
 
 

 

  

Abstract—With the goal of improving human-robot speech 
communication, the localization of multiple sound sources in the 
3D-space based on the MUSIC algorithm was implemented and 
evaluated in a humanoid robot embedded in real noisy 
environments. The effects of several parameters related to the 
MUSIC algorithm on sound source localization and real-time 
performances were evaluated, for recordings in different 
environments. Real-time processing could be achieved by 
reducing the frame size to 4 ms, without degrading the sound 
localization performance. A method was also proposed for 
determination of the number of sources, which is an important 
parameter that influences the performance of the MUSIC 
algorithm. The proposed method achieved localization 
accuracies and insertion rates comparable with the case where 
the ideal number of sources is given. 

I. INTRODUCTION 
N human-robot speech communication, the microphones 
on the robot are usually far (more than 1 m) from the 

human users, so that the signal-to-noise ratio becomes lower 
than for example in telephone speech, where the microphone 
is centimeters from the user’s mouth. Due to this fact, 
interference signals, such as voices of other subjects close to 
the robot, and the background environment noise, would 
degrade the performance of the robot’s speech recognition. 
Therefore, sound source localization and posterior separation 
become particularly important in robotics applications.  

There are many works about sound source localization 
[1]-[9]. The sound localization method adopted in the present 
work is the MUSIC (MUltiple SIgnal Classification) 
algorithm, which is a well-known high-resolution method for 
source localization [1]-[3]. However, there are two issues 
regarding the MUSIC algorithm, which constrain its 
application for sound localization in practice. One is the 
heavy computational cost, while the other is the need of 
previous knowledge about the actual number of sources 
present in the input signal. 
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In the present paper, we discuss about these two issues, by 
analyzing the effects of several parameters related to the 
MUSIC algorithm, on the sound localization accuracy and 
real-time performance. 

Regarding evaluation, although there are many works 
related to sound localization, most of them only evaluate 
simulation data or laboratory data in very controlled 
conditions. Also, only a few works evaluate sound 
localization in the 3D space, i.e., considering both azimuth 
and elevation directions [8]-[9]. Looking at the user’s face 
while the subject is speaking is also an important behavior for 
improving human-robot dialogue interaction, and for that, a 
sound localization in 3D space becomes useful. 

Taking the facts stated above into account, in the present 
work, we constructed a MUSIC-based 3D-space sound 
localization (i.e., estimation of both azimuth and elevation 
directions) in the communication robot of our laboratory, 
“Robovie”, and evaluated it in real noisy environments. We 
evaluated the effects of the environment change on the 
MUSIC algorithm and proposed a method to improve sound 
localization robustness. 

This paper is organized as follows. In Section II, 
descriptions about the hardware and data collection are given. 
In Section III, the proposed method is explained, and in 
Section IV, analyses and evaluation results are presented. 
Section V concludes the paper. 

II. HARDWARE AND DATA COLLECTION 

A. The microphone array 
A 14-element microphone array was constructed in order 

to fit the chest geometry of Robovie, as shown in Fig. 1.  
 

 
Fig. 1. (a) The geometry of the 14-element microphone array. (b) Robovie 
wearing the microphone array. 

 
The chest was chosen, instead of the head, due to geometric 

limitations of Robovie’s head. Several 3D array architectures 
were tested using simulations of the MUSIC algorithm. The 
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array geometries were designed in such a way to cover all 
three-dimensional coordinate axes, giving emphasis to 
resolution in azimuth direction, and sounds coming from the 
front. The array configuration shown in Fig. 1 was chosen 
since it produced fewer side-lobes and had a fairly good 
response over different frequency bins.  

A 16-channel A/D converter TD-BD-16ADUSB from 
Tokyo Electron Device Limited was used to capture the 
signals from the array microphones. Sony ECM-C10 
omni-directional electret condenser microphones were used 
as sensors. Audio signals were captured at 16 kHz and 16 bits. 

