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Abstract— This paper presents a novel image based detection
method for pedestrians at very small scales (between 16 x 20 and
32 x 40). We propose a set of new distinctive image features
based on collections of local image gradients grouped by a
superpixel segmentation. Features are collected and classified
using AdaBoost. The positive classified features then vote for
potential hypotheses that are collected using a mean shift mode
estimation approach. The presented method overcomes the
common limitations of a sliding window approach as well as
those of standard voting approaches based on interest points.
Extensive tests have been produced on a dataset with more than
20000 images showing the potential of this approach.

I. INTRODUCTION

From the different participants in typical urban traffic
scenarios, pedestrians are the most vulnerable ones as they
are not protected by any kind of equipment as they exist for
motorists and cyclists. This fact is lamentably reflected in the
annual traffic accident statistics, as they are published, e.g.
by the Touring Club Switzerland (TCS) [1]. Here, two major
trends can be observed: first the steady decrease in the total
number of dead and seriously injured persons over the last 30
years, and second the increase in the percentage of dead and
injured pedestrians. The former is mostly due to the growing
number of safety systems available for modern vehicles,
while the latter originates from the fact that primarily mo-
torists and cyclists benefit from such safety systems, but not
pedestrians. One way to address this problem is to build more
intelligent driver assistant systems that aim at protecting the
driver and the pedestrian and avoid a potential collision. A
major requirement for this is, of course, the reliable detection
of pedestrians in urban traffic environments. However, this
task is rendered particularly difficult by at least the following
two facts:
• Pedestrians show a very high variability in shape and

color due to physical size, clothing, carried items, etc.
• In urban environments, especially in city centers, pedes-

trians most often appear in large numbers, e.g. when
crossing at a traffic light. This results in many occlu-
sions where the pedestrians are only partly visible.

Despite these difficulties, there are already some encourag-
ing approaches to detect pedestrians, majorly based on cam-
era data (e.g.[15]), but also using 2D laser range scanners [2]
or both [23]. However, these systems require a certain
minimal size at which the pedestrians are visible in the data,
which has the drawback that pedestrians that are far away,
as well as children, can not be detected reliably. According

Fig. 1. Detection of very small scale pedestrians in a urban walkway.

to the rule of thumb from theoretical traffic lessons, a car
that moves with 50km per hour needs 40m to come to
a full stop. This is still far from the maximal distance at
which pedestrians can be detected with current approaches,
using a lens that provides still an acceptable opening angle
(above 90 degrees). In this paper, we present an approach to
detect pedestrians that are up to 50m away while the lens
still provides a wide field of view. The size in which the
pedestrians appear in the image is as low as 16 by 20 pixels.
Our proposed technique uses a supervised learning algorithm
consisting of the following two major steps:
• Training Based on a superpixel segmentation proposed

by Felzenszwalb and Huttenlocher [9] and a compu-
tation of the image gradient, segments of strong edge
pixels are extracted. From these edge segments s, we
extract feature vectors based on a combination of his-
tograms of gradient orientations and the angles that each
line segment from a polyline approximation of s forms
with the horizontal axis. These features are used to train
an AdaBoost classifier [11]. In addition, we store the
positive training examples in a codebook together with
their displacement vectors with respect to the object
centers. This is inspired by the voting scheme of the
Implicit Shape Model (ISM) approach (see [15]).

• Classification Again, we compute edge segments and
feature vectors. Then we run the classifier and collect all
votes for object centers that are cast from edge segments
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Fig. 2. Flowchart of our detection algorithm.

classified as positive. Using mean shift mode estima-
tion [4], we obtain object positions for which many edge
segments vote and thus are strong hypotheses for the
position of an object, i.e. a pedestrian (see also Fig. 2).

Our approach avoids both the necessity of a sliding window,
as e.g. in [24], [5], and the requirement of a minimal
number of detected interest points (e.g. Hessian or Harris
corners [17]) to obtain robust hypotheses for small objects
such as in [15], [22]. We present the following novelties:
• the segmentation of edges from the gradient image

using a superpixel segmentation. This divides the edges
into chunks of homogeneous gradient variability and
provides highly informative local edge features. This
overcomes the usage of an overlapping tessellation
to learn object features and uses a more semantical
subdivision: at these image sizes, superpixels tend to
segment persons into more meaningful parts like torso,
head, limbs. The reason for that is that, due to the
smaller resolution, the gradient variability is usually
lower than at higher scales.

