
Abstract—This paper deals with mechanical stiffness 
control of multi-DOF joint. It fundamentally mimics the 
skeleto-muscular system of human articulation, in which at 
least two muscles handle one rotary axis under their 
antagonistic (counteractive) action.  In the first part of the 
paper one introduces basic formula for controlling the 
multi-DOF rotary joint that is assumed to be driven by a 
couple of novel actuators called ANLES (Actuator with 
Non-Linear Elastic System). It mimics a skeletal muscle in 
the sense of having a non-linear elasticity. Next the paper 
describes the structure of the ANLES that is designed and 
constructed for controlling the wrist joint of an 
anthropomorphic robot. The experimental results using 
three DOF joint controlled by four ANLES reveal that the 
joint angle and the joint stiffness can be independently 
controlled by the proposed formula.  
 

I.  INTRODUCTION 
 It is easily found that some dexterous motions of human 
articulations are due to the capability of regulating the 
stiffness in accordance with a task that he/she is about to do. 
The skeleto-muscular system of human articulations is able 
to regulate its stiffness mechanically rather than by efferent 
command from the CNS using exteroceptive force feedback. 
The key mechanism for regulating the stiffness is the 
antagonistic structure of the skeleto-muscular system; one 
agonist and its antagonist muscles counteractively drive one 
articulation. Simultaneous stretching of both muscles 
provides high stiffness of the articulation and both relaxing 
gives us the low stiffness. It is notified that the non-linear 
elasticity of the muscles is prerequisite for the 
agonist-antagonist structure for regulating the stiffness. 
Some amount of displacement of joint angle requires a 
respectively small torque at the joint under the equilibrium 
state of low stretching of both muscles. On the other hand the 
equilibrium state under high stretching requires a 
respectively large torque to provide the same amount of angle 
displacement. So the stiffness is regulated according to 
magnitude of stretching of both muscles. It is obvious that 
linear elasticity does not provide such a stiffness change. A 
vast amount of physiological studies have elucidated skeletal 
muscles have the non-linear elasticity like this [1][2][3][4].  
 Some studies for investigating the stiffness of human arms 
elucidate that the stiffness ellipse of the arm’s endpoint is 
adjustable in its volume by stretching muscles [5], but its 
shape is roughly determined by the arm’s posture [6]. 
 Some studies in the field of robotics deal with the 
antagonistic control of joints [7][8][9][10][11][12] and 

pointed out the importance of the non-linear characteristics of 
the elastic elements to control the stiffness of the joint 
[9][10][11], but there have been few papers that propose the 
control method of stiffness in the practical point of view, 
although some theoretical approach for stiffness control 
provides valuable insights[11][13][14].  
 This study assumes artificial joints that are controlled by at 
least two actuator units having a similar elastic characteristic 
to human voluntary muscles. It is called the antagonistically 
driven joints (ADJ). 
 There have been some approaches to comprise the ADJ 

using linear actuators that works like muscle. The most 
successful approach developed so far will be those of using 
the McKibben type pneumatic actuator[15][16]. Although 
the pneumatic rubber actuator inherently has non-linear 
elastic characteristics, it has some drawbacks such as, the 
difficulty of designing the non-linear elasticity, the heat 
sensitivity, large volume of apparatus for supplying 
compressed air, etc.  Koganezawa proposed to use a conical 
spring that is embedded between the actuator and the joint to 
be controlled [17]. However it also has the similar drawbacks 
to the rubber actuator such as the difficulty for designing the 
non-linear elasticity and the large volumes of the overall 
transmission system.  
There are some recent another approaches to develop the 

non-linear elastic module used to control the stiffness of ADJ 
[18][19], which presented ingenious mechanical devices to 
design the non-linear elasticity, although they are 
prototypical.   
This paper proposes the alternative mechanism used for an 

