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Abstract— Brain Computer Interface (BCI) systems based
on electroencephalography (EEG) open a new communication
channel for people with severe motor disabilities, without
recurring to the conventional motor output pathways. The very
low signal-to-noise ratio and low spatial resolution still limits
severely BCIs communication bandwidth. This paper presents
the ongoing work toward the development of a BCI system
for wheelchair steering. A full system based on a visual P300
oddball paradigm is proposed. The signal processing algorithms
are computationally efficient and require a short phase training.
Temporal features and EEG channels are selected through a
Fisher criteria. For enhancement of signal-to-noise ratio and
data dimensionality reduction, a spatial filter named Common
Spatial Patterns is applied. This method is widely used for
classification of motor imagery events, however it is not very
often used for classification of event related potentials such as
P300. In this paper we show that Common Spatial Patterns
is an effective approach to improve P300 classification rates.
In our approach, the input features for classification are the
projections of the filtered data instead of the variance of
the projections as typically used in motor imagery. Offline
classification results, obtained with a Bayesian classifier, are
presented showing the effectiveness of the overall methodology.

I. INTRODUCTION

For people suffering from severe motor disabilities such

as amyotrophic lateral sclerosis and locked-in syndrome, and

certain types of cerebral palsy, Brain Computer Interfaces

(BCI) emerge as a feasible type of human-computer and

human-machine interfaces that can allow these patients to

interact with the world. Standard interfaces such as language

processing, eye tracking and head or teeth switches are not

suitable for people with total lack of motor movements

or with very low motor dexterity and with unperceivable

language.

Current non-invasive BCI systems based on electroen-

cephalographic (EEG) data are divided in three main classes

according to the type of neuromechanisms: 1) event related

synchronization and desynchronization (ERD/ERS) of sen-

sorimotor rhythms µ (8-12 Hz) and β (18-25 Hz). This

rhythms typically decrease (ERD) during motor imagery and

increase (ERS) during motor relaxation [1], [2]; 2) P300 peak
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elicited by a visual oddball paradigm [3], [4], [5]; and 3)

steady-state visual evoked potentials (SSVEP) elicited by a

constant flicker at a given frequency [6]. These approaches,

already tested in our Lab, have quite different characteristics

presenting weak and strong points with relevant practical im-

plementation issues, as it will be described in the following.

The first approach requires that the subjects learn to con-

trol their brain rhythms. This is often a long and difficult task

and it can happen that users are unable to learn how to control

them. Control of µ and β rhythms is usually reached through

mental tasks such as motor imagery, for instance, imagining

that a left hand task is being performed. After some training

with visual feedback, users usually can create and refine their

own mental mechanisms. Knowing the map of the motor

cortex (motor homunculus) it is possible to select different

motor tasks with known spatial distribution so that different

motor cortex areas be activated. Motor imagery requires a

high degree of concentration and some mental effort. The

number of discriminative patterns is usually limited due to

the low spatial resolution of EEG. The number of classes

proposed in current research works almost never goes beyond

four classes. See for example the work presented in [7] where

the imagination of left hand, right hand, foot and tongue tasks

were used to discriminate four different patterns.

The second approach is based on the P300 neuromecha-

nism which is a peak that typically occurs 300 ms after an

expected, but infrequent, random event occurs. Each stimulus

event corresponds to a symbol/picture with a particular

meaning for the interface (e.g. letters, high level commands).

The stimulus must be perceptible on the user field of view

without gazing the specific stimulus. One major disadvantage

of P300 arrives from the fact that the user has to wait

for the occurrence of the desired (target) stimulus which

randomly appears. It is not the user who decides when to

provide an intention but rather the emergence of the stimulus.

Moreover, processing algorithms have to run synchronously

with the start of the stimuli. In terms of machine learning,

the oddball paradigm reduces a n-symbol detection to a 2-

class discrimination problem, i.e., the discrimination between

target events (desired command - one of the n symbols)

and non-target events (remaining (n − 1) symbols). This

way, several user intentions correspond to a unique brain

pattern (P300 peak signal), representing a high volume of

information. However, increasing the number of possible

commands (events) decreases the transfer rate because each

stimuli is flashed less frequently.

