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Abstract— In this paper we propose a new algorithm for
relative pose estimation between two images based on a new de-
composition for an homography matrix faster than the classical
solutions. We introduce in our method approximate information
about the planes in the reference images but this additional
information allows the decomposition to avoid the multiplicity
of solutions. An exhaustive analysis of the error propagation
through the method is provided. The new decomposition can
be used for visual navigation of robots moving on a planar
surface. The approach is based in the well known teaching-by-
doing scheme with the route defined by a set of images. The
parameters of the planes can be computed automatically from
the reference images before the navigation. The contributions
are the easy method to extract the parameters of all the planes
and the use of this information in navigation tasks using a fast
homography decomposition. The experimental results show the
performance of the proposal.

Index Terms - homography, motion estimation, error anal-

ysis.

I. INTRODUCTION

Even though the autonomous navigation of mobile robots

has been extensively studied it remains an open problem.

Many repetitive tasks constantly made by humans moving

from one place to another can be done by autonomous robots.

Vision sensors provide a lot of information that can be used

for this purpose. The appearance of invariant descriptors like

SIFT [12] or SURF [1] in computer vision has made possible

to achieve these tasks in a more precise and robust way.

The problem of navigation through a path defined by a

set of images has also been explored by many researchers.

Some of them have proposed qualitative solutions to make it.

For example, in [14] a sequence of images combined with

movement tags is used to repeat the route. In [4] another

qualitative method in which the robot corrects its orientation

using a voting system on the features is presented. In these

solutions a problem appears when the robot gets lost due to

obstacles or occlusions, because the robot will not be able

to follow the path and it will not reach its goal.

Pose estimation can solve this problem allowing the robot

to move through other routes by knowing at every moment its

localization within the environment. SLAM methods based

on Kalman filters [5] or Particle filters [7] estimate the

robot pose while they map the environment providing good

results using features. Such methods based on features and

filters require a prior model of the robot motion and the

images must be very close in order to perform a correct data
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association. Moreover, map maintenance requires additional

computational time but when the robot is repeating a previ-

ously learnt path such a map maintenance is less important

than reaction.

Geometric constraints like the epipolar constraint, defined

by the Fundamental Matrix [9], can be imposed to the

features to improve the estimations. In robot navigation

Beardsley et al. have used it in [2]. However, when the

parallax between images is small or the scene is composed by

planes, the computation of the fundamental matrix becomes

an ill-conditioned problem and it is no longer possible to

apply this solution due to its instability. Nister has proposed

an efficient solution using a five point algorithm [15] which

avoids the planar singularity but the algorithm finds up to ten

different possible solutions for two images, being required

a third image to choose the right one. The five points

algorithm has been successfully used for visual odometry

with conventional and omnidirectional cameras [16], [10]

and for robot localization in [17]. These approaches require

bundle adjustment, which increases the computational time,

or 3D information for triangulation, which increases the

amount of information required.

Homographies are well suited for the situations where the

epipolar constraint fails. An inter-image homography matrix,

H, defines a mapping relation between two images through

points that belong to the same planar surface. It is well

known that the estimation processes are improved in terms

of accuracy and stability when considering the scene repre-

sented by planar regions [20]. A general decomposition of

the homography to obtain the motion between two cameras

can be found in [13]. Faugeras and Lustman describe in [8]

a more specific decomposition for the homography when

the camera is moving on a planar surface. Both approaches

provide two possible solutions to the camera pose. Using

these decompositions there have been different works related

with visual navigation [6] or motion control [11].

In this paper we propose a technique based on homo-

graphies which intend to be useful in situations where the

approaches commented previously are not well suited. The

proposed decomposition is faster because it takes advantage

of additional information available from the sequence of

reference images, computed before the navigation. Prepro-

cessing the reference sequence the method automatically

obtains the parameters that define all the planes in the path

giving only the scale factor, defined as the distance of the

first plane to the first reference image. This information is

used during the navigation so that the method always returns
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a unique solution. We also analyze the error propagation

to the outputs from the error in the homography. The error

transfer for our pose estimation algorithm is easy and also

very efficient, which turns out to be another improvement

respect to other approaches.