• a novel image descriptor particularly suited for the
detection of objects at small scales,

• a classifier based on a combination of AdaBoost and
the voting scheme known from the ISM approach.

The paper is organized as follows. In the next section we
discuss approaches from the literature that are most closely
related to our method. In Sec. III, we describe the feature
extraction and the details of our edge descriptor. Then, in
Sec. IV we present our classification technique and the
hypothesis generation. Sec. V shows the experimental results
and in Sec. VI we draw our conclusions.

II. RELATED WORK

In the area of image-based people detection, there mainly
exist two kinds of approaches (see [18] for a survey). One
uses the analysis of a detection window [5] or templates [12],
[24], the other performs a parts-based detection [8], [13].
Leibe et al. [15] presented an image-based people detector
using Implicit Shape Models (ISM) with excellent detection
results in crowded scenes. An extension of this method
that proposes a feature selection enhancement and a near-
est neighbor search optimization has been already shown

in [22][23]. In the specific area of small scales pedestrian
detection very few works are present. Viola et al. [24] detect
small pedestrians (bigger than the ones detected in this paper)
including a time integration. Efros et al. [6] uses optical flow
reasoning to detect humans and understand actions. Ferrari
et al. [10] classify contours for detecting simple objects
(coffee mugs, animals) in clutter by using an iterative path
search among linked segments. The superpixel method has
been introduced by Ren and Malik [20] using a Normalized
Cut criterion [21] to recursively partition an image using
contour and texture cues. Other methods have been proposed
to obtain quality superpixel segmentations [9], [7].

III. FEATURE EXTRACTION

In the literature, many different approaches are presented
to compute local interest point detectors and appropriate
region descriptors (for a comparison see [17]). However,
for our particular problem of object detection at very small
scales, none of these approaches is well suited for the
following reasons:

1) In areas of many small objects, usually – if at all – only
few interest points such as Harris corners or Hessian
blobs can be detected. Thus, the number of possible
voters is very low compared to the number of objects
to be detected. This results in detection results with low
confidence. We therefore decided to use edges instead
of interest points, as described below.

2) Standard descriptors such as SIFT [16], Histogram of
Oriented Gradients (HOG) [5], and shape context [3]
represent the local information in a high dimensional
feature space. One could think of applying such de-
scriptors to all (or some) points of an edge chain,
but this would result in a large number of feature
dimensions. Given that the size of the objects to be
detected usually ranges only about 300 pixels, this
seems inappropriate.

As a conclusion, we aim at finding a simple but informative
descriptor that is defined on chains of edge pixels and can
be computed efficiently. The decision to use chains of edge
pixels or, as we will denote them, edge segments, is somehow
inspired by the use of edgelets for detecting pedestrians
(see [25]). In the following, we present the details of our
method to compute edge segments and local descriptors.
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A. Superpixel Segmentation

The aim of this first step of our detection algorithm is
to preprocess a given input image and to obtain a more
semantic representation that is independent on the pixel
resolution of the image. One common way to achieve that
is by grouping image pixels into regions in such a way
that all pixels in a region are similar with respect to some
kind of similarity measure. In the literature, this is also
known as image segmentation, and it is crucial for a large
number of algorithms and applications in computer vision.
Many different algorithms have been suggested for this
problem and we refer to the related work section in [9]
for a good overview. Two of the more recent and mostly
used approaches, namely [20] and [9], define a graph where
the nodes are the image pixels and the graph edges are
defined by a neighbor relationship between pixels. Of these
two, the approach by Felzenszwalb and Huttenlocher [9] is
more tuned for computational efficiency and the one by Ren
and Malik [20] is more robust and yields more informative
regions. For our application of detecting small scale objects,
the use of complex similarity measures such as the peaks
in contour orientation energy as in [20] is not required.
Therefore, we use the former approach in our framework.
This algorithm groups the pixels into segments so that the
minimal dissimilarity across two segments is still higher than
the maximal dissimilarity within both segments. The number
of produced segments – usually named superpixels – can
be adjusted by a parameter k. An important characteristic
of this method is its ability to preserve details in low-
variability image regions while ignoring details in high-
variability regions. Therefore, it is especially suited for our
application, because pedestrians at small scales are usually
represented by only very few pixels in which the color
variability is comparably low due to the lower sampling
resolution. This means that one superpixel often represents
an entire body part like a leg, a torso, or a head.

