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Abstract— In this paper, we present a controller for visual
navigation, which utilizes a time-independent varying reference
in the feedback law. The navigation framework relies on a
monocular camera, and the path is represented as a series of
key images. The varying reference is determined using a vector
field, derived from the previous and next key images. Results
in a simulated environment, as well as on a real robot, show
the advantages of the varying reference, with respect to a fixed
one, in the image, as well as in the 3D state space.

I. INTRODUCTION

Processing visual information is very useful for robot
navigation in urban environments, where tall buildings can
disturb satellite receiving and GPS localization, while offer-
ing numerous visual features. For this reason, many recent
works have been carried out in the field of autonomous
vehicle visual navigation. Most of these works [1 – 7]
present a framework where a wheeled robot with an on-board
camera autonomously tracks a reference path described by an
ordered set of key images, stored in a database. A similarity
score between the current view acquired by the camera and
the database images, is used as input for the robot controller.

In [1], a framework of this type has been proposed, where
a simple image-based visual servoing [8] controller was
utilized: the difference in the image abscissa of the features
centroid in the current and next key image was fed back
into the controller [2]. The objective of this article is to
improve the controller performance in the pose space without
jeopardizing the good image space results obtained. This will
be done by exploiting, on one hand, the results presented
in [3] (where the performance of various controllers has
been compared), and on the other hand, the use of a varying
visual reference in the servoing scheme. This second aspect
represents the main contribution of the present paper.

In fact, the objective of most image-based visual servoing
systems is to achieve a desired configuration of the image
features from an initial one; however, if the initial and
final configurations are far, convergence can be difficult to
ensure. As shown in [9], a possible solution is the use
of a planning step joint with the servoing, to limit the
tracking error along the planned path. In [10], an approach
that uses an image-based visual servoing system to track
a desired timed feature trajectory is presented. In contrast,
a time-independent solution for tracking image trajectories,
based on a movement flow to determine the desired con-
figuration from the current one, is described in [11]. With
these approaches, the desired configuration remains near the
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current one, and the local stability of the image-based visual
servoing is always assured. This allows the desired image
trajectory tracking, while guaranteeing the visibility of the
target during operation. In this work, we propose the use of
a similar approach to improve the performance of our visual
navigation framework.

The paper is organized as follows. The variables and
characteristics of our navigation framework are presented in
Sections II and III. In Sect. IV, we explain how the varying
visual reference is derived. Simulated and real experimental
results are discussed respectively in Sections V and VI.

II. DEFINITIONS

In this work, we focus on a nonholonomic mobile robot,
equipped with a fixed pinhole camera. The workspace where
the robot moves is planar. With reference to Fig. 1, let us
define the reference frames: world frame FW (W,x′, z′),
and image frame FI(O,X, Y ) (point O is the image plane
center). The robot configuration is: q = [x′ z′ θ]>, where
[x′ z′]> is the cartesian position of the robot center in
FW , and θ ∈ ]−π,+π] is the robot heading (positive
counterclockwise) with respect to the world frame z′ axis.
We choose u = [v ω]> as the pair of control variables for
our system: respectively the linear and angular velocities of
the robot. In the case of a car-like robot, there is a constraint
on the maximum applicable curvature, i.e.,

∣∣ω
v

∣∣ is bounded.
The state equation of the robot is:

q̇ =

 cos θ 0
sin θ 0

0 1

u
We also define the camera frame FC(C, x, y, z), shown in

Fig. 1 (C is the optical center). The camera optical axis z is
aligned with the robot forward axis, and the x axis is parallel
to the motion plane. The distance between the y axis and the
robot rotation axis is denoted by δ. Let us define:

uc = [vc ωc]
> = [vx vy vz ωx ωy ωz]

>

the camera velocity expressed in FC .
In the following, we consider that the camera parameters

have been determined through a preliminary calibration
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Fig. 1. Mobile robot (orange), equipped with fixed pinhole camera (blue),
and applied control variables (v, ω)
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Fig. 2. Each neighboring pair of key images contains some common visual
features. During navigation, such features are tracked in the current image
to enable localization in the database and 3D pose calculation.

phase. The normalized perspective camera model is:

X =
x

z
Y =

y

z
(1)

where (X,Y ) and (x, y, z) are the coordinates of a visible
point respectively in frames FI and FC .