The Fast Homography Decomposition (Fast-HD) is pre-

sented in section II. How to automatically compute the

normals and distances in the different reference frames is

shown in section III. The error analysis of the method can

be found in section IV. Experimental results are in section V.

Finally in section VI we give the conclusions of this work.

II. FAST POSE ESTIMATION USING THE HOMOGRAPHY

The notation followed in this paper is the following:

matrices are denoted as capital bold letters, A, and vectors

are named with non capital bold letters, b. A(i) represents the

i-th row of A, A(i,j) represents element (i,j) of A, and b(i)

the i-th element of b. For estimations of the variables we use

the hat, ·̂. The errors in the estimations are represented using

the tilde, ·̃ = |·−·̂|. We compute the Jacobian matrices of the

vectors deriving by rows. Since the paper deals with several

images and planes, for an easy understanding, subscript

indices will correspond to images whereas superscript indices

will correspond to planes in all the paper.

Let us suppose we have a set of reference images Ir ∈
I, captured by a robot in a teaching phase with the same

camera, which has known calibration K,

K =

(

fu 0 u0

0 fv v0

0 0 1

)

, (1)

being fu > 0 and fv > 0 the focal length of the camera

in pixel dimensions in the u and v direction respectively

and (u0, v0, 1) the coordinates of the principal point. In a

second stage the robot is moving autonomously acquiring

real images. Without loss of generality I1 will represent

the reference image whereas I2 will be the image acquired

by the robot during the navigation. The motion between

the two images, R21 and t21 is the unknown we want to

solve. We assume the robot is moving on the XZ ground

plane, which is reasonable for man-made environments. In

this case only three parameters are needed to describe the

state s = (x, z, θ)T , with x and z the coordinates of the robot

in the plane and θ its orientation. If one plane, π is visible

in the two images, it is possible to compute a projective

mapping (inter-image homography), H21, that relates the

points belonging to the plane, p2 = H21p1, in both images.

This homography is defined up to a scale factor and has the

form

H21 = K(R21 −
t21nT

1

d1
)K

−1, (2)

with d1 and n1 the distance and normal of the plane in the

reference frame respectively. Assuming the plane is not par-

allel to the plane of motion, the homography is normalized

dividing by H(2,2) given that this parameter never vanishes

due to the planar motion constraint, leaving 8 constraints that

can be used to estimate the motion.

s = (x, z, θ)

Z

X O

d

α

β n

Fig. 1. Reference system

Any plane in the scene can be defined by its distance,

d, and the unitary normal vector, n = (nx, ny, nz)
T , with

respect to the reference frame. The planar motion assumption

is used to reduce the parameters that define the planes and

also to extract some properties of these parameters. The

normal vector can now be defined with two angles, α and β,

α depending on the reference orientation, and β a constant

for each plane depending on its inclination. The normal is

then expressed as n = (sinα, cos α sinβ, cos α cos β)T (Fig.

1). In the following of this section we assume that these

parameters are known. The automatic computation of the

plane parameters from the reference sequence is explained

in the section III.

Passing the calibration matrices to the left side in (2) and

clearing the unknowns, a linear system Πs∗ = b is obtained

with

Π =





−nx 0 0 d1

−nz 0 −d1 0
0 −nx d1 0
0 −nz 0 d1



 , s
∗ =





x21

z21

sin θ21

cos θ21



 (3)

and

b = d1





H(1,1) − H(3,1)u0

f−1
u (u0H(1,1) − H(3,1)u

2
0 + H(1,2)v0 + H(1,3) − u0H(3,3))
H(3,1)fu

H(3,1)u0 + H(3,3)



 ,

(4)

nx = sinα and nz = cos α cos β and the additional

constraints in the homography matrix

H(1,2) = −x21nyfu/fvd1, H(3,2) = 0,

H(2,1) = H(3,1)v0, H(2,3) = H(3,3)v0 − v0
(5)

Let us notice that Π is only plane dependent and not

singular because its determinant is equal to d1(n
2
x + n2

z),
being zero when α = kπ and β = (2k+1)π/2, k ∈ N, which

by hypothesis does not happen. This means that we can

analytically compute its inverse and solve the linear system

in constant time, s∗ = Π
−1b. The orientation is obtained

as θ21 = arctan 2([Π−1b](3), [Π
−1b](4)). We consider both

unknowns sin θ21 and cos θ21 instead of only one because it

clears the ambiguity of dual solutions dealing with angles.