B. Recording setup 
The microphone array was set on the robot’s chest 

structure, as shown in Fig. 1. The robot was turned on to 
account for the noise produced by its internal hardware. The 
sources (subjects) were positioned around the robot in 
different configurations and were instructed to speak to the 
robot in a natural way. Each subject had an additional 
microphone to capture their utterance. The signals from these 
additional microphones, which we will call “source signals” 
throughout the paper, will be used only for analysis and 
evaluation. Nonetheless, the source signals are not required 
by the proposed method in its final implementation.  

C. Data collection and environmental conditions 
Recoding data using the microphone array was collected in 

two different environments. One is an office environment 
(OFC), where the main noise sources are the room’s air 
conditioner and the robot’s internal hardware noises. The 
second environment is a hallway of an outdoor shopping mall 
(called Universal City Walk Osaka – UCW), where a field 
trial experiment is currently being executed [10]. The main 
noise source in UCW was a loud pop/rock background music 
coming from the loudspeakers on the hallway ceiling. The 
ceiling height is about 3.5 meters. Recordings were done with 
the robot faced to different directions, in several places. 

In OFC, four sources (male subjects) are present. At first, 
each source speaks to the robot for about 10 seconds, as the 
others remain silent. In the last 15 seconds of the recording, 
all four sources speak at the same time. For this recording, 
two of the subjects wore microphones connected to the two 
remaining channels of the 16-channel A/D device, while the 
other two subjects wore microphones connected to a different 
audio capture device (M-audio USB audio). A clap at the 
beginning of the recording was used to manually synchronize 
the signals of these two speakers to the array signals. It is 
worth to mention that a strict synchronization between the 
source signals was not necessary, because only power 
information of the source signals will be used, as will be 
explained in Section II.D. 

In UCW, there are two speech sources (male subjects) 
present in all recordings. In most of the trials, the sources take 
turns to speak for about 10 seconds each and then proceed to 
talk at the same time. In two of the trials (UCW7 and UCW8), 
one source is moving and the other is static, both speaking at 

the same time most of time. In five trials (UCW1-4, UCW9), 
the robot is far from the ceiling loudspeakers, while in four 
trials, the robot is close (a few meters) to a loudspeaker 
(UCW5-8), and in another four trials, the robot is right under 
a loudspeaker (UCW10-13). All trials have different 
configurations for the robot facing direction and/or source 
locations. 

D. Computation of the reference number of sources from the 
power of the source signals (PNOS) 

The number of sources (NOS) is an important parameter 
required by the MUSIC algorithm, which influences on the 
performance of DOA estimation. For analysis and evaluation 
of the NOS in the DOA estimation performance, reference 
NOS were computed from the power of the source signals. 
These power-based NOS values will be referred as PNOS. 

Prior to compute the power of each source, a cross-channel 
spectral binary masking was conducted among the source 
signals in order to reduce the inter-channel leakage 
interferences, and get more reliable reference signals. In 
addition, the signal of the microphone in the center position in 
the array was used to remove the ambient music noise from 
all the source signals. Finally, the signal was also manually 
attenuated in the intervals where interference leakage 
persisted after the above processing. This resulted in much 
clearer source signals. 

The average power of the signal was computed for each 
100 ms, which corresponds to the block interval used in the 
MUSIC algorithm. A threshold was manually adjusted to 
discriminate the blocks with sound activity for each source 
signal. For each block, PNOS is then given by the summation 
of the source signals with activity. 

In the UCW recordings, an additional source (due to the 
background music) was added to PNOS. 

III. PROPOSED METHOD 

A. The sound localization algorithm 
Fig. 2 shows the block diagram of the implemented sound 

localization algorithm. The algorithm structure is basically 
the same of a classical approach of the MUSIC algorithm: 
getting the Fourier transform (FFT) for computation of the 
multi-channel spectrum, computing the cross-spectrum 
correlation matrix, making the eigenvalue decomposition of 
the averaged correlation matrix over a time block, computing 
the MUSIC responses for each frequency bin using the 
eigenvectors corresponding to the noise subspace and the 
steering/position vectors prepared beforehand for the desired 
search space, the broadband MUSIC response by averaging 
the (narrowband) responses over a frequency range, and 
finally a peak picking in the MUSIC response to get the 
desired direction of arrival (DOA) of the sound sources. 

