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Abstract— This paper presents a mathematical basis for
judging the quality of camera and projector placement in 3D
for structured light systems. Two important quality metrics
are considered: visibility, which measures how much of the
target object is visible; and scale, which measures the error in
detecting the visible portions. A novel method for computing
each of these metrics is presented. An example is discussed
which demonstrates use of these two metrics. The proposed
techniques have direct applicability to the task of monitoring
patient safety for radiation therapy applications.

I. PROBLEM DESCRIPTION

In this paper, the problem of measuring the quality of

camera and projector placement for structured light sys-

tems is examined. Placement of sensors is important for

all detection tasks as clever algorithms can be defeated

by poor sensor placement, but good placement can lead

to acceptable results even from subpar algorithms. Camera

placement for observation tasks in multiple camera systems

is an area that has been explored. However, the interaction

between projectors and cameras in structured light systems

is significantly different than the interactions in multiple

camera systems, leading to different placement criteria.

The quality of differing camera and projector placements

is determined here by examining the physics of the problem.

The spread of light from the projector into the scene and

the uncertainty in the camera’s detection of this light is

modeled and accounted for. Taking this into consideration,

judging the placement of cameras and projectors in such

systems can be performed mathematically. One area where

improved placement is applicable is tracking a patient’s

body position during radiation therapy, in which small body

movements direct radiation where it is not intended. To detect

such movements, the cameras and projectors in a structured

light system must be placed such that the body can be

reconstructed with the desired precision.

The paper is organized as follows. Section II gives a brief

overview of the related literature. Section III then gives

an intuitive description of the quality metrics used. The

mathematics of these metrics are presented in Section IV.

An example problem is analyzed in Section V. Finally,

conclusions are presented in Section VI.

II. RELATED WORK

Structured light is a vision-based method to perform 3D

reconstruction of a given surface, much like stereo vision.

The difference is that instead of using multiple cameras, a set

of cameras and projectors are used instead. Mathematically,

projectors act as cameras, only instead of detecting features

inherent in the scene, they project artificial features out onto

the scene for the actual cameras in the system to detect. Thus,

while the correspondence problem is a major issue for stereo

vision systems, it is significantly lessened for structured light

systems. Batlle et al. [1] presents a survey of structured light

methods and Salvi et al. [7] present a follow-up.

Examples of work dealing with optimal camera placement

include the work of Bodor et al. [2], who present a method

to determine the placement of a set of cameras for best

visibility based upon an example distribution of trajectories.

This work places the cameras by minimizing a cost function

which penalizes foreshortening and poor resolution. The

work of Mittal and Davis [6] deals with camera placement

in the presence of randomly positioned occlusions in the

environment for which an example distribution is known.

Cameras are placed such that the probability of occlusion is

minimized. Chen and Davis [3] present a camera placement

parametrization which considers self-occlusions. Their work

also provides a metric for analyzing error in the 3D position

of a point seen by several cameras. Tekdas and Isler [9]

present a method for optimally placing a stereoscopic camera

pair to minimize the localization error for ground-based

targets in 2D. Krause et al. [5] present a method utilizing

Gaussian processes for 2D sensor placement.

The two dimensional error regions discussed by Kelly [4]

provide justification for considering the real-world projection

of detection error, as the area of this error changes for

different sensor placements.

The work presented here seeks to expand upon this exist-

ing literature by expanding the placement question beyond

merely cameras and into camera and projector systems.

III. PROBLEM FORMULATION

The purpose of this paper is to classify different camera

and projector placements around an example target object by

how good they are for structured light-based reconstruction.

There are two competing definitions for what constitutes

good detection in a structured light system. The first metric,

visibility, is concerned with how much of the target object

is visible at any given point in time. The second metric,

scale, is concerned with how precisely points on the target

object can be detected. To examine the tradeoff between

these metrics, consider the following limit cases. When the

camera and projector are very far away from the object,

the entire object is contained within the field-of-view, but

points on the surface are not distinguishable from each other.

Alternatively, when the camera and projector are as close as
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Fig. 1. The intuition behind the quality metric presented in this paper.
Illuminating one point on the projector’s image plane projects a cone of light
into the scene. This cone of light intersects the scene in an ellipse shape
(shown in green). The camera detects this illuminated ellipse imperfectly,
making the real-world error bound the dotted red ellipse shown.

possible to the surface of the object, points on the surface are

distinguishable, but not many of them are within the images.

