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Abstract— This paper presents an architecture extending
bottom-up visual attention for dynamic scene analysis. In dy-
namic scenes, particularly when learning actions from demon-
strations, robots have to stably focus on the relevant movement
by disregarding surrounding noises, but still maintain sensi-
tivity to a new relevant movement, which might occur in the
surroundings. In order to meet the contradictory requirements
of stability and sensitivity for attention, this paper intro-
duces biologically-inspired mechanisms for retinal filtering and
stochastic attention selection. The former reduces the complex-
ity of peripheral signals by filtering an input image. It results in
enhancing bottom-up saliency in the fovea as well as in detecting
only prominent signals from the periphery. The latter allows
robots to shift attention to a less but still salient location in the
periphery, which is likely relevant to the demonstrated action.
Integrating these mechanisms with computation for bottom-up
saliency enables robots to extract important action sequences
from task demonstrations. Experiments with a simulated and a
natural scene show better performance of the proposed model
than comparative models.

I. INTRODUCTION

Robots mostly face a dynamic scene. When interacting

with humans and learning tasks from them, robots have to

appropriately gaze at the partners’ movement so as to be

better accepted as social agents as well as to succeed in

task learning. The issue concerning the spatial aspect of

visual attention is described as “where to attend,” that is,

robots have to select a location to attend to depending on

the context. When a partner is demonstrating a task, robots’

attention should be directed to his body movement so that

they can learn the means of the task. If an object is involved

in the task, robots have to pay attention also to the object so

as to learn the goal of the task. The issue of “where to attend”

is the central question in attentional control. In dynamic

scenes, furthermore, “when to attend” becomes crucial (i.e.,

the temporal aspect of attention). When a task starts being

demonstrated, robots must quickly respond to the partner’s

movement and stably follow it without being interrupted by

a distraction. At the same time, robots have to also maintain

sensitivity to a new relevant movement, which might occur

in the surroundings. For example, if a demonstrator, who

is handling an object with his right hand, starts moving his

left hand, robots’ attention must quickly be shifted to the

new movement for learning the coordination of the actions.

Thus, the issue of “when to attend” requires fulfilling the

contradictory requirements: stability of attention to a certain

target and its sensitivity to a new target.
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Regarding the issue of “where to attend,” architectures

of bottom-up attention have widely been investigated. It

has been shown that a model based on visual saliency

(e.g., [1], [2]) is able to detect likely important locations

in a scene. In the context of human-robot interaction, the

model enables robots to detect human partners as well as

salient objects [3]–[5]. Since a human face and hands have

conspicuous features in terms of color, edge, and motion,

they can be distinguished from the surroundings. Bottom-

up attention might also extract robots’ body parts from

a scene [6], [7]. To associate the extracted features with

the controllability of them allows robots to acquire their

body image. Combining several modalities enriches bottom-

up attention. Integration of auditory saliency with visual

saliency facilitates the detection of relevant targets [8]. In

certain situations, a top-down modulation can be added to a

bottom-up system [9], [10]. If contextual knowledge is given,

robots can utilize it to determine “where to attend.”

Although there have been many studies employing bottom-

up attention, the issue of “when to attend” has hardly been

investigated. In the above studies, only the locations to attend

to (i.e., “where”) and the frequency of attending the locations

have been evaluated. It has been reported that purely bottom-

up architectures have a weakness in the temporal aspect of

attention [11]. Bottom-up attention can easily be distracted

by a disturbance [4]. In order to interact with humans and

learn actions from them, robots have to overcome the “when”

issue as well as the “where” by addressing the stability and

sensitivity of attention.

This paper proposes an architecture extending bottom-up

attention for dynamic scene analysis. To meet the contradic-

tory requirements of stability and sensitivity, biologically-

inspired mechanisms of retinal filtering and stochastic at-

tention selection are introduced. The former contributes to

stabilizing attention. Imitating human vision, the mechanism

produces a retinal image, in which the fovea has high acuity

while the peripheral area has low. It results in enhancing

bottom-up saliency in the fovea as well as in extracting only

highly-conspicuous signals from the periphery. The latter

achieves sensitivity to new signals after the stabilization of

attention. This mechanism allows robots to shift attention to

a less but still conspicuous location in the periphery, which

appears to be important in the context. Integrating these

two mechanisms with computation for bottom-up saliency

enables robots to detect meaningful action sequences from

human task demonstrations.