In the last BCI approach, as a response to a stimulus

flickering at a constant frequency, a signal of the same
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TABLE I

NEUROMECHANISMS APPROACHES SUMMARY

Sensorimotor ryhthms P300 SSVEP

- Some subjects require long period of training - No training required - No training required
- Some subjects are unable to control their
rhythms

- Almost all subjects have P300 reaction - Almost all subjects have SSVEP reaction

- Requires subject focus and abstraction - Requires subject to be attentive to stimuli - No special requirements
- Fatigue due to sitmuli focus - Fatigue due to stimuli flickering

- Can be synchronous (based on cues) or
asynchronous

- Needs synchronism with visual stimuli - No synchronism requirements

- Needs visual (or other) feedback information - The screen has to be in the field of view (no
eye movement required)

- The user has to gaze the respective stimulus.
This involves eye movement

- For wheelchair steering, the feedback is the
wheelchair pose

- For wheelchair steering the screen can disturb
the environment perception

- For wheelchair steering the screen can disturb
the environment perception

- Small number of decoded patterns (3-4 pat-
terns)

- Two class approach allows the codification
of a large amount of information (number of
commands is inversely proportional to transfer
rate)

- Each discriminated frequency is a possible
decoded information

IDEAL BCI PRACTICAL BCI NOT A TRUE BCI

frequency (SSVEP) arises at the occipital brain region (visual

cortex). The user has to gaze the stimuli positioned in some

part of the screen which involves the movement of the eyes.

Because it depends on the brain’s normal output pathway of

peripheral nerves and eye muscles it can not be called a true

BCI. Notwithstanding this, the interface can be suitable for

people with severe motor disabilities but still able to perform

small eye movements.

An advantage of motor imagery over the two other event

related potential approaches is that it does not depend on

visual focus or gazing. Moreover, it can be used without

synchronism cues (except during the training phase). The

P300 and SSVEP rely on visual stimuli which cause fatigue

due to continuous user focus and flickering, respectively. If

these visual based approaches are for instance to be used to

steer a wheelchair, the focus on the stimuli display can affect

the perception of the surrounding environment. See Table I

for a summary comparing the main features of these three

approaches.

In this paper we present a BCI system that is being

developed as a human machine interface suitable to steer

a wheelchair [8]. The user should be able to provide sparse

commands indicating low-level steering directions or high-

level commands or tasks, being supported at the same time by

an intelligent navigation module for a safe navigation. Navi-

gation issues are however beyond the scope of this paper. The

same goal is being pursued by Millan’s research group with

interesting results. In their work [9], a motor imagery based

BCI is used to discriminate 3 different commands to steer a

wheelchair with navigation assistance in indoor environment.

The proposed BCI system is based on a visual P300

paradigm. Balancing the three BCI approaches, P300

presents two appealing features, the first one is the possibility

of discriminating a large number of commands through a 2-

class classifier, and the second one is that almost all users

react to the P300 oddball paradigm without training. A BCI

system should present the following features:

1) Pre-processing and normalization steps for robustness

to inter-trial variability;
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Fig. 1. Grand average of raw P300 target signal (80 epochs) and non-
target signal (1120 epochs). The thick lines represent the mean, and thin
lines represent the mean plus and minus the standard deviation.

2) Feature selection and channel selection. These are

critical issues that can lead to data reduction dimension

needed to increase classification performance.

3) Computational efficient methods for real-time applica-

tion;

4) Short time training phase. A training phase for each

subject and for each session is always needed because

there is a inter-session variability and high inter-subject

variability.

The P300 signal presents a very low signal-to-noise ratio

(SNR) as can be seen in Fig. 1, evidenced by the overlapping

of the averages and standard deviations of the P300 signal

(target) vs. standard signal (non-target). To reach a single

trial classification, robust signal processing and learning

algorithms have to be applied. This paper proposes a method-

ology that combines a feature selection, spatial filtering, and

Bayesian classification scheme that aims the improvement of

single trial classification. The relevance of this paper to the

robotics community is two-folded: 1) The conceptual archi-

tecture, and signal processing and classification techniques

presented in this paper are not limited to BCI applications,

but also to other human-machine interfaces/interaction in

general, and for signal processing of sensor data used in
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Fig. 2. Overall BCI system.

the robotic fields; 2) BCIs are reaching real applications

in the rehabilitation field, which requires from robotics

the development of suitable devices for BCI integration in

robotic systems, in aspects that goes from ergonomics and

haptic devices to specific navigation assistance.