III. NAVIGATION FRAMEWORK

In this section, we outline our navigation framework,
where the path is represented as a series of key images, such
that each neighboring pair contains some common visual
features (see fig. 2). We assume that the features are static.
The mapping of the path will be described first, followed
by the description of the autonomous navigation process,
which consists of coarse localization and control. Since the
contribution of this paper is control, mapping and localization
are merely outlined here; for further details on these aspects,
the reader is referred to [1] and [2].

A. Mapping

Mapping starts with the manual driving of the robot on
a taught reference path, while storing the images from the
robot camera. We assume that during teaching, v is never
null, i.e., there are no cusps on the path. From the images, a
representation of the path is created. Harris points [12] are
detected in the first image (which is saved as first key image),
and a modified Kanade-Lucas-Tomasi (KLT) algorithm [13]
is used to track the features in successive images. Tracked
features are used to estimate the 3D geometry between
the previous key image and the current image. If the 3D
reconstruction error is high, the previous image is saved as
the next key image, and the tracker is reinitialized with the
Harris points detected in this new key image. At the end
of the mapping phase, the key images, the corresponding
estimated 3D robot poses in FW , as well as the 2D FI image
coordinates and 3D FC camera coordinates of the feature
points at key frames, are saved in the map database. We call
Ii, i = 1, . . . , N the key images, and qi the corresponding
robot key poses.

B. Coarse localization

The coarse localization process during navigation is de-
picted in fig. 2. It is based on the comparison between the
currently acquired image, noted I , and the map database.
Using wide-baseline matching on SIFT descriptors [14], the
first acquired image is localized in the topological map (i.e.,
the neighboring key images are identified), and the KLT

tracker is initialized using the current features matched with
the database key images. Throughout navigation, using the
tracked points, a three-view pose calculation is performed
between the previous, current and next key images, to allow
the recovery from tracking failures and occlusions, and check
whether the current image comes after the next key image. As
soon as this occurs, a topological transition is made, i.e., the
next key image becomes the previous key image and so on.
The tracker is then reinitialized, and the process is iterated
until the final key image is reached. At each localization
iteration, for each pair of images (I, Ii), the n pairs of
matched points is denoted (P, Pi)j , j = 1, . . . , n.

C. Control

The task of replaying the taught path is divided into N
subtasks, each consisting of reaching the next database key
image Ii. The contribution of this paper is the improvement
of the controller from the one used in [1]. Here, we test
the image jacobian controllers presented in [3], and, most
importantly, we utilize a varying reference in the feedback
law. The image jacobian is a well known tool in visual
servoing [8], which is used to drive a vector of k visual
features s to a desired value s∗, i.e., to minimize the error:

e = s (r (t))− s∗ (a (t)) (2)

The error is implicitly time-dependent via the camera pose
r and the mapping a that is used to compute the varying
reference s∗, as will be explained in Sect. IV. The image
jacobian has been previously applied in nonholonomic navi-
gation (see e.g., [4] and [15]). Matrix Ls relates the velocity
of feature vector s to the robot velocity u:

ṡ = Lsu = Ls,vv + Ls,ωω

The time variation of error (2) is given by:

ė = ṡ− ṡ∗ = Ls,vv + Ls,ωω −
∂s∗

∂a

∂a

∂t
(3)

To ensure an exponential decoupled decrease of e (that is,
ė = −λe), we set v to a constant, non-null, value1 and we
select as control law on ω:

ω = −Ls,ω+

(
λe+ Ls,vv −

∂s∗

∂a

∂a

∂t

)
(4)

where λ is a given positive gain, Ls,ω+ ∈ IR1×k is the
Moore-Penrose matrix pseudoinverse of Ls,ω , i.e., Ls,ω+ =(
Ls,ω>Ls,ω

)−1
Ls,ω>, and ∂s∗

∂a
∂a
∂t must be introduced in

the control law to compensate for the desired feature motion.
In the experiments, we will however neglect ∂s∗

∂a
∂a
∂t in (4).