The dual solution for R, n and t does not appear using this

method since we are introducing the information of n in

the equations. The additional constraint automatically solves

this ambiguity and we also do not need to compute any

eigenvalues as other classical homography decompositions

usually do [21], [8] but to solve a linear system of rank 4

which clearly improves the previous approaches. The pose

robot expressed in the reference coordinates can be obtained

by an inverse transformation, s12 = s−1
21
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Since the method assumes the calibration to be known, one

natural question that arises is why not computing the homog-

raphy with the unprojected points, pu = K−1p, which will

make the vector b and the pose estimation equation easier.

We have discarded this approach for two reasons. The first

one is the computation time. The cost of multiplying all the

features in one image (assuming the reference features have

been previously unprojected) by the inverse of the calibration

matrix is more expensive than the direct computation of

the homography using the image coordinates. The second

reason is the precision in the homography. The possible

errors that may exists in the calibration parameters will not

affect to the homography and will only affect to the pose

estimation whereas if we compute the homography with the

real coordinates the possible errors in the calibration would

also affect the homography making the pose estimation less

reliable.

III. PROCESSING THE REFERENCE SEQUENCE

As we have seen, in order to use the Fast-HD, it is

necessary to know the plane parameters in the reference

images, n and d. These parameters can be estimated in

an offline stage before the autonomous navigation. Let us

consider as input data the sequence of reference images and

the distance of the first plane to the first reference image.

The distance must be manually introduced to solve the scale

factor. It is well known that from monocular images it is not

possible to recover the scale factor. With this information

the normal of the reference plane in the first reference can

be estimated. From there, the parameters of the same plane

or any others that may appear in the sequence can be easily

estimated. In this section the method to compute the plane

parameters is presented.

A. Obtaining the normal in the first reference

In order to estimate the first normal the method computes

an homography between the two first initial images. In this

first case a classical homography decomposition is performed

obtaining the two possible solutions for R21, n1 and t21.

The constraint that all the points must have positive depths,

(n1)T K−1p > 0, is imposed in order to discard the illusive

(wrong) solution from the correct one. Once the real solution

has been computed the angles that define the plane in the

reference image, α1
1 and β1, are extracted from the normal

vector. For the next reference images the process can be done

using the Fast-HD, obtaining directly the correct solution.

B. Updating the parameters for the next references

With the parameters of one plane in one reference it is

possible to compute the parameters of the same plane in other

reference images. Using the data from the first reference

image the position of the second reference is computed using

the Fast-HD. Once the relative position between the two

images is known the parameters of the plane in the second

image are computed as (Fig. 2)
{

α1
2 = α1

1 − θ12

d1
2 = d1

1 + z12 cos α1
1 + x12 sinα1

1.
(6)

The process is repeated for all the reference images where

the plane is visible. Let us note that β1 remains constant for

every position so that update its value is not necessary.

π

s1
x1

z1

α1
1

d1
1

s2x2

z2

θ12

d1
2

α1
2 = α1

1 − θ12

z12 cos α1
1 +

x12 sin α1
1

Fig. 2. Estimation of the plane parameters in a second reference from the
parameters in the first one.

C. Computing the parameters for other planes

In normal situations there will be several planes visible

in the path. In these situations multi-plane constraints are

used to compute the parameters of a second plane knowing

the parameters of the first one. Assuming that every plane is

visible with at least another plane in two or more reference

images it is possible to compute two homographies, H1
21 and

H2
21, one for each plane. By using the two homographies an

homology matrix is computed as H = (H1
21)

−1H2
21. The

homology captures the relative motion between the images

through two planes visible in the two images. The homology

is decomposed using the Sherman-Morrison formula [18] as

H = I + vpT where

v = (v1, v2, v3)
T = K

R
−1
21 t21

1+
(n11)T

d1
1

R
−1
21 t21

,

p = (p1, p2, p3)
T = (

(n1
1)

T

d1
1

−
(n2

1)
T

d2
1

)K−1.