The rest of this paper is organized as follows: Section

II provides evidences about human vision and attention. It
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(a) Visual acuity (adapted from [12]) (b) Typical scan paths for
static image (from [13])

Fig. 1. Human vision and attention

describes biological mechanisms inspiring retinal filtering

and stochastic process for attention selection. Section III

explains a model integrating bottom-up attention with the

above mechanisms. The validity of the model is examined

using a simulated and a real scene in Sections IV and V.

Section VI gives conclusion and discussions.

II. HUMAN VISION AND ATTENTION

A. Visual Acuity

Human vision has different acuity depending on the retinal

area (see Fig. 1 (a)) [12]. In the fovea, the acuity is 100 [%]

and thus humans perceive a sharp image, whereas it rapidly

drops to 10 [%] or less in the periphery. This is caused by

differences in the density of photoreceptor cells and in their

mechanism to process signals.

Cone cells, which are centralized in the fovea, allow high

acuity for the foveal vision. The density of cone cells looks

like the visual acuity shown in Fig. 1 (a): It is highest at the

center of the fovea while rapidly decreasing in the periphery.

Rod cells, by contrast, are decentralized in the peripheral

region. They do not exist in the fovea, increases as cone cells

are decreasing, and then gradually descends to the edge of

the periphery. The low density of rod cells causes low acuity

for the peripheral vision. In addition, the mechanism for rod

cells to process signals promotes less acuity for the periphery.

Signals perceived by multiple rod cells converge on a single

inter-neuron in order to be amplified unlike those for cone

cells. This mechanism, on the one hand, causes the loss of

detailed information in the peripheral vision, but on the other

hand, allows humans to focus more on the signals perceived

in the fovea.

B. Stochastic Attention

Humans determine where to attend using the retinal image.

The process for selecting the attentional point is stochastic

rather than deterministic [13]. Even when people observe the

same scene, their scan paths differ between trials. Fig. 1 (b)

shows a typical path recorded when a person was looking

at a static image. His fixation accumulated on salient targets

like human face, hands, and convex objects. Such strongly-

relevant targets are mostly selected as attentional locations

over trials; however, the order for the fixation might change
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Fig. 2. Retinal filtering for enhancing focus on currently-attended location

between trials. For example, a subject might first look at a

human face and next hands in one trial, but vice versa in

another trial. It is supposed that such a stochastic process

prevents anchoring our attention to one salient location as

well as to minimize the typical time needed to process a

visual scene.

III. BOTTOM-UP VISUAL ATTENTION FOR

DYNAMIC SCENE ANALYSIS

Inspired by human vision, this paper introduces retinal

filtering and stochastic attention selection. The former con-

tributes to stabilizing attention to the current fixation point

whereas the latter allows to maintain sensitivity to new sig-

nals observed in the periphery. Integrating these mechanisms

with saliency computation enables robots to overcome the

issue of “when to attend” as well as “where to attend.”

A. Retinal Filtering

The proposed model first generates a retinal image like

human vision. Fig. 2 illustrates the mechanism. The retinal

image IR is created by combining two different sharpness

of input images: the sharp one IS , which is directly captured

from a camera, and the blurred one IB , which is generated

by globally smoothing IS with a Gaussian filter. Let xF (t−
1) be the fixation point at time t−1. The image value IR(x, t)
at the location x = (x, y) is calculated by summing IS(x, t)
and IB(x, t) using a weight with respect to the distance from

xF (t − 1):

IR(x, t) = αIS(x, t) + (1 − α)IB(x, t) (1)

where α(x, t) =
D2

‖x − xF (t − 1)‖
2

+ D2
. (2)

The weight α(x, t) is a Cauchy distribution whose center is

xF (t − 1), amplitude 1.0, and diameter D.

The resulting image is shown in the top right in Fig. 2.

At location 1 (i.e., the fixation point), α equals 1.0 and thus

IR is as sharp as IS . The fingers of the person’s right hand

can clearly be recognized. From location 1 to 2 and then to

3, as α becomes smaller, IR gets more blurred. At location

3, IR is as blurred as IB .
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(a) Saliency map derived from IR

(b) Saliency map derived from IS

Fig. 3. Saliency map with (a) and without (b) retinal filtering. From left to
right, orientation map, motion map, and final saliency map are presented.