In all five feedback controllers, s is related to the feature
points matched between I and Ii. In the image jacobian
points controller (IJP), the visual features s used for reach-
ing image Ii are the current image coordinates of the n
matched points (k = 2n). In the image jacobian centroid
controller (IJC), the s are the current image coordinates of
the matched points’ centroid (k = 2). The same features are

1This is plausible, since the path does not contain any cusps. In Sect. VI,
we will relax the assumption of constant v.
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Fig. 3. Derivation of the varying reference in the current image, using the previous and next key point positions, Pi−1 and Pi.

used respectively by the image jacobian points controller
with uniform depths (IJPU) and the image jacobian centroid
controller with uniform depths (IJCU); however, for these
controllers, which should be used when depth estimation is
unreliable, all point depths are assumed identical and set to
a fixed value tuned by the user. In the approximated image
jacobian centroid abscissa controller (AIJCA), which has
been used in [1], the visual feature s is the abscissa of the
centroid of the n matched points (k = 1), and no metrical
knowledge of the 3-D scene is used. The expressions of Ls,v
and Ls,ω for the 5 controllers are given in [3]. In that same
work, we have also shown that in all 5 cases, (4) is valid,
since Ls,ω>Ls,ω is never singular.

Since all controllers use image point coordinates as visual
features, to implement (4), we must choose the appropriate
desired reference point P ∗ associated to a point P .

IV. DERIVING THE VARYING REFERENCE

In order to properly choose P ∗, we study the trajectory P
of the image projection of a 3-D point as the robot moves
with velocity commands u between key poses qi−1 and qi.
Since in practice, time tracking is not a specification for
our system, and since it requires reliable time measurements,
we have designed a time-independent varying reference, as
in [11]. If poses qi−1 and qi are accurately estimated, and
if we assume that, during teaching, u was constant on the
path portion, it is possible to derive the camera velocity uc,
which will also be constant on the path portion, and related
to u by a homogeneous transformation. Then, if the point
depths zi−1 and zi at the key poses are also known, the
3D trajectory of a point in FC can be derived by using the
exponential map [16], from which we can deduce the 2D
image point trajectories.

If we approximate the robot path portion between qi−1 and
qi with an arc of circle: vx = −δω, vz = v, and ωy = −ω.
Then, the exponential map yields: xi = ∆xC + ∆zS − v

ω
yi = yi−1

zi = −∆xS + ∆zC − δ
(5)

where we have used the notations:
S = sin (θi − θi−1) C = cos (θi − θi−1)

∆x = v
ω + xi−1 ∆z = δ + zi−1

Plugging (5) into (1) gives:{
Xi = ∆xC+∆zS− v

ω

−∆xS+∆zC−δ
Yi = zi−1Yi−1

−∆xS+∆zC−δ
(6)

These equations can be used to derive the parametric equa-
tions of the point trajectory as the robot moves between
the two key poses, and hence to design the desired varying
reference for (4). However, for practical implementation,
a very reliable 3D reconstruction is required, due to the
importance of the point depths and of the robot pose in (6).

Instead, since 3D reconstruction in our navigation frame-
work is not accurate enough for such implementation, we
have decided to design the varying reference by considering
the line connecting Pi−1 and Pi. Note that in the case of
null curvature (i.e., for pure translations of the robot), the
visible point trajectories are in fact straight lines.

A vector field Φ (P ) is used to determine the desired
reference P ∗ associated to current point P ; we set:

P ∗ = P + ‖Pi−1Pi‖
Φ (P )
‖Φ (P ) ‖

Note, from the above equation, that the norm of the error
P − P ∗ is maintained constant throughout the path portion.
Its value coincides with the distance between the previous
and next key point position. In the simulations, and exper-
iments, we will show how this choice improves the system
performance.