(7)

The motion between the two images, R21 and t21, is com-

puted using the parameters of the known plane. Then, using

eq. (7) the normal of the second plane is cleared (normalized

since d2
1 is not known yet)

n2
1 = v−T (H − I)K−1 − n1

1, (8)

being v−T = (1/v1, 1/v2, 1/v3). With the second normal

computed, the second distance is obtained through the trans-

lation between the two images obtained with the second

homography.

With these two expressions all the parameters of all the

planes visible in all the reference images are computed and

autonomous visual navigation of a robot using the Fast-HD

is possible.

IV. ERROR PROPAGATION

Vision sensors, as any other sensor, are not 100% accurate

so the measurements obtained will introduce error in the

computation of the camera locations. It is interesting to

analyze the sensitivity of the pose estimation using the Fast-

HD to the sensor errors. This knowledge can be very useful

during navigation, for example if the sensor needs to be

2706



integrated with an Extended Kalman Filter (EKF), which

needs an estimation of the measurement noise. We have

analyzed how the pose estimation is affected by the errors

in the homographies and the first-order approximation of the

error is given.

A. Pose errors caused by homography errors

The errors in the homography could come from different

causes like the discretization of the pixels. In order to

estimate the errors in the homography, the errors in the

feature coordinates during the acquisition of the images are

considered. Let us assume that each pair of matched features

p = (u, v, 1)T and p′ = (u′, v′, 1)T has the perturbations

p̃ = (ũ, ṽ, 0)T and p̃
′ = (ũ′, ṽ′, 0)T respectively. From this

assumption the error in the parameters of the homography

using the DLT algorithm [9] is derived. Let us recall that

the homography is computed as the eigenvector, h, associ-

ated with the least singular value of the matrix A, which

depends on the point matches. The perturbation in the point

coordinates creates a perturbed matrix Ã = A +∆A, where,

assuming there are n matches, ∆A is a 2nx9 matrix. For each

match the two corresponding rows of ∆A are

∆Ai =

(

0T p̃
T
i ṽ′ip

T
i + v′ip̃

T
i

p̃
T
i 0T ũ′

ip
T
i + u′

ip̃
T
i

)

(9)

It is proved [21] that the linear error propagated through

the eigenvalue decomposition is

h̃ = G∆GT
∆AT Ah, (10)

with G being the matrix of eigenvectors of AT A, ∆AT A =
∆

T
A A + AT

∆A, and ∆ being a function of the eigenvalues

λi,

∆ = diag{(λ9−λ2)
−1, (λ9−λ3)

−1, . . . , (λ9−λ8)
−1, 0}. (11)

More information about the errors in the homographies can

be found in [3].

The possible errors in the observations, s̃, caused by the

errors in the homography can be approximated by the second

term of the Taylor series expansion of s12 multiplied by the

errors in the homography,

s̃h =
∂s12

∂h
h̃. (12)

We can express s12 = s12(s
∗) and the pose estimation system

as s∗ = s∗(h). Applying the chain rule we have

∂s12

∂h
=

∂s12

∂s∗
∂s∗

∂h
. (13)

The first partial derivative has the form

∂s12

∂s∗
=





− cos(θ21) − sin(θ21) z12

sin(θ21) − cos(θ21) −x12

0 0 −1



 . (14)

In order to obtain the second Jacobian, we have s∗ =
(s∗1, s

∗

2, s
∗

3)
T , with

s
∗

1 = [Π−1
b](1), s

∗

2 = [Π−1
b](2), s

∗

3 = arctan(
[Π−1b](3)
[Π−1b](4)

). (15)
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0

0.5
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3.5
x 10

−3

Number of features

T
im

e
 (

s
)

5PointF

8PointF/20

Classic−HD

Planar−HD

Fast−HD

Fig. 3. Comparison of the time cost of several visual pose estimation
techniques. 8-Point algorithm cost has been scaled dividing by 20 due to its
high cost with respect to the other four algorithms. Fast-HD is faster than
of all of them.