In the proposed approach, some of the parameters are 
analyzed in order to obtain a real-time processing, and 
keeping the DOA estimation performance. We also analyze 
and propose a method for determining the number of sources, 
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which is an important parameter necessary for obtaining a 
good performance by the MUSIC algorithm. Each analyzed 
parameter is described in detail in the following sections. 
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Fig. 2. The MUSIC-based sound localization algorithm, and related 
parameters. 

B. The search space for DOA (directions of arrival) 
The MUSIC algorithm was implemented to obtain not only 

the azimuth but also the elevation angle of the direction of 
arrival (DOA) of each source signal. Since the goal of this 
development is to enhance the human/robot interaction, we 
considered that it was not necessary to estimate the distance 
between the robot and the source(s) and that the DOA was the 
important piece of information. Nonetheless, the MUSIC 
algorithm can easily be extended to estimate also the distance 
between the array and the source, by adding the 
corresponding steering/position vectors. However, this would 
considerably increase the processing time. 

A spherical mesh with a step of 5 degrees was constructed 
for defining the directions to be searched by the MUSIC 
algorithm. The mesh was constructed by setting elevations in 
intervals of 5 degrees, and setting different number of 
azimuth points for each elevation. The number of azimuths is 
maximum for 0 degrees elevation (having 5 degrees azimuth 
intervals), and gradually reduces for higher elevations, in 
such a way that the arc between two points is kept as close as 
possible to the arc corresponding to 5 degrees azimuth in 0 
degrees elevation. This reduces the number of directions to be 
scanned by the MUSIC algorithm, reducing computation time. 
The directions with elevation angles lower than -30 degrees 
were also removed to speed up the computation. The origin of 
the coordinate frame is set to the intersection point of the 
rotational axis of the degrees of freedom of the Robovie’s 
head. This way, the output from the DOA estimation 
algorithm can be directly used to servo the head. 

C. Definition of frame length and block length 
The frame length, which is related to the number of FFT 

points to be computed in the first stage, is an important 
parameter that can drastically reduce the computational costs 
of the MUSIC algorithm. Although FFT of 512 ~ 1024 points 

is commonly used (corresponding to 32 ~ 64 ms frame length 
at 16 kHz), we proposed the use of smaller FFT sizes (64 ~ 
128). This will reduce the computation not only of the FFT 
stage, but also the subsequent correlation matrix, eigenvalue 
decomposition, and MUSIC response computations. 
Evaluation of the effects of the FFT size reduction is reported 
in Section IV. 

In the next step of the MUSIC algorithm, a correlation 
matrix is averaged for the frames within a time block. A time 
block length of 1 second interval has been set in [1]. However, 
such a long block length could result in a low resolution in the 
DOA estimation, if the sound source is moving. In the present 
work, we decided to use a smaller time block length of 100 
ms. 

D. Estimation of the number of sources (NOS) for the 
MUSIC algorithm 

For each time block, the number of sources (NOS) present 
in the input signals has to be attributed to the MUSIC 
algorithm, to decide how many eigenvectors have to be 
included in the computation of the MUSIC response. 

Classical methods for estimating the number of sources use 
the eigenvalues obtained from the correlation matrix of the 
array signals. In theory, strong eigenvalues would correspond 
to directional sources, while weak eigenvalues would 
correspond to non-directional noise sources.  

However, in practice, it is very difficult to distinguish 
between strong and weak eigenvalues, due to reflections and 
possibly due to the geometric imperfections of the array 
implementation. Fig. 3 shows the eigenvalue profiles 
(averaged over the frequency bins) for the recordings in 
different environments (OFC, UCW1 and UCW6), arranged 
by PNOS (ideal number of sources obtained using the power 
of the source signals).  
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Fig. 3. Eigenvalue profiles arranged by the ideal number of sources (PNOS), 
in three different environments: OFC1, UCW1 (loudspeakers are far from the 
robot), and UCW6 (loudspeakers are close to the robot). 
 