The technique used to generate vector field Φ (P ) is
similar to that used in [11], and is illustrated in fig. 3. For
each path portion linking two consecutive key poses, we
consider the straight line Γ connecting Pi−1 and Pi. The
vector field at each point of Γ must be tangent to it, and
point towards Pi. At points outside the line it should decrease
the tracking error. In practice, the vector field indicates the
direction in which the desired reference must be located, in
order to track the trajectory and drive P to Pi. Based on these
considerations, the vector field Φ (P ) associated to point P
is defined as the sum of a tangential and a normal effect:

Φ (P ) = Φt (P ) + Φn (P )

where Φt and Φn are obtained as the negative gradients of
potential fields Ut and Un that will be defined below.

The tangential potential field Ut is the scalar product:

Ut = |PPi · Pi−1Pi|

Its norm is the product of ‖Pi−1Pi‖ with the distance
between Pi and the normal projection of P (denoted Pn)
on Γ. Thus, its contribution to the vector field

Φt = −5 Ut = ±Pi−1Pi
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has constant norm (except at Pi, where it is null), is parallel
to Γ, and points towards Pi. Note that there is a discontinuity
in the norm of Φt when P crosses the normal to Γ through
Pi. This is not a problem, since, as explained in III-B, the
controller will switch to the following key image Ii+1 when
Ii is reached (and eventually stop, if i = N ).

The normal potential field Un is:

Un =
d2 (P,Γ)

2
where d (P,Γ) indicates the signed distance from P to Γ. In
practice, it attains its minimum value (zero) for line points,
and increases quadratically with the distance from the line.
Thus, its contribution to the vector field:

Φn = −5 Un = PPn

is necessary to ’attract’ reference P ∗ towards Γ.
Both vector fields Φt and Φn, are shown in fig. 3.

V. SIMULATIONS

For preliminary simulations, we made use of Webots2,
where a mobile robot has been designed. In successive
simulations, we let the robot navigate on a taught path using
feedback law (4) with the 5 controllers outlined in Sect. III-
C (i.e., with the corresponding instances of Ls,v and Ls,ω),
and with the 3 different visual references s∗ that will be
described below.

The objective of the first simulations is to show the effect,
on navigation, of the choice of s∗ in (4). This is done by
running 3 series of simulations, each one on all 5 controllers:
• in the key fixed reference simulations, we use the

references detected on the N = 17 key images, as in [1];
• in the all fixed reference simulations, during mapping,

we store the data acquired at every manual driving
iteration, instead of storing only key data; hence, in (4),
we use the fixed references detected on all images, and
a much larger map database is obviously required in
this case (N = 510):

• in the varying reference simulations, only data at key
poses is considered, as in the first case; the reference to
be tracked is computed as explained in Sect. IV.

Using the Webots GPS sensor, we can derive the 3D paths
tracked by the simulated robot in the 15 experiments and
compare them to the taught path. With all 5 controllers and
all 3 types of references, the robot is able to successfully
complete path tracking. Along with the 3D position error,
we consider, as performance metric, the image error with
respect to the next key image:

εi =
1
n

n∑
j=1

‖Pj − Pi,j‖

In Figure 4, we have plotted, for all 15 simulations, the
average image error εi when the key images are reached,
and the average position error with respect to the taught
path. As is shown in the figure, all controllers are much

2www.cyberbotics.com

IJP IJC IJPU IJCU AIJCA IJP IJC IJPU IJCU AIJCA

Fig. 4. Average position error (left, in cm) and average image error (right,
in pixels) for the 5 controllers in the simulations with correct (full curves)
and coarse (dashed curves) camera calibration, using key fixed reference
(blue), all fixed reference (green) and varying reference (red).

less accurate with the key references (blue) than with all
references (green). This is reasonable, since using all ref-
erences is equivalent to increasing the signal frequency on
the feedback loop of the control scheme. The figure shows
that both errors, are more than four times higher with key
fixed than with all fixed references using either of the 5
controllers. On the other hand, when varying references
are used, the controller accuracies are good (less than 5
cm in 3D, and 2 pixels in the image) while the database
size is approximately thirty times smaller than if all images
are used. This represents an excellent trade-off, since both
precision and feasibility should be taken into account when
designing a real navigation system, and if all references
are used, a database of approximately 1 gigabyte would be
required for each path km. Along with the database size,
the mapping computation time is sensibly increased (almost
ten times) when all images are used as references. This
confirms the utility of the varying reference. When fixed key
references are used, slightly better results are obtained if the
depth is estimated using 3D reconstruction (IJP and IJC),
than if it is fixed (IJPU and IJCU) or not considered at all
(AIJCA). This aspect, which had already been outlined in [3],
is less evident in the two other cases: the 3D estimation
is less influent in the case of a frequent reference signal
(measured when all images are considered, and estimated
when the varying reference is considered).