B. Saliency Computation

The effect of the retinal filtering can be observed in visual

saliency. The model next computes the saliency for IR

employing the model proposed by Itti et al. [1], [2]. Saliency

is calculated as the difference between a focused region and

the surroundings. For example, a red cup can be detected

as salient against blue background in terms of color. The

model proposed here computes saliency with respect to five

features: color, intensity, orientation, flicker (i.e., temporal

change in the intensity), and motion (i.e., optical flow). The

first three are responsible for static features whereas the

last two are for dynamic. The generated conspicuity maps

are then normalized within each feature, and are finally

integrated into the saliency map with equal weights. Refer

to [1], [2] for a more detailed explanation.

Fig. 3 shows the saliency map derived from IR (a) and

from IS (b), which are corresponding to the scene shown in

Fig. 2. From left to right, the orientation map, the motion

map, and the final saliency map are presented. Comparing

Fig. 3 (a) to (b), we can see that the retinal filtering has the

effect of enhancing the saliency in the fovea (i.e., the region

corresponding to the person’s right hand) while suppressing

it in the periphery, which leads to the stability of attention.

C. Stochastic Attention Selection

The model then selects an image location to attend to

based on the saliency. In order for robots to quickly respond

to a new conspicuous target, a stochastic algorithm used

in [14], [15] is adopted. The model calculates φ(x, t),
which defines the transition probability for attention from

the current fixation point xF (t − 1) to x at t:

φ (x, t) =
exp (−β (s (xF (t − 1), t) − s(x, t)))∑

x′

exp (−β (s (xF (t − 1), t) − s(x′, t)))
, (3)

where s(x, t) is the saliency for x, and β defines the

amplitude to enhance the difference in the saliency. Fig. 4

(a) shows the probability map derived from Fig. 3 (a). Only

the locations with high saliency present high probability.

(a) Transition probability map (b) Transition of attention in-
dicated by red line

Fig. 4. Stochastic attention selection

Note that this computation takes only the saliency value into

account, but not the distance from the fovea. That is, if there

are locations which are as salient as the fovea, they are given

with the same probability.

The model then determines the next fixation point xF (t)
using a Metropolis algorithm. It selects a candidate location

xF ′ based on φ(x, t), and accepts it if

∆s(xF ′ , t) = s(xF ′ , t) − s (xF (t − 1), t) > 0. (4)

Otherwise xF ′ is accepted with a probability:

p(xF ′ , t) = exp (∆s(xF ′ , t)/T ) , (5)

where T defines the randomness of the stochastic process.

The higher T is, the more a location with less saliency is

accepted. This process is repeated until a newly selected

location satisfies the condition.

The transition of the attentional location is represented by

a red line in Fig. 4 (b). Since the person’s right hand was

strongly salient due to the movement, it has continuously

attracted the model’s attention. The stochastic algorithm,

however, allows robots to sensitively respond to a new con-

spicuous target, for example, the person’s left hand pointing

the blue cup.

IV. EXPERIMENT I: SIMULATED DYNAMIC SCENE

A. Setting

The first experiment evaluated the proposed model with

a simulated scene. Fig. 5 (a) shows a snapshot of the video

input (left) and the corresponding saliency map (right), which

was computed from the sharp image. There are two dynamic

targets, which are smaller green circles indicated by 1 and

2, among five static distractors, which are larger circles with

a cross mark on it. When no target is moving, one of the

distractors is the most salient due to the larger colored area

as well as the cross feature. In Fig. 5 (a), where no target

is moving, the upper left-hand distractor shows the highest

saliency. However, once a target starts moving, it becomes

more salient than the distractors due to the movement. The

trajectories of the targets are plotted in Fig. 5 (b). The solid

and the dashed green lines indicate the positions of Targets-

1 and -2, respectively. First Target-1 moves up and down,

next Target-2, and then again Target-1 while keeping their

x positions in the image. There are intervals between the

movements, during which neither target nor distractor moves.
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(a) Input video (left) and saliency map (right) without retinal
filtering. Two targets move along gray lines.
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(b) Transition of two targets (Target-1: solid line, -2: dashed line). Thicker
red and blue lines indicate the desired transition of attention.

Fig. 5. Test video and transition of two targets

The red and the blue lines in Fig. 5 (b) indicate the

desired transition of attention. It shows that attention should

follow the movement while one of the targets is moving,

and stay at the same target during the following interval. For

example, Target-1 attracts attention from 50 to 200 [frame]

because of the movement and from 200 to 260 [frame] too

despite no movement. Similarly, Target-2 draws continuous

attention from 260 to 470 [frame] until Target-1 restarts

moving. These movements simulate a scene where a human

demonstrator moves his left and right hands sequentially.