B. Edge Segments and the Edge Descriptor

As mentioned above, we need to find a descriptor that is
not only assigned to single interest points, as those occur less
frequently in areas of small scale objects. Using superpixels
as regions of interest are a much better choice here, as
they are always found and they represent a higher vicinity.
However, defining a region descriptor for superpixels would
result in very complex computations. For our purpose, this is
not appropriate, as we only want to represent the information
contained in small image regions. As a tradeoff between
single pixels and regions, we use edge segments, which are
defined as chains of edge pixels that lie inside a superpixel.
For the computation of the edge pixels, we apply the Sobel
operator to the grayscale image and remove edges with
a gradient magnitude that is below a threshold τ . From
that, we compute the edge segments by simply applying the
superpixel segmentation described above to the edge image.

Adapted to our choice of edge segments we define a
descriptor that reflects the local information of each edge seg-
ment. This information is later used for our object detection

algorithm. In accordance to the notion of a region descriptor,
we refer to this as an edge descriptor. In our experiments,
we tested the following two kinds of edge descriptors:
• Histogram of orientations: The local gradient orienta-

tions along an edge segment are collected in a histogram
with n bins: each bin Bi counts the number ei of
edge points p at which the gradient γ(p) has a certain
orientation (see Fig. 4, left). For the descriptor, we use
2n values, where the first n are the values ei, normalized
by the sum m :=

∑n
i=1 ei, and the second n values

are the sums
∑

pj∈Bi
|γ(pj)| for each bin Bi, again

normalized by m. We name this descriptor HIST.
• Vector of directions: First we compute for each edge

segment a polyline approximation consisting of l line
segments. We do this using a variant of split-and-merge.
Then, we collect all angles between the line segments
and the horizontal axis in a vector of length l (see Fig. 4,
right). We name this descriptor VECT.

IV. FEATURE CLASSIFICATION

Based on the feature extraction described in the previous
section, our goal is to formulate an algorithm that classifies
these feature vectors into one of the two classes ’pedestrian’
or ’background’. For this task, we employ a supervised
learning technique that uses a hand-labeled training data
set with positive examples of small scale pedestrians. Many
techniques have been proposed to achieve this task. Two very
successful approaches are the face detection algorithm of
Viola and Jones [24] and the voting technique named Implicit
Shape Model (ISM) by Leibe et al. [15]. The advantage
of the first method is the strength of AdaBoost [11], i.e. a
classifier that is arbitrarily accurate on the training data and
at the same time yields a rating of the most relevant feature
dimensions for classification. The downside is that the image
has to be searched with a sliding window approach and at
different scales. In contrast, the voting scheme of ISM relies
on scale invariant features that are stored in a codebook along
with the relative position of the object center. No feature
search is needed here in the image, but the algorithm does

Fig. 3. Visual explanation of codebook voting. 1) Matched descriptors vote
for different center positions 2) Mean Shift mode estimator is run in order
to converge in local high density areas in the voting space 3) High strength
hypotheses are selected as detections.
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not rank certain feature dimensions over others when finding
matches in the codebook. Thus, extracted feature vectors may
vote for a potential object center, even though they reveal a
low evidence for the occurrence of the object.

In this paper, we suggest to combine both ideas to a
method that pre-classifies a given feature vector using Ada-
Boost and then, in the case a positive classification, searches
for a vote of the object center in the codebook. The details
of this are described in the following.

A. AdaBoost Classification

Boosting is a method to combine a set of weak classifiers
into a strong classifier. The only requirement for a weak
binary classifier is that its classification error on any given
training data set is bigger than 0.5, i.e. it must be better
than random guessing. Strong classifiers, however, can reach
arbitrary low training error rates. AdaBoost [11] achieves this
by adaptively assigning weights to the training examples and
iteratively learning M weak classifiers hi and corresponding
weights αi. After learning, the sum

g(z) :=
M∑
i=1

αhi(z) (1)

is used to decide whether a given test feature z is classified
as positive or negative by simply taking the sign of the
result of g. A broadly used type of weak classifiers are
decision stumps, and we also use them in our framework. A
decision stump finds a hyperplane η in feature space that is
perpendicular to one feature dimension. It is uniquely defined
by the index of the feature dimension, the orientation of the
normal vector of η, and the distance of η to the origin.