To further investigate the controller performances, we have
plotted, in Fig. 5 (left), the evolution of some relevant vari-
ables (the robot position in FW , as well as ω and εi) during
a circular path portion, when the best controllers of key fixed
reference (i.e., IJP), all fixed reference (IJC) and varying
reference (IJC) are used. Although we focus on this portion,
the trends are similar throughout the path. During teaching,
the angular velocity applied to the robot on this path portion
was −0.05 rad s−1. The robot paths (top) show that when
the signal is frequent (red and green curves) the autonomous
behavior is similar to the taught one (black). The reason
for this can be found in the ω curves (center): when the
signal is frequent, ω ' −0.05 rad s−1. Correspondingly, εi
(bottom) decreases approximately linearly when the varying
reference is used, and remains low when all images are used.
This leads to the nice performances described above. On
the other hand, when fixed key references are utilized (blue
curve), both the control input and error have an exponential
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Fig. 5. Evolution of relevant variables at successive iterations while
the simulated robot moves on a circular portion of the path using the
best controllers of key fixed reference (blue), all fixed reference (green)
and varying reference (red) with correct (left) and coarse (right) camera
calibration. Top: robot position (x′, z′) in FW (meters); the taught path is
indicated in black. Center: ω (rad/s). Bottom: εi (pixels).

decreasing trend, which leads to abrupt changes when the
key images are switched, and to less accurate path tracking.

To verify the controllers’ robustness, the 15 simulations
have been repeated with a random calibration error of either
+10% or −10% on focal length parameters fX and fY ,
and distance δ. The relevant metrics, and their evolution,
are shown respectively in Fig. 4 (dashed curves), and Fig. 5
(right). The robot is again able to successfully follow the path
in all cases, although path tracking is less precise than in the
calibrated camera case (see Fig. 4). The best results are again
obtained with: all fixed reference, varying reference, and key
fixed reference (in this order).

VI. EXPERIMENTS

After the simulations, we tested the framework on a CyCab
vehicle with a coarsely calibrated 70◦ field of view, forward
looking, B&W camera. CyCab is a 4 wheel drive, 4 wheel
steered vehicle, which we use in car-like mode (i.e., only
the front wheels are used for steering). The objective of the
experiments is to show the improvement in the navigation
performance, with respect to [1]. The changes with respect
to the existing navigation framework concern control.

A minor difference with respect to the existing controller
concerns the linear velocity v, which must be reduced, in
the presence of sharp turns, to ease the tracking of quickly
moving features in the image. In [1], v was switched between
two constant values V̄ and v̄ < V̄ by thresholding the
differences between the centroid abscissa in the current, next
and next-next key images. This caused abrupt accelerations,
unpleasant for passengers. Here, instead, we use a hyperbolic
tangent function to map the centroid abscissa variation to v:

v = V̄ + v̄+
V̄ − v̄

2
tanh

(
π − |2Xi +Xi+1 − 3X|

γ

)
(7)

where γ is a positive parameter that determines the function
inflection point. This design choice guarantees the v̄ and V̄
bounds, while smoothening the transitions.