We can observe in Fig. 3 that there is some relationship 
between the number of sources and the shapes of the 
eigenvalue profiles. However a threshold between strong and 
weak eigenvalues is difficult to be determined. We can also 
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observe that there are many overlaps between different 
PNOS. 

Fig. 3 also shows that the environment noise has a strong 
impact on the shapes of the eigenvalues. Both magnitude and 
slope of the profiles are affected. We can notice this by 
comparing the eigenvalue profiles of PNOS=0 for the 
recordings OFC1 and UCW1 in Fig. 3. The ones from UCW1 
clearly have a higher magnitude than the ones from OFC1, 
due to the background music. Also, due to the varying nature 
of the background music, the profiles from UCW1 for 
PNOS=0 are not as densely packed as the ones from OFC1. 

Furthermore, we notice that the proximity of the 
environmental music sources also affects the shapes of the 
profiles. The profiles from UCW6 for PNOS=0 are very 
similar in shape to the profiles from UCW1 for PNOS=1. 
This indicates that when the music source is near the robot, it 
is possible to treat it as an additional directional source. 
Otherwise, when the robot is far away from the loudspeakers, 
the environmental music becomes more non-directional. In 
the cases the music source is directional, it would be useful to 
localize it as well and to use it to improve a subsequent sound 
source separation process. 

Considering the difficulties in estimating NOS from the 
eigenvalues of the spatial correlation matrix, we proposed a 
method of using a fixed number of sources for the 
(narrowband) MUSIC response computation (“fixed NOS”), 
and establishing a maximum number of sources detectable 
from the broadband MUSIC response (“max NOS”). Here, 
we allow the maximum number of sources detectable being 
larger than the fixed number of sources for the MUSIC 
response computation. This idea is based on the assumptions 
that at an instant time, the predominance of different 
broadband sound sources varies depending on the frequency 
bins. Therefore, even if the NOS used to the MUSIC response 
computation is limited to a fixed small number, the 
combination of frequency bins to compute the broadband 
MUSIC response may produce more peaks than the fixed 
number.  

To avoid over-estimation of the number of sources, we set 
a threshold for the magnitude of the broadband MUSIC 
response, to determine if a response peak can be considered 
as a source. 

E. Finding the directions of arrival (DOA) from the 
broadband MUSIC responses 

Once the MUSIC response has been computed for each 
time block, it is possible to find the DOA by finding the local 
maxima of the response that have the highest magnitudes. 

To find local maxima in the 2D (azimuth vs. elevation) 
MUSIC response, the following procedure was adopted. The 
algorithm starts by finding the local maxima that has the 
highest magnitude, recording its direction as one of the 
detected DOA. Then, a 2D Gaussian (azimuth vs. elevation) 
is subtracted from the response. This Gaussian, centered in 
the direction of the last detected DOA, has standard 
deviations that fit the usual shape of the response for one 

source and is scaled to match the magnitude of the response at 
its maximum. Subtracting this Gaussian emulates the removal 
of the source responsible for the strongest local maximum 
from the response. This is repeated until the number of DOA 
found is equal to NOS. 

IV. ANALYSES AND EXPERIMENTAL RESULTS 

A. The evaluation setup 
To measure the performance of the DOA estimation, we 

used three scalar values. The first represents the percentage of 
ideal DOA that were detected successfully by the algorithm. 
We will call this quantity “DOA accuracy”. The second 
represents the number of additional sources (insertions) that 
were detected, on average, per time block. We will call this 
quantity “DOA insertion rate”. And the third value 
measures the real-time performance, as the ratio between the 
actual processing time and the actual recording time. We will 
call this quantity “real-time rate”.  

The actual processing time was measured, by running all 
trials with an Intel Xeon processor running at 3 GHz. 

To get the ideal DOA of the sources, we used information 
about the sound source activity (obtained from the power of 
the source signals – Section II.D) and raw estimates of the 
DOA obtained by using the ideal number of sources (PNOS). 
Piecewise straight lines were fit to the contours of the raw 
DOA estimates in the intervals where each source is active. 
Video data were also used to check the instants where a 
source is moving. 