Since Π
−1 does not depend on h, the components of ∂s∗/∂h

can be expressed as

∂s∗

∂h
=





1 0 0 0
0 1 0 0
0 0 −[Π−1b](4) [Π−1b](3)



Π
−1 ∂b

∂h
, (16)

with

∂b

∂h
=







1 0 0 −u0 0
u0/fu v0/fu 1/fu −u2

0/fu −u0/fu

0 0 0 fu 0
0 0 0 u0 1






. (17)

Multiplying all the matrices a 3x5 matrix is obtained,

which multiplied by the homography error, h̃, gives the error

in the pose estimation, ˜s12.

V. EXPERIMENTAL RESULTS

We have performed a complete battery of tests, including

both simulations and experiments with a real robot. Simula-

tions have been used to analyze the behavior of the proposal

and to compare its performance with previous approaches

found in the literature while experiments in a real platform

have been used to test its reliability.

The simulations have been carried out with synthetic

data using Matlab in a Pentium with 2.82 GHz quad-

core processor and 4Gb RAM. The first experiment has

been designed to measure the computational times of

different pose estimation algorithms depending on the

number of features. We have compared two algorithms

based on the fundamental matrix and three based on

the homography matrix. The chosen algorithms are the

eight point algorithm (8PointF) [9], the 5-point algo-

rithm (5PointF) [15] (the code has been downloaded from

http://vis.uky.edu/~stewe/FIVEPOINT/ [19]),

classical decomposition of the homography (Classic-HD)

[13], homography decomposition when there is planar mo-

tion (Planar-HD) [8] and the Fast-Homography decomposi-

tion proposed (Fast-HD). For each estimation we have run

500 iterations computing the mean time. The algorithms

receive all the matched points, where there are no outliers

so we have not considered the time involved in RANSAC

2707



Algorithm Miss Wrong t Wrong θ µ̄t (m) µ̄θ(rad) σ2
t σ2

θ
8PointF 18.6% 73.7% 59.2% 0.2905 0.0270 0.2484 0.0210

5PointF 16.8% 20.4% 20.6% 0.1403 0.0157 0.1547 0.0175

Classic-HD 16.5% 4.9% 9.1% 0.0616 0.0061 0.0934 0.0093

Planar-HD 16.5% 4.7% 9.1% 0.0637 0.0064 0.0963 0.0100

Fast-HD 16.5% 4.3% 8.8% 0.0585 0.0055 0.0911 0.0101

TABLE I

ACCURACY OF DIFFERENT POSE ESTIMATION METHODS. FIRST COLUMN SHOWS THE PERCENTAGE OF TRIALS WHERE NO H/F WAS CALCULATED.

WRONG T (WRONG θ) IS THE PERCENTAGE OF TRIALS WHERE THE TRANSLATION/ROTATION WAS ESTIMATED WITH AN ERROR HIGHER THAN 10%

OF |S1 − S2|. µ̄t (µ̄θ ) AND σ2
t (σ2

θ
) ARE THE MEAN AND STANDARD DEVIATION ERROR IN THE TRANSLATION/ROTATION ESTIMATION CONSIDERING

ONLY THE TRIALS THAT DO NOT GIVE A WRONG ESTIMATION.

computations in this test. The three algorithms based on ho-

mographies use DLT algorithm to compute the homography.

Respect to pose estimation, for all the algorithms we compute

all the possible solutions and choose the one closer to the real

solution except for our method, which automatically returns

the right solution, since it is unique. Figure 3 shows the

obtained results. The 8 point algorithm has a higher cost

compared with the other four methods (up to 35 ms) so the

time has been divided by twenty to fit it in the graphic. We

can see that the Fast-HD decomposition is faster than the

other methods.

The next experiment deals with the accuracy of the differ-

ent pose estimation methods. Table I shows the accuracy of

the chosen methods for 1000 trials with random positions in

a 5x5 square and maximum rotation deviation of 0.65 radians

observing a planar surface. The only error in the features is

the one caused by the discretization of the pixels. We have

measured the number of times each method cannot compute

the position (miss), the times each one computes a position

with error higher than 10% with respect to the distance

between the reference image and the actual one (Wrong

t), rotation with error higher than 10% (Wrong θ) and the

mean errors and standard deviations of both translation and

rotation when the pose estimation is under 10% error. We

can see that homography algorithms have better performance

than fundamental matrix algorithms because of short baseline

between the images and because the features are in planes.