TABLE I
COMPARING THREE CONTROLLERS ON THE REAL ROBOT

controller AIJCA fixed AIJCA varying IJCU varying
average εi (pixels) 28 21 17
average v (m s−1) 0.67 0.74 0.80

The main difference with respect to the framework pre-
sented in [1] concerns the angular velocity, which is still
calculated using (4), but with three control strategies. In
Sect. V, we have shown that the use of a varying reference
improves navigation. Using all images, while guaranteeing
higher accuracy, induces slower mapping and greater mem-
ory requirements. Thus, we have decided to compare the
controller used in [1] (AIJCA with key fixed references)
with the AIJCA controller with varying reference, and with
the IJCU controller with varying reference. The comparison
between the first two controllers aims at emphasizing the
advantages of the varying reference, when the same control
law is used. For the third experiment, we have chosen IJCU
for three reasons. Firstly, the simulations (see Fig. 4) have
shown that the image jacobian controllers slightly outperform
AIJCA, especially in the pose space. Moreover, to avoid
the computation of the vector field at all points, which is
computationally costly, centroid controllers IJC and IJCU are
preferable. Finally, since we have shown in [3] that the use
of uniform feature depths is a valid alternative when depth
estimation is inaccurate, as is the case here, we have chosen
IJCU.

A taught path of approximately 40 m, composed of N = 9
key images, has been replayed using the three controllers. We
set V̄ = 0.9 m s−1, v̄ = 0.5 m s−1 and γ = 30. The gains
are tuned respectively to λ = 0.25 and λ = 0.15, for the
fixed and varying reference experiments3. Values of the main
metrics are reported in Table I, and the evolution of v, ω, and
εi during the experiments are shown in Fig. 6. The replayed
paths, estimated from snapshots of the 3 experiments are
shown, along with the taught path (white) in Fig. 7.

The experiments confirm the controllers’ characteristics
seen in Webots. Indeed, both in the image (see Table I and
Fig. 6) and in the 3D state space (Fig. 7), the two controllers
using the varying reference outperform the one that uses
the fixed reference. In fact, maintaining constant ‖e‖ in (4),
keeps the value of ω smooth throughout navigation. This
is an important advantage, since during manual drive, the
angular velocities are generally smooth, and this is hardly
reproducible with the fixed reference, leading to imprecise
3D tracking. In particular, note from Fig. 6, that the variation
in ω at key image shifts is smaller when the varying reference
is used (for both controllers, approximately 0.03 rad s−1,
averaged over the eight image shifts), than when the fixed
reference is used (0.045 rad s−1). This is an advantage both
for passenger comfort, and for the localization algorithm,
since feature tracking is facilitated. In fact, better feature
tracking enables faster navigation: as shown in Table I, the
average v can be 10% higher when the varying reference is
used with the same controller, i.e., AIJCA.

3Since on each path portion, ‖e‖ is constantly equal to its initial value in
the varying case, and decreases from that value in the fixed case, the gain
with fixed reference must be larger than with varying reference.
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Fig. 6. Evolution of v (top, in m s−1), ω (center, in rad s−1) and
εi (bottom, in pixels) at successive iterations while Cycab moves on the
path using: AIJCA with key fixed references (blue), AIJCA with varying
reference (red), and IJCU with varying reference (orange).

As shown in the top plot of Fig. 6, using law (7) keeps the
linear velocity smooth, and therefore improves the passenger
comfort. Finally, as prefigured in the simulations and in [3],
among the two varying reference controllers, IJCU is better
than AIJCA, both in the image, and in the pose space. The
corresponding experiment (IJCU with varying reference) is
shown in the video clip attached to this paper.

VII. CONCLUSIONS AND FUTURE WORK
We have proposed the use of a varying reference in visual

navigation frameworks for replaying paths represented as
a series of key images. The reference has been designed
using a vector field, which is independent from time, and
from camera pose estimation. This choice is appropriate for
application on real systems, where timed trajectory tracking
can be difficult, and pose reconstruction is often inaccurate.
Simulations and real results show that better image and
pose accuracy, as well as higher navigation speeds, can be
obtained when the reference is varied. The experiments also
confirm the characteristics of the 5 controllers introduced and
assessed in [3]: although the 2 controllers, which combine
both image data and feature depth (IJP and IJC) outperform
the others, valid alternatives, when 3D reconstruction is
inaccurate, are the uniform depth controllers IJPU and IJCU.

In our opinion, the varying reference approach, will be
useful for the future work we plan to do on obstacle
avoidance. In fact, taking into account obstacles present in
the workspace, while tracking a path represented by key
images, requires high accuracy both in the image, and in
the pose space. This can be obtained by using a varying
reference in the feedback law.
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