While presenting a task, the demonstrator might involuntary

take pauses between movements in order to change the

motion direction and/or to ease the action segmentation.

During such short intervals, robots’ attention should be kept

to the same target (e.g., one of the demonstrator’s hands)

instead of being shifted to others (e.g., his face or the other

hand) because the demonstrated action likely continues with

the same target. At the same time, robots have to also quickly

respond to a new target (e.g., movement produced by the

other hand), which might occur in the surroundings. This

experiment evaluates how stably the proposed model gazes

at a moving and a pre-moving target, and how sensitively it

responds to a new target.

B. Comparative models

Performance of the proposed model was compared with

three other models. The proposed model is hereafter called

• STC-R model, which indicates the SToChastic algorithm

with the Retinal filtering.

The three comparative models are:

• WTA model, which employs the Winner-Take-All algo-

rithm for the attention selection, where the saliency is

computed from the sharp input image,

• WTA-R model, which additionally adopts the Retinal

filtering with WTA model, and

• STC-C model, which employs the same SToChastic

algorithm as STC-R model without the retinal filter-

ing, but instead filters the transition probability with a

Cauchy distribution.

The winner-take-all is an algorithm to select the most salient

location as the attentional point. It has been adopted in most

of the current studies and showed reasonable performance

in static environments (e.g., [1], [8]) . In dynamic scenes,

however, it suffers from a drawback of instability of attention

as well as of strong anchoring to the most salient location.1

Comparing WTA model with WTA-R allows to investigate

the effect of the retinal filtering on stabilizing attention.

STC-C model is an architecture inspired by a behavioral

evidence about human attention [14], [15]. As described in

Section II, human attention is stochastic. Moreover, they shift

attention to a closer position much more frequently than to

a far position when scanning an image [13]. STC-C model

imitates the behavior by filtering the transition probability

φ(x, t) with a Cauchy distribution:

φ̂(x, t) =
D2

C

‖x − xF (t − 1)‖
2

+ D2

C

φ(x, t), (6)

which serves as a new probability for the attention selection.

That is, the attention of STC-C model is simply narrowed

by DC regardless of whether there is any movement in the

peripheral vision. Note that the saliency for STC-C model is

computed from the sharp input image.

C. Results

Fig. 6 shows the result for STC-R model, whose param-

eters were set as D = 40.0, β = 0.02, and T = 5.0; (a)

is the retinal image with the attentional point (left) and the

saliency map (right) captured at 290 [frame], and (b) is the

attentional transition of the model. In the scene, Target-2

moving upward was attended to by the model because of

the higher saliency produced by the movement. Target-1 as

well as the distractors, by contrast, had less saliency than in

Fig. 5 (a) due to the blurred image. Comparing Fig. 6 (b) with

Fig. 5 (b) demonstrates that STC-R model well reproduced

the desired transition of attention. The model stably gazed at

a moving target and continuously fixated on it while quickly

responding to a new target.

Fig. 7 shows the results for the comparative models: (a)

WTA model, (b) WTA-R model, and (c) to (e) STC-C model

with different DC . The smaller DC is, the narrower the

transition probability is. DC = 40.0 is comparable to D
for the retinal filtering in terms of the size for the filter. The

other parameters for STC-C model (i.e., β and T ) were the

same with those for STC-R model.

First, Fig. 7 (a) shows that WTA model could not keep

fixating a target during the motion intervals. It always shifted

the attention to the most salient distractor when no target

was moving. In action learning, it causes a problem that

the perception of demonstrated actions is often interrupted.

1In order to avoid the anchoring, attentional models have to inhibit the
saliency for attended objects, but not for locations, for which a mechanism
is still an open challenge to develop.
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(a) Retinal image (left) and saliency map (right) captured at
290 [frame]. The model attends to Target-2 moving upward.
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240
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x

y

Time [frame]

(b) Transition of attention, where arrows denote 290 [frame]

Fig. 6. Result for STC-R model with simulated scene

For example, the movement of lifting up an object and then

putting it down would independently be extracted, which

makes it difficult to learn the coordination between the move-

ments. Fig. 7 (b), by contrast, shows the effect of the retinal

filtering on preventing such interruptions. From 340 to 680

[frame], WTA-R model continuously gazed at the moving

and the pre-moving target unlike WTA model. However,

there is a drawback produced by the retinal filtering: From

140 to 320 [frame], the model could not rapidly respond

to a new movement or even shift the attention back to

the pre-attended movement. The attention distracted by the

upper right-hand distractor was anchored there until Target-2

approached it. It shows that the attention of WTA-R model

was too strongly stabilized by the retinal filtering. Note

that such uncertain attentional shift can happen even with

the deterministic algorithm because the movement of the

attentional point (i.e., the center for the retinal filtering)

causes relative change in the saliency.

