global and local features. As a global feature, we

use HTD, whereas SIFT descriptor is employed as a local

feature. Local feature such as SIFT descriptor is resistant

to partial occlusion and is relatively insensitive to changes

in viewpoint. On the other hand, global feature based on

texture, such as HTD, shows better performance than SIFT

under conditions of changing illumination[13].

In the map-building phase, the robot captures an image

at each location from which it extracts SIFT descriptors and

HTD and then stores the visual features in the database. In

the localization phase, the features extracted from an image

taken at the tobot’s current location are matched with those

extracted from each reference image in a pre-built database.

In this paper, we define visual similarity as an output value

from the match.

Formal description of the visual similarity between actual

robot view v and a reference view rv(i, j) is as follows:

• A set of visual similarities relative to the j-th view in

the i-th node is defined as

s(i, j) = {s(i, j)SIFT , s(i, j)HTD}. (3)

• The SIFT descriptor-based visual similarity between

actual robot view v and the reference view rv(i, j) is

defined as

s(i, j)SIFT =match#(fSIFT
v , f(i, j)SIFT ), (4)

where fSIFT
v is a set of SIFT descriptors extracted

from an image taken at the robot’s actual location

and match# denotes the number of matched SIFT

keypoints.

• The HTD-based visual similarity relative to the refer-

ence view rv(i, j) are defined as

s(i, j)HTD = 1 − dist(fHTD
v , f(i, j)HTD), (5)

where fHTD
v is HTD extracted from an image taken at

the robot’s actual location and dist is the distance be-

tween two feature vectors. Note that to obtain HTD-base

similarity, the difference between two feature vectors is

previously calculated.
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Fig. 2. The Proposed dynamic Bayesian model.

• The vector distance between two HTDs is defined as in

[10]

dist(fHTD
v , f(i, j)HTD) =

Σk

∣

∣

∣
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∣

w(k)[fHTD
v (k) − f(i, j)HTD(k)]

α(k)

∣

∣

∣

∣

∣

, (6)

where fHTD
v (k) and f(i, j)HTD(k) are the kth ele-

ments of two HTD feature vectors and w(k) and α(k)
indicate the weight and normalization factor for the kth

element of the HTD feature vector, respectively.

III. THE PROPOSED APPROACH

This section describes the proposed localization approach

using an action-associated sparse appearance-based map

under a dynamically changing environment. The approach

is constructed based on the Bayes filter, a well known

probabilistic framework. The following section explains our

proposed probabilistic framework in detail.

A. Overview of Proposed Probabilistic Framework

Fig. 2 illustrates the dynamic Bayesian network that

characterizes the effects of dynamic factors and viewpoint

changes with respect to visual similarity. In addition, the

DBN shows that visual similarity relative to a certain ref-

erence view is generated stochastically based on whether

the robot locates at the reference view or not. In the DBN,

random variables for the actual view of the robot, reference

view, control data, visual similarity, dynamic factor and

viewpoint change at time t are denoted by vt, rvt, ut, st, dt

and γt, respectively and πt is a boolean random variable to

present whether the robot is currently located at the reference

view rvt. The formal description of πt is as follows:

πt = true, if Pvt

∼= Prvt

πt = false, if Pvt
≇ Prvt

. (7)

All random variables in the DBN can be partitioned into

three sets: searched, known, and unknown variables[14]. In

this case, a searched variable is the actual location of the

robot vt. Known variables are all past reference view rv1:t,

all past visual similarity s1:t, and all past control data u1:t.

Unknown variables are all past dynamic factor d1:t, all past

viewpoint change γ1:t, and actual location of the robot at

time t − 1 vt−1, Note that variables π1:t are fixed as true
and used as evidence, since we estimate a probability that

the robot locates at the reference view rv, given a certain

reference view rv and visual similarity between the reference

view and actual robot view v. Then, the query is:

P (vt|s1:t, π1:t = true, rv1:t, u1:t)

= ηP (st|vt, s1:t−1, π1:t = true, rv1:t, u1:t)

P (vt|s1:t−1, π1:t = true, rv1:t, u1:t)

= ηP (st|vt, πt = true, rvt)

P (vt|s1:t−1, π1:t = true, rv1:t, u1:t) (8)

where the problem of the first row is reformulated to

second and third rows using Bayes’ rule and the final step

uses conditional independence[15].