B. The effects of the number of FFT points (frame length) on 
DOA estimation and real-time performance 

Fig. 4 shows the DOA accuracies, the DOA insertion rates, 
and the real-time rates, as a function of different values of 
NFFT (number of FFT points) (NFFT = 64, 128, 256 and 
512), for speech and music sources in OFC and UCW. 
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Fig. 4. DOA estimation and real-time performances as a function of number 
of FFT points, for OFC and UCW recordings. For all trials, frequency range = 
1 – 6 kHz, and the ideal number of sources (PNOS) are provided. 
 

From Fig. 4, we can observe that the DOA accuracies and 
the DOA insertion rates are almost the same for the different 
NFFT values. However, a considerably large reduction in 
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processing time can be observed for smaller NFFT values. 
We can observe that real-time processing can be achieved 
(i.e., real-time rate smaller than 1), for NFFT = 64 and 128. It 
was also confirmed that real-time processing can be achieved 
for NFFT=64, in a 2GHz processor. Since the DOA 
performance does not degrade much and computation time 
can be largely reduced by using smaller NFFT values, we 
decided to use a NFFT of 64 points (or equivalently a frame 
size of 4 ms) in all subsequent analysis.  

C. The effects of the frequency range on DOA estimation  
Although speech contains information over a broad 

frequency band (vowels in 100 – 4000 Hz and fricative 
consonants in frequencies above 4000 Hz), the frequency 
range of operation for DOA estimation has to be limited, 
given the geometric limitations of the array (shown in Fig. 1). 

The smallest distance between a pair of microphones is 3 
cm, so that on theory the highest frequency of operation to 
avoid spatial aliasing would be about 5.6 kHz (according to 
Rayleigh’s Law).  

Fig. 5 shows the effects of the frequency range on DOA 
estimation, for NFFT = 64, and using the ideal number of 
sources (PNOS). The results in Fig. 5 show that higher 
frequency boundaries provide better performances (higher 
DOA accuracy, and lower DOA insertion rates), since 
fricative sounds which contains higher frequency 
components can also be correctly detected. 
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Fig. 5. DOA estimation performances as a function of the frequency range of 
operation, for OFC and UCW recordings. For all trials, NFFT = 64, and the 
ideal number of sources (PNOS) are provided. 
 

Regarding the lowest frequency boundary, although 
speech contain important information in frequency bands 
lower than 1 kHz, the array geometry limitations do not allow 
good spatial resolution in these low frequency bands. This 
fact is reflected in the results of “1 – 6 kHz” and “0.5 – 6 kHz” 
in Fig. 5, where DOA accuracy is lower and DOA insertion 
rate is higher in “0.5 – 6 kHz”, where frequency components 
lower than 1 kHz are included in the MUSIC response 
computation.  

Although 1 – 7 kHz provided the best performance, we 
decided to use 1 – 6 kHz for the subsequent analyses, to avoid 

possible effects of spatial aliasing. 

D. The effects of number of sources on DOA estimation  
In this section, we analyze the three parameters involved in 

the estimation of the number of sources: the fixed NOS for 
the MUSIC response computation (fixed NOS), the 
maximum NOS detectable from the broadband MUSIC 
response (max NOS), and the threshold for the magnitude of 
the broadband MUSIC response.  

First, we set the max NOS to 4 or 5, which is considered to 
be enough for human/robot interaction purposes. The fixed 
NOS can have a value smaller than or equal to the max NOS. 
Then, the threshold for magnitude of the broadband MUSIC 
response is set to avoid insertion errors, since we would be 
over-estimating NOS by setting a large max NOS value. 
However, a too large threshold would also cause deletions of 
the actual sources. 

Fig. 6 shows the DOA estimation performance for several 
combinations of fixed NOS, max NOS, and MUSIC response 
magnitude thresholds. 
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Fig. 6. DOA estimation performances as a function of the different values for 
the threshold for MUSIC response, for fixed NOS = 2 or 3, and max NOS =5. 
For all trials, NFFT = 64, frequency range = 1 – 6 kHz.  