Second, the results shown in Fig. 7 (c) to (e) demonstrate

less sensitivity of STC-C model with a smaller DC and

instability of it with a larger DC . Adjusting DC did not help

the model meet the contradictory requirements of stability

and sensitivity for attention. The reason is that the model

does not take into account the difference in the source for

the saliency (i.e., static or dynamic) but simply decreases

the transition probability to distant locations. The better per-

formance of STC-R model over STC-C model demonstrates

the advantage of combining the stochastic algorithm with the

retinal filtering.

V. EXPERIMENT II: NATURAL SCENE

The four models (i.e., the proposed model and the three

comparative ones) were applied to a pre-recorded video, in

which a person is demonstrating a cup-stacking task to his

infant [16]. Fig. 8 shows the results: (a) STC-R model, (b)

STC-C model (DC = 16.0), (c) WTA-R model, and (d) WTA
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(a) WTA model
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(b) WTA-R model
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(c) STC-C model (DC = 8.0)
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(d) STC-C model (DC = 16.0)
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x

y

(e) STC-C model (DC = 40.0)

Fig. 7. Transition of attention for comparative models

model. The parameters for STC-R/C model were the same as

in Experiment I. The green and the orange lines indicate the

attentional transition of the models recorded when the person

was moving the green cup into the blue one and when he

took a pause after it, respectively.2 He lifted up the green cup

to closely present it to his infant as just shown in the picture,

and then put it down into the blue one. After it, he took a

short pause by putting his right hand behind the yellow cup

in order to examine the attention of his infant.

First, comparing Fig. 8 (c) with (d), we can see the effect

of stabilized attention by the retinal filtering. WTA-R model

stably followed the movement of the person’s right hand

while he was handling the cup and then taking a pause.

The attention was not distracted, for example, by other cups

or the person’s face. Similarly, comparing Fig. 8 (a) with

2The rough transition of attention was caused by the low resolution of
the saliency map.
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(a) STC-R model (b) STC-C model (DC = 16.0)

(c) WTA-R model (d) WTA model

Fig. 8. Transition of attentional location in natural scene. The green and
the orange lines indicate the scan paths of the models when the person was
handling the green cup and then taking a pause, respectively.

(b) demonstrates the stabilization of attention by the retinal

filtering. Especially when the person took a pause (the orange

line), STC-R model kept attending to his right hand whereas

STC-C model did not, which indicates that STC-R model

can easily detect the following action. Next, the comparison

of Fig. 8 (a) with (c) allows us to examine the sensitivity of

attention achieved by the stochastic algorithm. The person’s

left hand pointing the blue cup was detected by STC-R model

(and also by STC-C and WTA models) but not by WTA-

R model. His pointing was indicating the goal position of

the green cup and therefore is relevant to the task. STC-R

model could direct attention to the pointing gesture because

its movement was large enough to be extracted after the

retinal filtering. These results suggest that combining the

stochastic algorithm with the retinal filtering enables robots

to meet both stability and sensitivity for attention required

in dynamic scene analysis.

VI. CONCLUSION AND DISCUSSION

This paper presented an architecture extending bottom-

up attention for dynamic scene analysis. When observing

actions, robots have to stably extract the relevant movement

by disregarding noises but still maintain sensitivity to a

new movement in the surroundings. The proposed model

fulfilled the contradictory requirements by retinal filtering

and stochastic attention selection inspired by human vision.

It is notable that using only dynamic features for saliency

computation, instead of applying retinal filtering and stochas-

tic attention selection, cannot cope with the problem. If

robots determine where to attend based only on the motion

signals, they would gaze at the demonstrator’s arms as often

as his hands because the arms are also involved in the

action. However, it is known that when watching an action,

people focus more on the hand than on the arm [17]. They

extract the trajectory of the hand and then reproduce it by

calculating the arm posture using their motor primitives. The

model proposed here imitates human attention: It extracts the

movement of the demonstrator’s hand by taking into account

the static features as well as the dynamic. Edge features

extracted from the fingers contributes to higher saliency for

the hand than for the arm, which might explain why humans

look at the hands. The model has also been evaluated with

respect to the capability to extract key actions from task

demonstrations [18]. Next steps are to apply the model to

various task learning and to test it on an embodied robot,

which produces dynamics by itself.