II. BCI SYSTEM BASED ON P300 PARADIGM

The overall training BCI system is described in Fig. 2.

Data are collected and separated according to target and

non-target events. A pre-processing module is used to filter

and normalize data. Then, best features and channels are

selected. The CSP spatial filtering increases the separability

between target and non-target classes. CSP projected data is

used to create models to be used on a Bayesian classifier.

The classifiers are user-dependent. Each block of the system

is described in the following sections.

A. P300 visual stimuli paradigm

The paradigm is shown in Fig. 3 and was already presented

in [10]. It is composed by 8 direction arrows, a stop square,

a ON/OFF switch and 5 small squares. The paradigm was

specifically designed to steer a robotic device though the

detection of the desired steering direction arrow. Each arrow

and square can be associated to any other symbol. In the

example illustrated in Fig. 3 they were associated to high

level commands such as room, toilet, desk, door, etc. Each

door

toilet

bed
room

elevator

desk

help

kitchen

Fig. 3. P300 arrow paradigm. Each symbol is flashed during 100 ms and
the time between flashes is 200 ms. Each arrow can be associated to a high
level command.
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Fig. 4. Electrodes of the extended 10-20 international standard system. The
EEG electrodes used for data acquisition are marked with a solid circle.

symbol is randomly flashed with a uniform distribution,

therefore the target event occurs only once on each 15

flashes, providing this way an oddball paradigm (each round

of 15 flashes is called a trial). The subject is asked to focus

its desired command and to mentally count the number of

target flashes.

B. EEG acquisition and pre-processing

The dataset experiments were collected from our previous

work [11]. Three healthy subjects participated at the experi-

ments. The subjects were seated in front of a computer screen

at about 60 cm. The EEG activity was recorded from 12

Ag/Cl electrodes at positions Fz, Cz, C3, C4, CPz, Pz, P3,

P4, PO7, PO8, POz and Oz according to the internacional

extended 10-20 standard system using a g.tec cap (Fig. 4).

The electrodes were referenced to the right mastoid and the

ground was placed at AFz. The EEG channels were amplified

with a gUSBamp (g.tec, Inc.) amplifier, bandpass filtered at

0.1-30 Hz and notch filtered at 50 Hz and sampled at 256

Hz. All electrodes were kept with impedances under 5KΩ.

A training phase session occurs before the testing session.

Usually the training consists on approximately 80 target

epochs and 1120 non-target epochs, which takes about 4

minutes (the epochs are overlapped in time). Each epoch has

a duration of 1 second and is synchronized with the start
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Fig. 5. Top: color map indicating level of discrimination between target
and non-target classes (channels are ordered according to Fz, Cz, C3, C4,
CPz, Pz, P3, P4, PO7, PO8, POz and Oz); bottom: Average of target events
(P300) and non-target events for Fz channel.

of the event stimulus. The EEG signal is low-pass filtered

by a 4th order Butterworth filter with 7 Hz cut frequency.

Each epoch is normalized to zero mean and unit standard

deviation.

C. Feature and Channel Selection - Fisher Criterion

The P300 features correspond to the amplitudes of the

P300 temporal pattern. The Fisher criterion (FC) [12] pro-

vides the normalized level of discrimination between target

and non-target classes. It is applied to each instant time of

the epoch-window using all training trials. Therefore it is

possible to select the temporal features (top ranked) and the

best channels presenting higher discrimination. The Fisher

score FSj of the feature j (instant time) is given by

FSj(X) =
(µj(Xt) − µj(Xnt))

2

σ2
j (Xt) + σ2

j (Xnt)
(1)

where µj(Xt) and µj(Xnt) are respectively the target and

non-target averages over all training trials for each feature

j, and σ2
j (Xt) and σ2

j (Xnt) are respectively the target and

non-target variances for each feature j. The top of Fig.

5 shows a color map representing the Fisher score. High

level colors denote high levels of discrimination. The bottom

figure presents the averages of target (P300 resulting from

oddball paradigm) and non-target classes. For that particular

subject and session, the best discrimination occurs around

0.4 and 0.6 s and for channels CPz, Pz, P3, P4 and PO7.