 
Fig. 6 shows the DOA estimation performance for different 

threshold values, for fixed NOS = 2 and max NOS = 5, a 
threshold of 1.7 is found to have a good balance between 
DOA accuracy and DOA insertion rate. For fixed NOS = 3 
and max NOS = 5, a threshold of 2.0 ~ 2.1 is found to have a 
good balance between DOA accuracy and insertion rate. 

E. Analysis of DOA estimation in different trials  
Fig. 7 shows the DOA estimation performance for 

individual trials, fixing NFFT = 64, frequency range = 1 – 6 
kHz, fixed NOS = 2, max NOS = 5, and MUSIC response 
threshold = 1.7.  

Sources S2 and S4 in OFC2, S2 in UCW9, and S1 in 
UCW12 showed lower DOA accuracy, probably because 
these sources come from the back side of the robot, so that 
both power and spatial resolutions are lower than the sources 
coming from the front side. 

Regarding the ambient music sources, the DOA accuracies 
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were low in UCW1 to UCW4 and in UCW9, since the robot 
was relatively far from the ceiling loudspeakers. DOA 
accuracies were relatively high for UCW5 to UCW8, where 
the robot was closer to one of the ceiling loudspeakers, while 
DOA accuracies were almost 100 % in UCW10 to UCW13, 
when the robot was right under one of the loudspeakers. 
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Fig. 7. DOA estimation performances for each source and each trial in OFC 
and UCW. S1 to S4 are speech sources, while M is the background music 
source. For all trials, NFFT = 64, frequency range = 1 – 6 kHz, fixed NOS = 2, 
max NOS = 5, and threshold for MUSIC = 1.7. 

 
The larger DOA insertion rate in UCW13 was due to the 

misdetection of a source coming from 180 degrees azimuth 
and low elevation angles, as shown in the DOA estimations in 
Fig. 8. This seems to be a sidelobe effect of the source at 0 
degrees azimuth or of the music source, rather than a 
reflection. Further analyses on the sidelobe effects are left for 
future work. The right panels in Fig. 8 show relatively 
successful results of DOA estimations for trial UCW8, where 
one of the sources is moving in front of the robot, and a 
directional music source is present in the first half of the trial. 
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Fig. 8. DOA estimations of trial UCW13 (left) and UCW8 (right). In UCW13, 
music source is detected at about 90 degrees elevation 30 degrees azimuth. S1 
source is detected at 0 degrees azimuth and moving from 15 to 25 degrees 
elevation at 6 to 7 seconds. S2 source is detected at about -80 to 85 degrees 
azimuth and 25 degrees elevation. In UCW8, source S2 is moving in front of 
the robot around 50 to -80 degrees azimuth, while source S1 is around -20 to 
0 degrees azimuth. The music source was present in the first half at about -45 
degrees azimuth, and the volume casually reduced in the second half. For 
these trials, NFFT = 64, frequency range = 1 – 6 kHz, fixed NOS = 2, max 
NOS = 5, and threshold for MUSIC = 1.7. 

V. CONCLUSIONS AND FUTURE WORKS 
A 3D-space sound localization of multiple sound sources 

based on the MUSIC algorithm was implemented and 
evaluated in our humanoid robot embedded in real noisy 
environments. 

Evaluation results first indicated that reducing the FFT size 
to 64 (or equivalently reducing the frame size to 4 ms) was 
effective to allow real-time processing without a big 
degradation in the estimation of the directions of arrival 
(DOA) of sound sources. The evaluation of the proposed 
method of determination of the number of sources was also 
effective to keep a reasonable estimation performance, with a 
low insertion rate. 

The evaluation results in the present work are based on the 
raw DOA estimation results, so that a post-processing for 
example by grouping and interpolating the detection results 
will probably increase the accuracy numbers. Post-processing 
of the detected DOA is scope of our next work. 

For future works, we are planning the implementation and 
evaluation of sound source separation algorithms using the 
localization results from the present work. 
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