The features extracted in the previous step are expressed
as a 2n dimensional point for the first case and as a l
dimensional point in the second case. Features quality are
evaluated by learning a classifier for each kind of descriptor.
Moreover, we measured the quality of the combination of
descriptor VECT with HIST concatenating their values in a
single feature of dimension 2n + l. We call this descriptor
MIX.

B. Descriptor Codebook

The main idea of voting based classification techniques,
such as the one described by Leibe et al. [15], is to collect a
set of image descriptors together with displacement vectors,

Fig. 4. The two types of edge descriptors used in our detection algorithm.
Left: Histogram of orientations: for each edge point of a segment we use the
orientations of the corresponding gradient, here shown in yellow on four
sample edge points, and compute a histogram over them. Right: Vector
of line segment orientations: From a polyline approximation to the edge
segment, here shown as yellow arrows, we store the orientation angles of
each line segment in a vector.

usually named votes, and to store them into a codebook. The
justification of this is that each descriptor can be found at
different positions inside an object. Thus, a vote points from
the position of the descriptor to the center of the object as it
was found in the training data. To obtain a codebook from
labeled training data, all descriptors are clustered, usually
using agglomerative clustering, and the cluster centers are
stored, along with all votes corresponding to a particular
cluster. For the detection, new descriptors are computed on
a test image and matched against the descriptors in the
codebook. The votes that are cast by each matched descriptor
are collected in a voting space, and a mean-shift maximum
density estimator is used to find the most likely position of
an object (see Fig. 3).

C. Detecting Pedestrians

Once the AdaBoost classifier is trained and a codebook
is created from the training data, our detection algorithm
proceeds as follows. For a given input image, the gradient
map and the superpixel segmentation is computed. Using
the latter ones, we obtain the edge segments of the test
image. Then, we compute the descriptors as described above
and apply AdaBoost using equation (1). All descriptors that
are classified positive, are matched to the entries in the
codebook. Here, we do a range search to find all descriptors
d that are within a given Euclidean distance r from the
query descriptor dq. Then, all the votes cast from these
descriptors are collected in the voting space by adding their
displacements to the centroid of the edge segment for which
dq was computed. In the last step, we apply mean shift
mode estimation [4] in the voting space to find the most
likely object center for the given votes. Here, we set the
kernel radius to half of the width of the training images. To
initialize the mean shift estimation, we first collect all votes
in a 2D histogram with 0.5w×0.5h bins where w and h are
the width and height of the test image, and then start mean
shift at the position of the biggest bins. After convergence
of mean shift, we obtain all object hypotheses. From these,
we retain those that have a minimum number of votes τv .

V. EXPERIMENTS

To evaluate our detection algorithm quantitatively, we
applied it on a large set of test images with labeled positive
and negative examples. We trained our classifier with images
from pedestrians in two sizes, namely 16× 20 and 32× 40
pixels. This corresponds in our case to an approximate
distance of 56m and 28m, respectively (the focal length of
our lens is 4.2mm).

A. Setting the Parameters

As mentioned before, our algorithm depends on several
parameters: the superpixel coarseness k, the gradient strength
threshold τ , the length of the descriptor vectors m and n,
and the distance parameter r for codebook clustering. To
determine these parameters, we created a validation dataset
of 2000 random images and evaluated 25 combinations of
these parameters on these images. To limit the parameter
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Fig. 5. Precision-Recall graph for our detection algorithm (SP) and for
AdaBoost with Haar features as in [14] (AH). Due to the special design of
our descriptor for small scales, the detection on the smaller images yields
better results. The green line depicts the Equal Error Rate (EER)

search space, we chose m and n from the interval [6, 8] as
described in [5], and τ from [0, 40] to ensure that at most
15% of the gradient information is lost (considering that the
maximal possible value is 255). The parameter combination
with the maximal sum of true positive and true negative
detections was used in the later experiments. We obtained
k = 25, m = 8, n = 8, r = 18 and τ = 25.

B. Training

For training, we used an internationally standard dataset:
the NICTA large pedestrian image dataset [19]. It contains
pictures with pedestrians taken in typical urban environment.
They appear either alone or in crowded scenes whith partial
occlusions, in different poses (walking, standing, sitting) and
in a broad range of lighting variations. Negative examples
are represented by random crops of images from indoor and
outdoor environments.