Our probabilistic framework consists of two steps: update,

including the initial step, and prediction. For the update

step, we propose an observation model based on the LeTO2

function and the fusion of multiple visual similarities. For the

prediction step, we construct an action-based view transition

model based on the action-associated sparse appearance-

based map. Specifically, the robot is localized in such a way

that it initially has no prior knowledge about its location,

and therefore the probabilities in all locations are uniform.

The robot then acquires an image from which it extracts

features, and it then obtains visual similarity by matching

the features with those in the reference model. Our proposed

LeTO2 function converts each similarity to a likelihood of

each location being the true location of the robot, considering

dynamic factors in the environment and viewpoint changes

within the location. For more reliable decisions, two resulting

likelihoods based on SIFT descriptor and HTD are fused into

a single value. After initial processing in the observation

model, the robot rotates through the same number of degree

as at the time of map building and then predicts the current

location using the action-based view transition model. When

a new observation is obtained, the process is repeated in

the observation model, and then all of the probabilities in

the prediction step are updated. This process is typically

repeated until a certain hypothesis exceeds the threshold, but

we do not determine the final location in this way. Instead,

we provide a final localization step.

B. Prediction step

The last row of (8) is manipulated into the form as follows:

P (vt|s1:t−1, π1:t = true, rv1:t, u1:t)

=
∑

vt−1

P (vt, vt−1|s1:t−1, π1:t = true, rv1:t, u1:t)

=
∑

vt−1

P (vt|vt−1, s1:t−1, π1:t = true, rv1:t, u1:t)

P (vt−1|s1:t−1, π1:t = true, rv1:t, u1:t)

=
∑

vt−1

P (vt|vt−1, ut)

P (vt−1|s1:t−1, π1:t = true, rv1:t, u1:t)
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Fig. 3. The proposed observation model.

=
∑

vt−1

P (vt|vt−1, ut)

P (vt−1|s1:t−1, π1:t−1 = true, rv1:t−1, u1:t−1)

=
∑

vt−1

P (vt|vt−1, ut)bel(vt−1), (9)

where the second row uses marginalization rule to take

into account all possible values of vt−1. Note that the eighth

row of (9) is equivalent to posterior probability of the actual

location of the robot at time t−1. This give us the recursive

update equation.

It is important to exploit the opportunity to gain more

information about the robot’s location in the environment,

because decisions based on only a single observation can

lead to misclassification. However, if the robot cannot predict

the next location, new evidence in the next location may not

be important. In this case, all the information that can be

used for localization is always obtained from only a single

observation. In our framework, the opportunity to obtain

more data is provided by the action-based view transition

model, constructed based on the action-associated sparse

appearance-based map. Whenever the robot rotates, it can

predict where it will be located on the map by the transition

model and additional evidence at the new orientation can be

exploited to correct or increase confidence in the predicted

belief.

Algorithm I outlines our action-based view transition

model, in which rt denotes the actual degree of rotation and

ut indicates the degree of rotation estimated by odometry.

We assume that ut follows a Gaussian distribution and is

given as

ut ∼ N(rt, σt). (10)

In the algorithm, bel(vt−1) and bel(vt = vi
j) represent

Algorithm I Action-based View Transition Model

view transition model(bel(vt−1), ut) :
bel(vt = vi

j) ← 0
for k ← 0 to K

β ← k∆v − rt

if β > 180 then
β ← 360 − β

ut(rt + β) ← 1√
2πσ

exp[− 1

2
(−β

σ
)]

P (vt = vi
j |vt−1 = vi

j+K , ut) ← ut(rt + β)

bel(vt = vi
j) ← bel(vt = vi

j) + bel(vt−1 = vi
j+K)