artificial muscle to comprise the ADJ. It is on the same line of 
[18][19][20] in the sense of composing the non-linear 
elasticity through converting the force generated by a normal 
linear spring on the process of its transmission[21][22][23]. 
 In the following section, the basic formula for controlling the 
stiffness of the ADJ having multiple DOF is derived, in 
which the control of the stiffness and the control of the joint 
angle are decoupled by the dual equations. 
In the third section, a new mechanism is proposed, which 

fundamentally mimics a skeletal muscle that has non-linear 
elasticity mentioned above. We call it as the actuator with 
non-linear elastic system (ANLES). It shows the structure of 
the ANLES accompanied by the design of its non-linear 
elasticity. It follows the experimental results to show 
non-linear characteristics of the ANLES sufficiently 
corresponding to those of the designed one. 
The fourth section is devoted to show the three DOF rotary 

joint controlled by four ANLESes, which associates a wrist 
joint of an anthropomorphic robot. The validity of the 
proposed equations derived in the second section is clearly 
shown by the experimental results of the stiffness regulation 
under constant joint angle and the joint angle regulation 
under constant stiffness.  
In the final section, some conclusive remarks are described. 
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II. BASIC FORMULA FOR CONTROLLING THE STIFFNESS 
AND ROTATION OF MULTI-DOF JOINT 

 
A. Kinetics of  a multiple DOF joint system driven by 
multiple tendons 
Let us consider the joint having three rotation axes (roll, 

yaw, pitch) that are driven by m tendons as shown in Fig.1. 
Each tendon is stretched by the individual actuator that is 
similar to a voluntary skeletal muscle in the sense of having 
non-linear elasticity. Let us call it actuator with non-linear 
elastic system (ANLES).  Its tension force vector for the jth 
tendon is denoted by jξ  of which modulus is assumed to be a 

non-linear function with respect to one individual 
variable jφ , 

( )j j jφξ ξ=                                  (1)             

It is also assumed to be a mass located above the joint. 
Denoting jkr  for the moment arm vector from the kth joint 

axis to the jth tendon and 
gkr  for the kth joint axis to the 

gravitation force vector, we can derive a kinetically 
equilibrium state equation in terms of torque, 
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where, , 1,2,3k ke =  represents the unit vector about the kth 
joint axis. Let us consider that infinitesimal torque Δτ is 
loaded at the joint and it gives rise to infinitesimal rotation of 
joints ( 1,2,3)k kθΔ = . The relationship between them can 
be derived by differentiating (2),  
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where, /ji j ilγ θ≡∂ ∂  is a moment radius of the jth tendon 

with respect to the ith rotary axis. /j jl∂ ∂ξ can also be 

rewritten as follows, 
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with /j j jlδ φ≡∂ ∂  be a change rate  of the tendon length 

with respect to the variable of the ANLES. 
The tension force vector jξ is expressed by using its unit 

vector 
jη , 

j j j=ξ ξ η                                       (6)               

Using the notations of (4) ,(5) and (6), (3) is rewritten as, 
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where,
1 2 3[ ]Tθ θ θΔ = Δ Δ Δθ and 3 3{ | ( , 1, 2,3)}ijs i j ×= = ∈ℜS  

is identified as a stiffness matrix with respect to the rotation. 
It is practically difficult to manipulate all elements of the 
stiffness matrix (6 independent elements). In order to do so, it 
requires more than 9 tendons [11]. The authors consider it is 
not practical and not necessary to control all of them. The 
experiments in the field of the motion physiology [5] shows 
that human can regulate the stiffness-ellipsoid at the 
end-point of the arm merely in its volume rather than in its 
shape. So let us consider to manipulate only the diagonal 
three elements of the stiffness matrix. For the general 
consideration dealt with off-diagonal elements of the 
stiffness matrix, please refer the paper [21].  