The visibility metric quantifies how much of the target

object is visible. When the target object is represented as a set

of surface points, the visibility metric for a given camera and

projector setup is then the percentage of these points visible

to at least one camera and at least one projector. A point can

be considered visible when its projection is within the width

and height of the camera or projector’s image plane.

The scale metric quantifies the accuracy of detection for

each of the visible points. The intuition behind this metric

is shown in Fig. 1. Consider a single pixel being illuminated

on a projector’s image plane. This point illuminates a cone

which spreads out into the world from the projector. If this

cone intersects an object that is locally planar about the area

of intersection, an ellipse is illuminated on the surface of

the object. This process is shown in green in Fig. 1. To

perform reconstruction, a camera must then observe this

illuminated ellipse. However, the camera cannot detect this

perfectly–there is noise associated with the camera detecting

the illuminated point, essentially enlarging the area in which

the ideal point could be in the world, shown in red in Fig. 1.

The error is additive due to there being only one sensor, a

major difference between camera and projector systems and

stereo camera systems.

Note that the model assumes the target object to be locally

planar about the area where it intersects with the illumination

cone. This is reasonable as this area is on the scale of a single

pixel being illuminated.

For clarity, we will now walk through how the scale

quality metric is computed for a given camera and projector

position. A graphical depiction of this process is shown in

Fig. 2. In this case, the camera and projector are arranged

relative to a single point of interest, as shown in Fig. 2(a).

The point of interest is illuminated by a single point on

the projector image plane, shown in Fig. 2(b). This point

of interest is also visible as a single point on the camera

image plane, shown in Fig. 2(c).

The points in each of the projector and camera image

planes have error circles around them with the diameter of

a single pixel in their respective planes. These are shown in

Fig. 2(d) and Fig. 2(e).

The target object is assumed to be planar in the area

immediately surrounding the target point. Thus, the error

circles on the camera and project image planes can then both

be projected to ellipses on the target point tangent plane as

shown in Fig. 2(f).

To find how well the camera can detect the illuminated el-

lipse from the projector, the underlying Gaussian distribution

for each of the projected ellipses must be found, as shown in

Fig. 2(g). These distributions are then convolved, giving the

overall distribution shown in Fig. 2(h). The semimajor and

semiminor axis lengths are then extracted from this combined

distribution, providing real-world bounds on the scale of the

error for detecting the target point from the camera and

projector setup given.

Note that the propagation of the camera and projector

error ellipses is fundamentally different than how such error

propagates in multiple camera systems. In multiple camera

systems, an intersection operation would be used on the

error ellipses on the target point tangent plane (Fig. 2(f)).

This is because multiple cameras are multiple sensors, and

uncertainty decreases with multiple measurements. However,

as only the camera in a camera and projector system is a

sensor, only one actual measurement is taking place. Thus,

the error from the projector adds to the error in sensing, so

the total error increases instead of decreasing. Thus, the error

ellipses must be convolved.

IV. PROBLEM MECHANICS

A. Camera Parameters

A camera can be defined by its intrinsic and extrinsic

parameters. A camera’s intrinsic parameters are described

by the matrix K, which represents the transformation from

the camera’s 3D frame to the image plane of the camera.

The form of this matrix is shown in Eqn. (1). The camera’s

3D frame has the z-axis perpendicular to the image plane,

pointing out from the camera. The parameters of K are as

follows. The scale factors along the x- and y-axis are αx and

αy . The camera skew is s, which should be zero for most

cameras. If s is not zero, it means that the x-axis and y-axis

of the elements on the camera sensor are not perpendicular.

Finally, the principal point of the image is (x0, y0)
⊤, which

is essentially the offset from (0, 0)⊤ to the center of the

image.

K =





αx s x0

0 αy y0

0 0 1



 . (1)

The camera’s extrinsic parameters describe the camera’s

location within the greater world. This is represented as a

rotation matrix R and a translation vector t. Together, R

and t transform from the frame of reference for the entire

world to the frame of reference for the camera.