P (vt = vi
j |vt−1 = vi

j+K , ut)
end for

return bel(vt = vi
j)

posterior probability at time t − 1 and predicted belief of

jth view in the ith node at time t, respectively. P (vt =
vi

j |vt−1 = vi
j+K , ut) is the transition probability from the

j+Kth view to jth view in the ith node, given an estimated

degree of rotation. If the jth view is oriented farther from the

addition of orientation of j + Kth view and the estimated

rotation degree, less transition probability is assigned. The

algorithm eventually calculates the predictive belief for a

certain view by integrating the product of estimated transition

probabilities from all views in the node ni and the posterior

probabilities at all views in node ni at time t − 1,

C. Update step

The second step of the Bayes filter is called the mea-

surement update, in which the predicted belief bel(vt) is

multiplied by the probability of sensor measurement to yield

posterior probability. Based on the fourth row of (8), the
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Fig. 4. (a) Various changes in illumination. (b) Variations of dynamic
objects in environment. (c) Various changes in viewpoint within a view.

proposed update step is formally defined as follows:

bel(vt)

= ηP (st|vt, πt = true, rvt)bel(vt)

= η
∑

d

∑

γ

P (st,dt,γt|vt, πt = true, rvt)bel(vt)

= η
∑

d

∑

γ

P (st|dt,γt, vt, πt = true, rvt)

P (dt,γt|vt, πt = true, rvt)bel(vt)

= η
∑

d

∑

γ

P (st|dt,γt, vt,πt = true, rvt)P (dt,γt)bel(vt)

= η̃
∑

d

∑

γ

P (st|dt,γt, vt, πt = true, rvt)bel(vt)

= ˜̃η
∑

d

∑

γ

P (πt = true|st, dt,γt, vt, rvt)

P (st|dt,γt, vt, rvt)bel(vt)

= ˜̃̃η
∑

d

∑

γ

P (πt = true|st, dt,γt, vt, rvt)bel(vt), (11)

where it is noted that the third row uses marginalization

rule to take into account all possible values of variation of

dynamic factors and viewpoint. The probabilities of P (dt,γt)
and P (st|dt,γt, vt, rvt) of row 6 and 9 can safely be omitted

from (11) since we assume the probabilities are uniform. The

last row shows multiplication of the observation model and

predicted belief bel(vt). One of the main contributions of

this work is the observation model based on the proposed

LeTO2 function, considering environmental dynamic factors

and viewpoint changes within a location.

D. Construction of LeTO2 Function

Fig. 3 illustrates observation model in our probabilistic

framework, in which each visual similarity is converted into

a probabilistic value based on the proposed LeTO2 function.

By the last row of (11), the LeTO2 function must present

Fig. 5. (a) LeTO2 function for SIFT descriptor-based similarity. (b)
LETO2 function for HTD-based similarity.

the likelihood that the two images being taken at same

location, given a visual similarity between the two images,

with dynamic changes in environment and viewpoint changes

within a view. For this purpose, we constructed the LeTO2

function based on a number of experimental observations

under various conditions. The experiment was conducted

within one room and one corridor, in each of which we

selected two nodes. At each node, we obtained a reference

image at every 30◦ of rotation of a robot, and then the

SIFT descriptors and HTD were extracted from each image.

During image acquisition, there were no dynamic objects

or variations in illumination. In this way, we constructed a

reference model composed of 48 views, in which each view

was considered a particular location. After generating the

model, we gathered 400 test images at one of the locations

of the reference model under the following varied conditions:

• The differences in mean gray level between test and

reference images at same location were up to 50, at

which level of illumination was varied between three or

four different conditions by switching the ceiling light

on or off and opening or closing the curtains on the

windows.