D. Common Spatial Patterns

Spatial filtering is an effective approach that already

proved to improve EEG spatial resolution and SNR. One

form of spatial filtering is based on EEG referencing meth-

ods, such as Common Average Reference, Small Laplacian

and Large Laplacian [13]. These filters act as high-pass

spatial filters that enhance local activity and decrease the

distributed activity. A different spatial filter approach, more

oriented for pattern classification, was proposed by Koles

[14] despite it was firstly used for neurophysiologic compo-

nent decomposition in clinical electroencephalography.

The CSP method is based on the simultaneous diagonaliza-

tion of two real symmetric matrices proposed by Fukunaga

[12]. The simultaneous diagonalization allows the decompo-

sition of raw EEG signals into two discriminated patterns

extracted from two populations (classes) simultaneously

maximizing the variance of one class and minimizing the

variance of the other class. Using only the projections with

larger discrimination the data dimension space is reduced

which improves the classification process.

This method has been successfully applied in BCI research

for the two-class motor imagery discrimination [15], [16],

[17]. Some variants of CSP were also already proposed

for the multiclass problem [18], [19], [20]. Despite its

successful application on motor imagery based BCIs, there

are very few applications of CSP for the discrimination of

Event Related Potentials (ERP) such as the P300. In [21],

the Common Spatio-Temporal Patterns (CSTP) is proposed,

which incorpores spatio-temporal covariance matrices into

CSP to extract more prominent spatio-temporal patterns.

We propose here the application of a standard CSP for

feature extraction followed by a Bayesian classifier based on

probabilistic models of spatial filtered data. This method-

ology was already presented in [11] but using different

methods for feature and channel selection, and with different

combination of features for classification.

Consider two spatio-temporal matrices Xt and Xnt with

dimension N × T , where N is the number of channels and

T is the number of samples of the time series epoch of each

channel. The matrix Xt represents the P300 potential evoked

by the target event and Xnt represents the ongoing EEG for

non-target events. The CSP method is based on the principal

component decomposition of the the sum covariance R of

the target and non-target covariances

R = Rnt + Rt (2)

where Rt and Rnt are the normalized N × N spatial

covariances computed from

Rt =
XtX

′

t

tr(XtX
′

t
)

Rnt =
XntX

′

nt

tr(XntX
′

nt
)

(3)

where ′ represents the transpose operator and tr(A) repre-

sents the trace of A.

The spatial filters are estimated from the overall set of

trials gathered during training. Therefore it is used the

average of the normalized covariances trials

Rt = 1
Nt

∑Nt

i=1 Rt(i) Rnt = 1
Nnt

∑Nnt

i=1 Rnt(i) (4)

where Nt and Nnt are the number of target and non-target

trials in the training set. The averaged covariance matrix R
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is factorized through the application of the PCA

R = Rt + Rnt = AλA
′ (5)

where A is the orthogonal matrix of eigenvectors of R and

λ is the diagonal matrix of eigenvalues of R. A whitening

transformation matrix W = λ−
1

2 A
′ transforms the covari-

ance matrix R to I (identity matrix)

S = WRW
′ = I. (6)

Applying the whitening transform to each individual class,

we obtain

St = WRtW
′

Snt = WRntW
′. (7)

From the above two equations it is straightforward that

St + Snt = I (8)

The PCA factorization of St and Snt is performed by

St = AtλtA
′

t
Snt = AntλntA

′

nt
(9)

From (8) and (9) then At = Ant and λt = I − λnt.

Both classes share the same eigenvectors and the respec-

tive eigenvalues are reversely ordered. The eigenvector with

largest eigenvalues for one class has the smallest eigenvalue

for the other class and vice versa. The first and last eigenvec-

tor are optimal eigenvectors to discriminate the two classes.

Defining A(1) and A(N) as the first and last eigenvectors,

each with dimension N × 1, the following spatial filters are

designed

Ht = A
(1)′

W Hnt = A
(N)′

W. (10)

The spatial projections are then given by Y = HX where

H is the matrix or vector with the selected filters.