The Fast-HD has lower mean errors and also computes a

good position more often than the other algorithms.

We have also performed experiments using a real platform

to test the reliability of the Fast-HD in real situations where

there are noisy features and the images contain non planar

regions. The experiments have been carried out with a

Pioneer 3Dx inc. robot with a Canon VC-C4 PTZ camera

previously calibrated that takes images of 640x480 pixels

with a frame rate of about 1 image per second. SURF features

[1] have been extracted and DLT+RANSAC [9] algorithm

has been used to compute the homographies between the

images. We present here two different scenarios with the

different experiments performed. The low frame rate makes

the approaches that use filters to provide bad pose estima-

tions. The experiments present two situations in which our

method is well suited but other approaches are not due to the

presence of planar regions and the wide baseline between

consecutive images.

In the first scenario (Fig. 4), we have moved the robot

following several times an approximate square trajectory of

1.5 meters side using landmarks in order to maintain the path.

We have roughly moved the robot using a joystick perform-

ing different kind of motions and slightly different routes.

The scale factor has been coarsely estimated by counting the

number of floor tiles from the plane to the position where

the reference images were taken. Eight images have been

used as references and the plane parameters were computed

with a reasonable error using the method in section III.

Next, we have compared the Fast-HD pose estimations with

those given by the robot odometry (bottom graphic of Figure

4). The graphic plots the positions estimated by the Fast-

HD (red line) and the odometry measures (blue line); it is

observed that whereas the odometry goes through the walls

and inside the square, the Fast-HD gives always positions in

the trajectory or near it.

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Position X (m)

P
o

s
it
io

n
 Z

 (
m

)

ROBOT POSITIONS

Fig. 4. Results of experiment in the laboratory. Using four reference
images the robot performs 6 laps to the square trajectory. The upper photo
shows a general view of the environment. The bottom figure shows the pose
estimation given by the odometry (blue) and by our sensor (red).

The second experiment has been performed outdoors. We

have moved the robot outdoors through the entrance of the

Ada Byron building (where we work) describing a path of

about 75 meters. In this case the reference planes are the
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(a) (b)

Fig. 5. (a) Images of the trip around the Ada Byron building. Upper images are the actual images whereas bottom images are the images used as
references. (b) Estimation of the route followed (red line).

walls of the building and we have not used any reference

images. Instead of that we have given the robot the distance

to the plane seen in the first image of the path and with

the second image the normal has been estimated. After that

the robot has been estimating its position with the Fast-

HD using the calibrated images while trying to detect new

planes when the homographies are not supported by enough

matches between the images. The information about new

planes has been estimated using (8). When the computation

of one homography has not been possible from the first

reference image, the robot picks the previous image acquired

during the navigation and estimates its motion, using this

image as a new reference for the following steps. Two

images of the trajectory are shown in Fig. 5-a, the upper

images are the current images acquired by the robot and

the bottom images are the past images used as references.

Figure 5-b shows the estimated trajectory using the Fast-

HD overlapped with an image of the environment. The

submitted video shows the results of this experiment. Due

to size limitations the quality of the video is not very good.

Another version with higher resolution can be downloaded

from http://webdiis.unizar.es/~edumonti/?p=103.

VI. CONCLUSIONS

We have presented a Fast Homography Decomposition

suited for mobile robot visual navigation in man-made envi-

ronments. The method exploits the automatically previously

computed information about the planes in the scene. We

have compared its performance with other pose estimation

methods found in the literature obtaining a similar accuracy

but in less time. The method gives robot pose solving a

linear system in constant time which is computationally

more efficient and avoids the multiplicity of solutions. An

exhaustive analysis of the robustness of the method to the

possible errors in the homography has been done. The

experimental results show the performance of our method

in different environments and real situations where other

approaches may fail due to planar scenes or wide baseline.
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