A projection matrix P can be defined which will map

homogenous world points to homogenous points in the

image, as shown in Eqn. (2), where the vector 0 = (0, 0, 0)⊤.

505



−2
0

2
4

6

−4
−2

0
2

4
−5

0

5

10

xy

z

(a)

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

x

y

(b)

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

x

y

(c)

230 230.2 230.4 230.6 230.8 231

123

123.2

123.4

123.6

123.8

x

y

(d)

230 230.2 230.4 230.6 230.8 231

358.2

358.4

358.6

358.8

359

x

y

(e)

−0.015 −0.01 −0.005 0 0.005 0.01 0.015

−0.01

−0.005

0

0.005

0.01

x

y

(f)

−0.015 −0.01 −0.005 0 0.005 0.01 0.015

−0.01

−0.005

0

0.005

0.01

x

y

(g)

−0.02 −0.01 0 0.01 0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

x

y

(h)

Fig. 2. (a) Setup of the camera and projector system. The projector is shown in green, the camera is shown in red, and the only target point is shown in
blue with an arrow representing its normal vector. (b) Target point location on the projector image plane. (c) Target point location on the camera image
plane. (d) Half-pixel width error ellipse around the target point location on the projector image plane. (e) Half-pixel width error ellipse around the target
point location on the camera image plane. (f) Error ellipses from the projector (green) and camera (red) projected onto the target point tangent plane. (g)
Gaussian distributions associated with the error ellipses on the target point tangent plane. (h) Final convolved Gaussian distribution on the target point
tangent plane.

P =
[

K 0
]

[

R t

0
⊤ 1

]

. (2)

B. Projector Parameters

A projector can be described by the same parameters used

to describe a camera. A projector has an intrinsic parameter

matrix K, as well as extrinsic parameters described by a

rotation matrix R and translation vector t. Keep in mind,

however, that while the equations are the same, the physical

process works in reverse for the projector. Instead of the

scene being projected upon the image plane, as is the case

with a camera, the image plane is being projected onto

the scene. This distinction is important for determining the

measurement error for a given structured light system.

C. Target Point Parameters

It is assumed that a representative target is given, which

can be used to determine the quality of the placement of the

camera(s) and projector(s). In this case, the target is recorded

as a set of 3D points in the world coordinate system, {pi},

and a set of surface normal vectors associated with those

points, {ni}. All points must lie on a convex surface.

D. Determining Visibility of Target Points

For any of the points pi, there are two steps to finding out

if it is visible to a single camera or projector (the process is

identical). The first is to ensure that the point in the world

projects to a point within the bounds of the camera/projector

image plane. The projection of pi onto the image plane of the

camera/projector with projection matrix P is the point pIi.

This point can be found as shown in Eqn. (3). It is within

the bounds of the image plane when 1 ≤ pIi(1)
pIi(3)

≤ αx and

1 ≤ pIi(2)
pIi(3)

≤ αy .

pIi = P

(

pi

1

)

. (3)
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The angle of the normal vector of the target point and

the camera must be checked to ensure visibility. If li is the

location of the camera/projector in the world, we find vi =
li−pi. Then, the angle β can be found as shown in Eqn. (4).

The point is visible if β < π
2 . This ensures that the normal of

the target point is not directed away from the camera, which

would mean the surface at that point is not visible.

β = cos−1

(

ni · vi

‖ni‖2‖vi‖2

)

. (4)

Note that for a point pi to be considered visible by a

coded structured light system, it must be visible by at least

one camera and at least one projector. Also note that self-

occlusions are not considered by this visibility model. If

the target points lie on a non-convex surface, a more robust

method must be used to determine point visibility.

E. Visibility Quality Metric

The visibility quality metric is the ratio of visible points

(nvisible) on the target object to the total number of points

on the object (ntotal). This ratio is shown in Eqn. (5). In this

case, a higher ratio is better, but it will always be less than

one.

qvisible =
nvisible

ntotal

. (5)

The quality measure qvisible records the percentage of the

points on the object that are visible. However, it does not

encode how finely those points are detected.

F. Homography Matrix

A homography matrix between the plane around a target

point and a camera can be found as shown in Eqn. (6). The

target point is pi and its surface normal is ni. Also, RT

is the rotation matrix between the target plane’s frame of

reference and that of the world frame. The matrices K, R,

and the vector t are the camera’s parameters.