The stiffness vector consisting of the diagonal elements of 
the stiffness matrix is calculated by the following equation, 
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Fig.1 Model of the three D.O.F. joints driven by m tendons.
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Let us consider the infinitesimal rotation of ANLESes that 
give rise to the infinitesimal variation of the stiffness vector 
under holding a constant joint angle. We derive the following 
equation from (8), 

                                    
 
 

 (9) 
 
 
 

Eq. (9) suggests that the second-order derivatives of  tensions 
with respect to the variables of ANLESes play an important 
role for regulating the stiffness, which implies to require the 
non-linear elasticity (this fact is also suggested by the paper 
[13]). Next, let us consider the infinitesimal variation of the 
tension vector iξ  due to the variation of iφ  that give rise to 
the infinitesimal rotation of the joints. We have the following 
equation from (2),  
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This can be rewritten by using (4)(5) and (6), 
 Δ = − ΔΓ θ Σ φ                                 (10) 
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The general solution of (10) with respect to Δφ  is 
† ( )⊥Δ = − Δ − ΔΣ Γ θ P Σ ζφ                      (11)  

where, † 3m×∈ℜΣ represents the generalized inverse of Σ  
and 3 3( )P Σ⊥ ×∈ℜ represents the null projection operator that 
projects arbitrarily specified vector mζΔ ∈ℜ on the 
complementary space of Σ . 
 

B. The formulation for the ANLES to vary the joint 
stiffness under keeping joint angles to be constant 
 

Let us first consider to regulate stiffness of the joint without 
giving rise to displacement of the joint angles. This must be 
carried out by the displacement of the ANLES’s variable 
vector Δφ  while holding Δ = 0θ  in (11), 

( )⊥Δ = − ΔP Σ ζφ                              (12) 
Substitution of (12) into (9) provides, 

( )⊥Δ = − Δs ΛP Σ ζ                              (13) 
Solving (13) with respect to Δζ  we have, 

( )†
( )⊥Δ = − Δζ ΛP Σ s                      (14) 

Substitution of it into (12) gives us,  
 ( )†

( ) ( )s
⊥ ⊥Δ = ΔP Σ ΛP Σ sφ                        (15) 

where, sΔφ  is the infinitesimal variation of the ANLES’s 
variable vector to provide the stiffness variation Δs  with no 
giving rise to the rotation of the joint angles.  
 
C. The Formulation for the ANLES to vary the joint angles 
under keeping the  joint stiffness to be constant 
Next it is capable to derive the formula for regulating angles 

of joints without bringing about the variation of the stiffness 
of the end-point. The general solution of (9) with respect to 
Δφ  will be, 

( )⊥Δ = Δ + ΔΛ s P Λ ψφ                    (16) 
where mΔ ∈ℜψ  is a vector that is arbitrarily assignable. 
Since we aim to keep the stiffness being constant, Δs  in 
(16) should be zero, 

( )⊥Δ = ΔP Λ ψφ         (17) 
Substituting it into (10), we have 

   ( )⊥Δ = − ΔΓ θ ΣP Λ ψ .      (18) 
Solving it with respect to Δψ and substituting into (17), we 
have,  
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where aΔφ  is the infinitesimal variation of the ANLES’s 
variable vector to give rise to the joint rotation with no 
interference with the joint stiffness. sΔφ  in (15) is simplified 
by making use of the nilpotent property of projection 
operator, 
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Similar procedure can be applied to (19) as follows, 
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(20) is the basic formula for manipulating the stiffness 
without giving rise to the variation of joint angles. As a dual 
equation (21) is that of manipulating the joint angles without 
giving rise to the variation of stiffness. However please 
notice that the control of the stiffness and joint angles 
individually by using (20) and (21) may not succeed perfectly. 
It depends on the number of tendons that are individually 
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controlled by ANLES and their disposition. Please see the 
paper [21] for some case studies. 
 

III. ANLES 
 
 The ADJ will be classified into two types. Type (A) in 
Fig.2(a)  has a single axis joint that is controlled by a pair of 
ANLESes. It does not necessary require tendon (or wire) if 
the actuator is rotary type.  On the other hand a joint having a 
couple of DOF , spherical or universal joints, will require a 

couple of tendons, each one of which is controlled by the 
individual ANLES as shown in Fig.2 (b). The actuator used 
for type (B) will be a linear actuator that strains the tendon. 
In this section two types of ANLES individually developed 
for controlling the type (A) ADJ and the type (B) ADJ are 
introduced. Firstly the structure of the ANLES of type (A) 
and the type (B) are introduced. Subsequently the design 
method of the non-linear elasticity, which is common with 
both types, is introduced followed by the actually developed 
example of type (B) ANLES. Please refer to [21] for the 
details of Type (A); the design of its non-linear elasticity, the 
ADJ controlled by a pair of type (A) ANLES and its 
experimental results of the stiffness control. 
 