We randomly selected 10000 positive images and 50000
negative images for each scale. In total we trained our
algorithm with 120000 image samples. In each image we
encountered between 10 and 20 edge segments, i.e. several
million descriptors were used for training. We used 5 times
more negative training examples to provide a large variety of
background. To assess the quality of the AdaBoost training
we used a leave-one-out cross validation, in which data is
partitioned into subsets such that the analysis is initially
performed on a single subset, while the other subsets are
retained for confirming and validating the initial results. The
training was performed on a quad core Intel Xeon CPU with
4GB of RAM in several hours of processing time.

C. Quantitative Results

The test set is composed of 24000 images with 4000
and 20000 negative examples. We evaluated our algorithm
for three different kinds of edge descriptors (see Sec. III-
B): Histogram of orientations (HIST), Vector of directions

(VEC), and both (MIX). The evaluations of the three types
of classifiers (HIST, VECT, and MIX) are shown in tables
I–III for image size 16×20 and in tables IV–VI for 32×40.
The precision-recall values are depicted in Fig. 5, along
with the result from the full-body detector for 14 × 28
images by Kruppa et al. [14]. This method, outperformed
by our technique, uses AdaBoost with Haar features and is
very similar to the one that is described by Munder and
Gavrila [18] as close to the best.

The VEC descriptor yields a much lower True Positive
Rate (TPR) than the HIST descriptor, which is most probably
due to the information loss caused by the polyline approxi-
mation of an edge segment. Note that the False Positive Rate
(FPR) of both descriptors are similar. The best results are
obtained using the combination (MIX) of both descriptors
that improves each statistics. It is important to remark that
the results for images of size 16 × 20 are generally better
than for those of size 32 × 40. The reason for this the
specific design of our feature descriptors: a bigger image
scale tends to exhibit a higher level of detail, therefore the
superpixel segmentation yields edge segments that are less
distinctive compared to those from the low scale images. In
the latter ones, superpixels represent body parts at a higher
semantic level (legs, heads, arms), whereas at larger scales,
the superpixels are less informative. Moreover, due to the
fact that low scale images have a lower resolution, mainly
strong edge pixels prevail. This means that thresholding the
gradient map at the same value τ results in a lower loss of
information. Nevertheless, the proposed technique performs
comparably well for images at higher scale: the TPR is only
about 3% and the TNR is only about 5% lower.

As a qualitative result, we show in Fig 6 the detection
result from a fraction of the test data set at image size 16×20.
All images are arranged in a grid and the estimated object
centers are depicted with yellow dots.

VI. CONCLUSIONS

We presented a novel image based detection method for
pedestrians at very small scales. For this particular problem
with sparse visual information we propose a new feature de-
scriptor inspired by edgelets in combination with superpixel
segmentation. Our technique overcomes common drawbacks
of the standard interest point voting approach and of the
scrolling window approaches using a descriptor codebook
and a robust AdaBoost classification technique. We have
evaluated parameters and show quantitative results on a large
dataset, showing the effectiveness of our method. In future
works we want to investigate how an intelligent tracking
can improve the results and how to improve the feature
robustness with respect to the scale magnification.
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TABLE I
CONFUSION MATRIX FOR SIZE 16X20 -

HIST DESCRIPTOR

Prediction
Ground truth P N

P 70.5% 29.5%
N 18.0% 82.0%

TABLE II
CONFUSION MATRIX FOR SIZE 16X20 -

VECT DESCRIPTOR

Prediction
Ground truth P N

P 56.6% 43.4%
N 18.8% 81.2%

TABLE III
CONFUSION MATRIX FOR SIZE 16X20 -

MIX DESCRIPTOR

Prediction
Ground truth P N

P 71.8% 28.2%
N 17.1% 82.9%

TABLE IV
CONFUSION MATRIX FOR SIZE 32X40 -

HIST DESCRIPTOR

Prediction
Ground truth P N

P 66.7% 33.3%
N 23.8% 76.2%

TABLE V
CONFUSION MATRIX FOR SIZE 32X40 -

VECT DESCRIPTOR

Prediction
Ground truth P N

P 53.0% 47.0%
N 23.9% 76.1%

TABLE VI
CONFUSION MATRIX FOR SIZE 32X40 -

MIX DESCRIPTOR

Prediction
Ground truth P N

P 68.4% 31.6%
N 22.1% 77.9%

Fig. 6. Qualitative result of our detection algorithm. 600 full size images
of correct detections from the test dateset are shown here in matrix form.
The yellow dots are the estimated object centers. To keep the presentation
uncluttered, the detected bounding box for each image is not displayed.
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