ACKNOWLEDGMENT

The author gratefully acknowledges the financial support

from Honda Research Institute Europe.

REFERENCES

[1] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual
attention for rapid scene analysis,” IEEE Trans. on Pattern Analysis

and Machine Intelligence, vol. 20, no. 11, pp. 1254–1259, 1998.
[2] L. Itti, N. Dhavale, and F. Pighin, “Realistic avatar eye and head

animation using a neurobiological model of visual attention,” in
Proc. of the SPIE 48th Annual Intl. Symp. on Optical Science and

Technology, vol. 5200, 2003.
[3] L. Aryananda, “Attending to learn and learning to attend for a social

robot,” in Proc. of the 2006 6th IEEE-RAS Intl. Conf. on Humanoid

Robots, 2006, pp. 618–623.
[4] C. Muhl and Y. Nagai, “Does disturbance discourage people from

communicating with a robot?” in Proc. of the 16th IEEE Intl. Symp. on

Robot and Human Interactive Communication, 2007, pp. 1137–1142.
[5] N. J. Butko, L. Zhang, G. W. Cottrell, and J. R. Movellan, “Visual

saliency model for robot cameras,” in Proc. of the 2008 IEEE

Intl. Conf. on Robotics and Automation, 2008, pp. 2398–2403.
[6] C. C. Kemp and A. Edsinger, “What can i control?: The development

of visual categories for a robot’s body and the world that it influences,”
in Proc. of the 5th Intl. Conf. on Development and Learning, 2006.

[7] M. Hikita, S. Fuke, M. Ogino, T. Minato, and M. Asada, “Visual atten-
tion by saliency leads cross-modal body representation,” in Proc. of

the 7th IEEE Intl. Conf. on Development and Learning, 2008, pp.
157–162.

[8] J. Ruesch, M. Lopes, A. Bernardino, J. Hoernstein, J. Santos-Victor,
and R. Pfeifer, “Multimodal saliency-based bottom-up attention: A
framework for the humanoid robot icub,” in Proc. of the 2008 IEEE

Intl. Conf. on Robotics and Automation, 2008, pp. 962–967.
[9] C. Breazeal and B. Scassellati, “A context-dependent attention system

for a social robot,” in Proc. of the 16th Intl. Joint Conf. on Artificial

Intelligence, 1999, pp. 1146–1153.
[10] J. Moren, A. Ude, A. Koene, and G. Cheng, “Biologically based top-

down attention modulation for humanoid interactions,” Intl. Jnl. of

Humanoid Robotics, vol. 5, no. 1, pp. 3–24, 2008.
[11] F. Shic and B. Scassellati, “A behavioral analysis of computational

models of visual attention,” Intl. Jnl. of Computer Vision, vol. 73,
no. 2, pp. 159–177, 2007.

[12] S. Coren, C. Porac, and L. M. Ward, Sensation and perception.
Orlando: Academic Press, 1984.

[13] D. Brockmann and T. Geisel, “The ecology of gaze shifts,” Neuro-

computing, vol. 32-33, pp. 643–650, 2000.
[14] G. Boccignone and M. Ferraro, “Modelling gaze shift as a constrained

random walk,” Physica A, vol. 331, no. 1, pp. 207–218, 2004.
[15] H. Martinez, M. Lungarella, and R. Pfeifer, “Stochastic extension of

the attention-selection system for the icub,” University of Zurich, Tech.
Rep., 2008.

[16] Y. Nagai and K. J. Rohlfing, “Computational analysis of motionese
toward scaffolding robot action learning,” IEEE Trans. on Autonomous

Mental Development, vol. 1, no. 1, pp. 44–54, 2009.
[17] M. J. Mataric and M. Pomplun, “Fixation behavior in observation

and imitation of human movement,” Cognitive Brain Research, vol. 7,
no. 2, pp. 191–202, 1998.

[18] Y. Nagai, “From bottom-up visual attention to robot action learning,”
in Proc. of the 8th IEEE Intl. Conf. on Development and Learning,
2009.

5203