A. Structure and design of the ANLES 
Fig.3 shows the structural parts and their assembled 

appearance designed for ANLES (Type (A)). It consists of 
DC-motor, guide-shaft, torsion spring and transmission 
cylinder (pulley). The torque generated by DC-motor rotates 
the guide shaft. The guide-shaft rotates the transmission 
cylinder via the torsion-spring. The transmission cylinder 
may be combined with a pulley that winds wire. The diameter 
of the guide shaft smoothly thins down along the rotation axis. 
When the DC-motor rotates the guide shaft, the torque is 
transmitted to the transmission cylinder via the torsion 
spring.  
 The ANLES designed for controlling the ADJ of type (B) 
(Fig.4) has almost the same structure as the ANLES (type 
(A)) shown in Figs.3. The method for designing the 
guide-shaft to obtain the non-linear elasticity combined with 
the torsion spring is identical. But this type of ANLES needs 

Fig.4 ANLES designed for controlling the type B joint  

universal joint universal joint

super long lead ball screw 
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 torsion spring 

guide shaft transmission cylinder 

(a) Parts of the ANLES (Type A) 

(b) Assembled view of the ANLES (Type A)
Fig.3 The fabricated ANLES  type (A) 
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Fig. 2 two types of ADJ 
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a transmitter to transform the rotational motion to the 
translational motion, and also its vice versa with minimum 
transmission loss. We therefore employ the super long lead 
ball screw ( 6φ diameter of the rod with 6 mm lead) into the 
guide-shaft as shown in Fig.4 and located the DC-motor 
outside the guide-shaft. The radius of the guide shaft plus 
radius of the spring wire at the location x along the shaft axis 
is denoted by ( )r x . The torsion spring covering the guide 
shaft coils on the surface of the guide shaft from its edge of 
large radius. Let us suppose the torsion spring wraps the 
guide shaft from the left edge to the location x  as shown in 
Fig.5. The wire length of the torsion spring wrapping on the 
shaft is calculated by, 

 ( )22

0
( ) 2 ( ) .= +∫

x

a
dxl x p r x
p

π                    (22) 

where p  is the pitch of the torsion spring. The wire length of 
the torsion spring covering the part of L x− is calculated by, 

( )2 2( ) 2 ( ) .r
L xl x r x p

p
π−

= +                   (23) 

The wire length lΔ protruding outside the guide-shaft (the 
part of LΔ along the axis in Fig.5) due to coiling is then 
calculated by, 

( ) ( ) ( ) ,a rl x l l x l xΔ = − −                        (24) 
where l  is the total wire-length of the torsion spring. 

lΔ obtained by Eq.(24) gives us the torsion angle, 
( ) ( ) / ( ) .x l x r xφ = Δ                               (25) 

The wire length that is not yet wrapped on the guide-shaft is, 
( ) ( ) ( ) ( ) .r a rl x l l x l x l x= − = + Δ                    (26) 

where, ( )rl x  is the expansion length of the spring wire that 
actually works as a spring at  location x . In this state the 
additional torque required to coil the spring furthermore by 
an infinitesimal torsion angle Δφ  is, 

( )( ) / ( ) .g rT x EI l x φΔ = Δ                   (27) 
where, E  is the modulus of longitudinal elasticity and I  is 
the second moment of area of the torsion spring wire.  
(27) leads the spring coefficient as a function of x , 

( ) ( ) / / ( ) .g rK x T x EI l xφ= Δ Δ =                  (28) 
We can obtain the relation between the torsion angle 

( )xφ and the torque ( )gT x  . Hence the ( )gT x and also 

( )K x may be denoted by ( )gT φ  and ( )K φ  respectively in 

lieu of using the intermediate parameter x . Now we have a 
free-hand to obtain the function ( )gT φ  through designing 

( )r x ; the radius function along the axis. We propose some 
configuration parameters for designing the guide-shaft as 
shown in Fig. 6 in which ( )r x  consists of two curvatures 
having radius rk1 and rk2 that are smoothly connected at the 
location lk2.  
 