E. Bayesian Classification

The projections from the two filters are concatenated

respectively for each class, creating a new vector for classi-

fication (see Fig. 2):

Z(j) = [Y(1)(j) Y
(N)(j)] (11)

where j is the index trial and the superscripts represent

the EEG projections using filters Ht and Hnt (10). The

conditional density function of the class i (target, non-target)

is modeled as a multivariate distribution under gaussian

assumption

p(Z|wi) =
1

(2π)n/2|Σi|1/2
exp(−(Z−µi)

T Σ−1
i (Z−µi)/2)

(12)

where µi and Σi are the mean and covariance matrices

computed for each class wi. Each model takes into account

the temporal structure of P300 pattern and therefore this is a

different approach of typical feature representation used for

µ and β rhythms in motor imagery.

The posterior probability p(wi|Z) is computed from the

conditional probabilities using the Bayes rule [22]

P (wi|Z) =
P (wi)p(Z|wi)

p(Z)
(13)

The prior probabilities P (wi) are respectively 1/15 and 14/15

for target and non-target (probability of the events).
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Fig. 6. First ranked feature for best channel (top) and CSP projection
(bottom).

III. RESULTS

The results were obtained through experiments performed

with 3 healthy subjects as described in section II-B. The data

were divided into a training set and a testing set. From the

training set it was applied the Fisher criterion (1), from which

the temporal features were ranked and the EEG channels

were selected (see Fig. 5).

The CSP filter is applied to the selected channels and the

projections from the optimum filters (10) are concatenated

(11). Then, using the FS, the features with higher relevance

are selected. The conditional probabilities in (12) are com-

puted for each class from these data. The estimated class

is reached using the Bayes decision function through the

posterior probabilities (13).

The plots in Fig. 6 compares the CSP projection and the

best channel for several epochs (it was used the same number

of target and non-target epochs for a better illustration).

Using the first ranked feature for both cases, it can be seen

that the CSP projection improves the discrimination between

the 2 classes. The first ranked feature was obtained from

single epochs. Table II shows the achieved classification

results for the 3 subjects. Classification tests were performed

using the best channel, the filtered CSP projections using

all 12 channels and the filtered CSP projections using the

selected channels. The algorithms were tested for a single

epoch (1 trial) and for the average of 5 epochs (5 trials).

The results confirm that the application of CSP reduces the

classification error rate when compared with best channel

selection. Furthermore, the application of CSP to the se-
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TABLE II

ERROR RATE CLASSIFICATION (%)

Nr. trials Method Subjects
S1 S2 S3

1
best ch 17.0 19.6 15.0
CSP all ch 10.0 15.8 9.2
CSP sel. ch 10.0 15.6 7.0

5
best ch 5.3 6.5 5.0
CSP all ch 4.5 6.1 4.4
CSP sel. ch 3.0 6.5 2.1

lected channels also improve the classification accuracy when

compared with CSP applied to all channels. Subject S3 has

the better performance and subject S2 the worst. For this

subject there is no significant improvement with CSP. This

occurs because this subject only presents one channel with

significant discrimination. Therefore the application of CSP

to several channels does not improve the results.

The classification performance in Table II shows state of

the art results [5] [23]. As the algorithms were applied only

offline, we don’t have yet a value for the online effective

transfer rate. The offline transfer rate (bits/min) can however

be obtained through the widely used measure [24]

B = M [log2(Ns) + P log2(P ) + (1 − P ) log2

(1 − P )

(Ns − 1)
]

(14)

where Ns is the number of possible selections, P is the ac-

curacy probability and M is the average number of decisions

per minute (related with the time needed to make a decision).

For example, for our case, considering N = 15, P ≈ 0.95
(classification rate for 5 trials average), and M = 3.75
decisions/min (obtained for 5 trials and 200 ms stimuli inter-

flash), the transfer rate B is 7.44 bit/min. This measure takes

into consideration not only the classification accuracy but

also other parameters related to the paradigm, such as the

number of symbols, the way they are flashed, and the time

between flashes. These parameters can be further improved

to increase the transfer rate.

IV. CONCLUSION

This paper summarizes several BCI approaches showing

their strong and weak points for real world application.

A full methodology to implement a P300 BCI system is

described. The system uses a temporal feature selection

and feature extraction prior to classification which improves

the classification accuracy. The CSP method combined to

a Bayesian classifier showed to be an effective approach

for P300 detection. The results were reached offline and

therefore further developments are needed to the online

implementation. Several parameters of the proposed P300

paradigm can be improved to increase the transfer rate.
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