• The percentage of regions of people within an image

was changed from 0% to 50%, with a maximum of three

people standing in front of the robot, with variation in

the number of people and their position relative to the
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Algorithm II Final Localization Filter

χ[1, ..., m] : array of χ,
m : number of items in array of χ
r : number of rotation for localization
θp : threshold probability for candidate view
θc : threshold number of correct localization for final decision

localization(χ, r, m):
correct localization ← 0
if χ.p < θp then

if r > K then
return LOCALIZATION FAILURE

else then
return REQUEST ROTATION

χ[m].n ← χ.n, χ[m].v ← χ.v
χ[m].r ← χ.r, m ← m + 1

for k ← 0 to m − 1
if χ[m].n = χ[k].n then
rot diff ← χ[m].r − χ[k].r
if rot diff > K then

rot diff ← rot diff − K
if χ[m].v = χ[k].v + rot diff then

correct localization ← correct localization + 1
end for

if correct localization ≥ θc then
return LOCALIZATION SUCCESS

else then
return REQUEST ROTATION

robot.

• The pose of the robot was changed within a location.

Fig. 4 shows test images under various conditions as

mentioned above, in which we attempted to marginalize

all possible variations in dynamic factors and viewpoint

changes. To construct the LeTO2 function for SIFT descrip-

tor, we calculated the ratio of total number of particular

similarity according to each number of matched SIFT key

points and the number of cases in which similarity was

obtained from the same location. To construct the LeTO2

function for HTD, each visual difference was mapped into

one of seven quantization values, and then we calculated the

ratio of the total number of a certain range of differences

according to the quantization value and number of the certain

range of differences obtained from the same location. The

experimental results are shown in Fig. 5.

The probabilistic outputs from SIFT descriptors-based and

HTD-based similarities were multiplied to obtain the final

likelihood value as shown in Fig. 3. The fusion of multiple

visual features is formally defined as

∑

d

∑

γ

P (πt = true|st, dt,γt, vt, rvt) =

ηΠf

∑

d

∑

γ

P (πt = true|sft
, dt,γt, vt, rvt) (12)

where f = {SIFT,HTD}.

E. Final localization step

To determine the reliable location of the robot, we provide

an additional localization step called the final localization

filter. The main concept underlying this process is to match

the sequence of highest probability views with the sequence

of the views in the action-associated sparse appearance-

based map. This process is conducted in such a way that

when the update step is finished, the view with the highest

probability is selected, In addition, if the probability exceeds

a certain threshold, the view is considered a candidate for

final decision. The candidate view is considered a four-

dimensional vector, which is formally defined as

χ =< n, v, p, r >, (13)

where n and v denote the indices of node and view,

respectively, p is the probability of the candidate view, and

r indicates the time of rotation. The vector is saved into an

array of candidate views and never changed; then, the robot

rotates and localizes again. Whenever a candidate view is

added to the array of candidate views, the next process is

conducted. In the next process, if the difference in the time

of rotation between the current and previous candidate view

is the same as the difference in the view index between

the current and previous candidate views and the current

and previous candidate view are located in the same node,

localization is considered to have been executed correctly2.

This process is repeated with respect to all further previous

candidate views in the same manner. After the process is

finished, if the number of correct localizations is above a

certain threshold, the last candidate view is considered the

final location of the robot; if not, the robot rotates again. the

other hand, if the time of rotations is grater than the number

of views in a node, localization fails. All of these processes

are outlined in Algorithm II. In our experiment, θp and θc

were 0.85, 3, respectively. These parameter were estimated

to maximize recall and precision simultaneously, based on a

number of experimental observations.

IV. EXPERIMENT

We implemented our approach on a notebook PC (Intel.

Pentium 2.0 GHz) and performed thorough testing using

a Pioneer AT3 mobile robot equipped with a Logitech

QuickCam Pro 4000. All the images were acquired at a

resolution of 320x240 pixels using the web camera.

We placed special emphasis on three core ideas: (1)assign-

ing probabilities to all the locations considering changes in

environmental dynamics and viewpoint; (2)using transition

probabilities based on the action-associated view transition

model; and (3)fusing multiple visual features. We will show

that integration of three core ideas described as above yields

synergistic improvement of localization of a robot. For the

sake of evaluation of our proposed approach, we implement

three other localization approaches, each of which employs

two of three core ideas and one different method. TABLE

2In this case, we assume that the robot rotates through the same angle as
it did at the time of map-building.
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TABLE I