B. Stiffness regulation of the joint controlled by two 
ANLESes 
 Non-linear elastic characteristics of an ANLES should be 
designed such that an ADJ driven by two ANLESes has 
stiffness that is variable in the specified range and also that is 
able to regulate by the torsion angles of two ANLESes as 
linearly as possible. The torque of the joint exerted by two 
ANLESes is denoted by 

1 1 2 2
ˆ ˆ( ) ( ( )) ( ) ( ( ))= + − −j g gT k T k Tθ φ φ θ θ φ φ θ      (29) 

under no gravitational effect. Where, 1gT and 2gT  are torques 

generated by the respective ANLESes, which are the function 
with respect to the torsion angle of the ANLES φ  that is also 
the function with respect to the joint angle.  

1( )k θ and 2 ( )k θ are the coefficients of transmitting torques 
to the joint which value may be varied according to the joint 
angle.  φ̂  is the torsion angle of ANLESes that are initially 
twisted, that may be called initial torsion angle. The stiffness 
of the joint is then calculated by the following equation, 

0
ˆ( ) / |js T θφ θ →≡ ∂ ∂                          (30) 

As found in the definition of the stiffness in (30), the 
stiffness is essentially determined by the initial torsion 
angle of ANLESes. 

C. Design of the ANLES (type B) 
In Table 1 the design parameters of the guide shaft are listed 
and its outcome of the non-linear elasticity of the ANLES 
shown in Fig.4 is illustrated in Fig.7 accompanied by the 
results of measuring the elasticity. 

Fig.5  Model of the guide-shaft 
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The error bar shows the variation range of five trials. This 
non-linear elastic curve is used for the stiffness and angle 
control described in the following section. 
 
IV. THREE DOF WRIST JOINT CONTROLLED BY ANLES 
 
A. Structure 

 Fig.8 shows the three DOF joint that mimics a wrist joint. 
It is controlled by four ANLESes (type (B)) shown in Fig.4. 
The DC motor for each ANLES, embedded under the lower 
plate, rotates the ball screw rod via the universal joint. If all 
of the DC motors rotate the same torsion angle with the same 
direction, the same amount of torque is generated and it is 
transformed to the same amount of traction force by the 
super-long-lead ball screws. These forces work as torques 
about the rotary joint, the same amplitude but opposite 
direction, hence they are antagonistically cancelled and the 
rotary joint will not rotate. In this case the DC motor purely 
twists the torsion spring of the ANLES, which enhances the 
stiffness about the rotary joint with no rotation. If the 
traction forces of four rods differ the joint rotates 
(extension/flexion and radial flexion/ ulnar flexion) to reach 
the equilibrium state that is determined not only by the 
traction forces but also by the moment arms; the normal 
length between the axis of the rotary joint and each rod, 
which is varied by the angle of the rotary joint.  

 lk1 Position of the center of the first 
curvature along axis 

-5  mm

 lk2 Changing position of curvatures 25.2  mm
 rk1 Radius of the first curvature 450  mm
 rk2 Radius of the second curvature 400  mm
 d Diameter of the spring wire 0.8  mm
 p Pitch of the spring 1.0  mm
 n Winding number of the spring 28   
 R0 Onset radius of the spring 8.0  mm