H =
[

K 0
]

[

R t

0
⊤ 1

] [

RT pi

0
⊤ 1

]









1 0 0
0 1 0
0 0 0
0 0 1









. (6)

The homography matrix H maps from the plane around pi

to the image plane of the camera, as shown in Eqn. (7). Here,

pT is a point in the target plane and pI is the corresponding

point in the camera’s image plane.

pI = HpT . (7)

G. Ellipses

Ellipses can be represented two ways. The first is the para-

metric form, in which five parameters are used to describe the

ellipse: the ellipse center (h, k), the semimajor axis length

a, the semiminor axis length b, and the angle with the x-axis

φ (Fig. 3).

The other representation of an ellipse is the general form,

as shown in Eqn. (8). Note this is the general form for a

conic section.

Fig. 3. Depiction of an ellipse with its center (h, k), semimajor axis length
a, semiminor axis length b, and angle φ labeled.

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0. (8)

1) Parametric Form to General Form: One possible set

of equations for the transformation from the set of ellipse

parameters to the general form is shown below. Space is

limited for these equations, so cφ = cos φ, and sφ = sinφ.

A =
c2φ

a2
+

s2φ

b2
(9)

B = 2

(

1

b2
− 1

a2

)

cφsφ (10)

C =
s2φ

a2
+

c2φ

b2
(11)

D =

(

2k

a2
− 2k

b2

)

cφsφ − 2h

(

c2φ

a2
+

s2φ

b2

)

(12)

E = 2h

(

1

a2
− 1

b2

)

− 2k

(

s2φ

a2
+

c2φ

b2

)

(13)

F =

(

h2

a2
+

k2

b2

)

c2φ + 2hk

(

1

b2
− 1

a2

)

cφsφ

+

(

k2

a2
+

h2

b2

)

s2φ − 1. (14)

2) General Form to Parametric Form: The set of equa-

tions for the transformation from the general form of an

ellipse to the parametric form is shown below. This is for

the case in which B 6= 0.

φ =
1

2
tan−1

(

B

C − A

)

(15)

a =

√

2|F | sin (2φ)

(A + C) sin (2φ) − B
(16)

b =

√

2|F | sin (2φ)

(A + C) sin (2φ) + B
(17)

h =
BE − 2CD

4AC − B2
(18)

k =
2AE − DB

B2 − 4AC
. (19)

If B = 0, then the following equations for a and b must

be used instead.
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a =
1√
A

(20)

b =
1√
C

. (21)

H. Discussion of Gaussian Distributions

An ellipse can be considered a level set of a Gaussian

distribution. Thus, we can find the Gaussian distribution

associated with a given ellipse, and vice-versa.
1) Ellipse Parameters to Gaussian Distribution: A fixed

Gaussian distribution is represented by a vector mean µ
and a covariance matrix Σ. These can be found from the

parameters as follows. Note here that cφ = cos φ, and

sφ = sinφ.

µ =

(

h
k

)

(22)

Σ =

[

cφ sφ
−sφ sφ

] [

a2 0
0 b2

] [

cφ −sφ
sφ cφ

]

. (23)

2) Gaussian Distribution to Ellipse Parameters: The pa-

rameters φ, a, and b require us to find the eigenvalues and

eigenvectors of Σ. The eigenvalues are λ1 and λ2, where

λ1 ≥ λ2. The associated eigenvectors are e1 and e2.

φ = − tan−1

(

e1(1)

e1(2)

)

(24)

a =
√

λ1 (25)

b =
√

λ2 (26)

h = µ(1) (27)

k = µ(2). (28)

3) Convolution of Gaussian Distributions: Convolving

Gaussian distributions is very useful, and can be accom-

plished with the following equations. The convolved Gaus-

sian distribution is represented by mean µc and covariance

Σc.

µc = µ1 − µ2 (29)

Σc = Σ1 + Σ2. (30)

I. Projection of Ellipses

Taking an ellipse in the form of Eqn. (8), a matrix

representation of the ellipse, C, can be created as shown

in Eqn. (31).