ONE DIFFERENT METHOD OF EACH COMPARING APPROACH

Approach Different method Proposed method

Approach I
Hard decision based Probability based on

on a certain threshold LeTO2 function

Approach II
uniform transition Transition probabilities

probability based on view transition model

Approach III
Only HTD-based Fusion of multiple

similarity visual features

I briefly explains how we implement the different methods

with respect to three core ideas. In Approach I, if a matched

similarity does not reach a certain threshold, a very low

likelihood is assigned to the result; otherwise, a very high

value is assigned. In Approach II, transition probabilities in

the prediction step are uniform. We implemented Approach

III using only HTD-based similarity but not SIFT descriptor-

based similarity. As SIFT descriptor-based similarity is not

discriminative in the case of usual illumination changes, most

of the number of matched SIFT keypoints were zero.

The action-associated sparse appearance-based map was

built in an office building. The map consisted of 15 nodes,

of which six, six and three nodes were selected from two

rooms, one corridor, and one hall, respectively. An image was

obtained whenever the robot rotated through 30◦ in a node,

and consequently each node was composed of 12 views.

First, We compared our approach and three other ap-

proaches at locations within the map, under various condition

of dynamic factors, and various viewpoints as described in

Section III-D. This experiment was conducted 100 times for

each approach, and the experimental results are shown in

TABLE II. The correct localization rates of Approach III and

our approach were higher than those of the other approaches.

Approach I uses a hard decision based on a certain threshold,

but most of the similarities did not reach the threshold, due

to various change in the conditions. Approach II decides its

location using only a single observation, as the transition

probabilities for all locations are always uniform.

Next, we compared Approach III and our approach, in

which localization was conducted at a location that did not

exist in the map. Various conditions were also changed. This

experiment was performed 50 times for each approach. In

this experiment, if the robot did not decide on one of the

locations in the map until it reached the initial orientation,

we considered the localization to have been conducted cor-

rectly. TABLE III compares the incorrect localization rate,

given negative data. Approach III had poor performance,

while our approach showed good performance. Approach III

employed only HTD as visual cues, but in general texture-

based features such as HTD can lead to much higher false-

positive detection rates with respect to SIFT. In our approach,

false positives caused by the matched result of HTD can be

corrected by the matched results of SIFT descriptors. These

experimental results indicated that all three of our methods

are essential for reliable localization.

TABLE II

LOCALIZATION AT ONE OF THE LOCATION IN THE MAP

Approach
Number of

Percentage
correct localization

Approach I 15 15%

Approach II 24 24%

Approach III 72 72%

Proposed approach 86 86%

TABLE III

LOCALIZATION AT UNKNOWN LOCATION

Approach
Number of

Percentage
incorrect localization

Approach III 29 58%

Proposed approach 4 8%

V. CONCLUSIONS AND REMARKS

We proposed a localization approach with an action-

associated sparse appearance-based map, under dynamically

changing environment. Our approach is based on the Bayes

filter, a well known probabilistic framework. In this frame-

work, we propose an observation model based on LeTO2

function and an action-associated sparse appearance-based

map for prediction, update and, final localization steps. In

addition, multiple visual features are employed to provide

greater reliability of the observation model.

Our probabilistic framework was evaluated experimentally,

and was compared with three other approaches in Table 1.

In an experiment with various changes in the environment

and in viewpoint, the probabilities of correct and incorrect

localizations were measured for each approach, and the

results demonstrated the value of our approach.

In future work, we plan to enhance the mathematical

aspects of the approach and experimentally confirm the gen-

erality of the proposed localization method. The quantization

interval of the LeTO2 function for HTD-based similarity

is selected heuristically. Therefore, we will improve our

framework by substituting the LeTO2 function as a mathe-

matically well defined classification technique. However, in

this case, the classifier should provide probabilistic classifi-

cation for use in the Bayes-filter framework. We consider the

relevance vector machine(RVM)[16] to be such a classifier

because it does not only achieves comparable recognition

accuracy to the support vector machine(SVM) but also

provides a full predictive distribution. In addition, we will

apply our approach to many different indoor environments

to confirm its generality.
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