Table 1 Designed parameters of guide shaft of the 
ANLES (Type (B)) shown in Fig.4. 
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Fig.7  Stiffness of the ADJ (type(B))  shown in 
Fig.4 controlled by the torsion angle of the 
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The antagonistic control of three DOF joint fundamentally 
requires six ANLESes. However it is almost all impossible to 
equip two more ANLESes to control the stiffness and the 
angle of the pronation/supination due to the size limitation. 
Alternatively we device a mechanism in the upper plate. As 
shown in Fig.9, a planetary gear system is employed. The 
four ANLESes are connected to the inner gear via individual 
universal joint. The solar gear is connected to the central 
universal joint and gets the torque from the motor 5 that 
rotates the center axis. An end-effector is connecting to the 
carrier of the planetary gears. The active torque of the motor 
5 is transmitted to the carrier and rotates the end-effector. On 
the other hand, if the external rolling torque is loaded on the 
end-effector, it rotates the inner gear to incline the ball-screw 
rods of the ANLESes, which brings about the corresponding 
twisting of the ANLESes. Therefore a preliminary twist 
angle of ANLESes also specifies the stiffness about the 
pronation/supination as well as the flexion/extension and the 
radial flex./ulnar flex. Hence the stiffness about the 
pronation/supination is not independent to those of the 
flexion/extension and the radial flex./ulnar flex. 

The rotation angles of the ext./flex. and radial flex./ulnar 
flex. are measured by the originally developed central 
universal joint as shown in Fig.10. The dice of the central 
universal joint transforms the two rotations into the linear 
displacements for the linear potentiometers.  
   
B.  The experiment of the angle and stiffness control 
We carried out the experiments to confirm the basic formula 

((20) and (21)). This section shows the results of the joint 
angle control under holding a constant stiffness and the 
stiffness control under holding a constant joint angle. The 1.2 
kg mass is attached at the 125 mm distance from the joint. 
This mass represents a hand that we plan to construct and 
integrate with the 3 DOF wrist joint. ANLESes are twisted 
individually by some torsion angles using the normal PID 
control of the DC motors, which gives rise to the rotation of 
the joint to take a equilibrium torque balance. After the joint 
settles at some angle, the joint angle is measured. In this state 
the stiffness of the joint is measured by taking some small 
torque about the joint and measured the corresponding 
rotation. 
The torsion angles given to each ANLES are calculated as 
follows. First, the non-linear elastic curve shown in Fig.7 is 
fitted with a polynomial with respect to the torsion angle φ to 
obtain the tension vector ( ), ( 1, 2)i i iφ =ξ ((1) and (6)). 
Using iξ we can calculate the (20) or (21) to obtain the 
torsion angle vector sφΔ with respect to the specified 

stiffness variation sΔ  or aΔφ with respect to the specified 

infinitesimal joint angle θΔ .  
Fig.11 shows the stiffness when four ANLESes are twisted 

the same amount of angle. The error bar is the variation range 
of 5 measurements. As shown the experimental results are 
well coincident with the theoretical curve. The stiffness order 
of the pronation/supination is less than 1/10. It is a drawback 
of this test machine. 

Fig.12 is the result of controlling the angle change 
(extension/flextion) while holding the constant stiffness. The 
twist angle of corresponding two ANLESes are changed 
according to the Eq.(21) under constant stiffness being 0.12 
[Nm/deg]. It is the results when the twist angles of ANLESes 
are given in 28 steps as shown in the third figure. For the 
radial flex./ulnar flex. the similar results are obtained. 
 

IV. CONCLUSIONS 
 
 This paper totally deals with the theory and the mechanism 
for controlling the joint stiffness. The proposed formula and 
the mechanism of ADJ using the ANLES followed by its 
design method are verified by the experiments. The 
experimental results shown in Fig.11 and 12 clearly prove the 
validity of the equations (20) and (21). 
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 We are now developing the refined 3 DOF wrist joint that 
will overcome the following drawbacks depicted in the first 
machine. 
(1) The stiffness range of the pronation/supination is too 
small. -> It will increase about 5 times. 
(2) The size and the weight are too large. ->  It will be almost 
half ; 140 mm tall and 1.4 kg. 
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Fig.12 The angle control while holding the 
constant stiffness about extension/flexion
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