C =





A B/2 D/2
B/2 C E/2
D/2 E/2 F



 . (31)

Once the ellipse is in this matrix form, the projection

of the ellipse onto another plane can be found using the

homography matrix calculated in Eqn. (6). For instance, Eqn.

(32) shows the projection of an ellipse in the camera image

plane (CI ) onto the target point tangent plane (CT ).

CT = H
⊤
CIH. (32)
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Fig. 4. Two views of the set of camera/ projector placements tested, seen
around the cubic target object.

J. Scale Quality Metric

The scale quality metric encodes the scale at which the

points that are visible is detected. Here, i iterates over all

visible points. The area of an ellipse is abπ, where a and b are

the semimajor and semiminor axis lengths. Thus, if ac and

bc are the semimajor and semiminor axis of the convolved

Gaussian distribution, we get the equation for qscale shown

in Eqn. (33).

qscale =
π

nvisible

nvisible
∑

i=1

acibci. (33)

The quality metric qscale is in world units. Thus, it can

be used if resolution at a desired scale can be observed

and tracked by the system. The best camera and projector

placement is the one in which qscale is minimized.

K. Multiple Cameras and/or Projectors

For situations where multiple cameras and/or projectors

are utilized, it should be generally assumed that the worst-

case scale and visibility metrics calculated be used for each

point on the target object. This is because it is not possible

to tell just from the projected patterns and corresponding

camera images in the real system which image or pattern is

better than another, especially if all projectors and cameras

operate simultaneously. This being the case, the error has to

be assumed to be the worst possible when scoring a particular

placement setup.

V. EXAMPLE

The quality of a set of camera and projector pair place-

ments around a cubic target object are examined in this
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Fig. 5. The camera/ projector placement tested with the best qvisible score.
Visible target points are shown in blue, nonvisible points in magenta. Note
that three faces (50%) of the cube are visible.
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Fig. 6. The camera/ projector placement tested with the best qscale score.
Visible target points are shown in blue, nonvisible points in magenta. Here,
only one face of the cube is visible, as this minimizes the size of the error
projections.

example. The target points chosen are regularly distributed

across the faces of the cube. For all camera and projector

placements, the center point between the camera and projec-

tor is a constant distance from the center of the cube and

the camera and projector are a constant distance from each

other. The camera and projector point towards the center of

the cube. The purpose of this example is to show which of

the camera and projector pair positions has the best qvisible

score and which has the best qscale score.

Two views of the set of examined camera/projector pairs

around the target object are shown in Fig. 4. Each of these

views was examined to determine which view was best in

terms of each of the quality metrics.

The camera/projector pair location with the best qvisible

score is shown in Fig. 5. Note that three faces of the cube

are visible to both the camera and projector in this setup.

This placement makes 50% of the cube visible, the maximum

amount possible. Thus, this camera and projector placement

maximizes the visibility metric.

Finally, the camera/projector pair location with the best

qscale score is shown in Fig. 6. Here, only one face is visible

to the camera and projector. This is reasonable because if

multiple faces are visible, the error ellipses on the faces are

longer due to the grazing angles between the cube faces and

the camera/projector, leading to larger error bounds. Thus, a

view of a single face reduces the average error per point.

VI. CONCLUSIONS

In this paper, a mathematical basis for judging the qual-

ity of camera and projector placement for structured light

systems was presented. Two metrics of quality must be

considered: visibility, which measures how much of the

target object is visible, and scale, which measures how well

the parts that are visible can be seen. Methods for computing

each of these metrics were presented. An example was shown

which demonstrates these quality metrics.

The method presented here is useable in domains contain-

ing multiple cameras and multiple projectors. In addition,

differing resolutions between the cameras and projectors are

taken into account. An application where placement quality

is important is patient body tracking, in which cameras and

projectors must be placed such that a patient’s body can be

reconstructed to a desired precision.

Future directions include addressing self-occlusion in the

target object, which requires a more robust visibility model.

This may be possible using something similar to the visibility

regions discussed by Tarabanis et al. [8]. In addition, while

it is expected that the relative importance of the two quality

metrics is dependent on application, the optimal trade-off

between them must still be examined in depth.

Using the method presented here, the quality of competing

camera and project placements in structured light systems

can now be mathematically compared. No longer must

guesswork be used in placing cameras and projectors for

structured light systems.
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