
  

  

Abstract—Within an intelligent building, it is expected to 
offer various intelligent services by recognizing residents along 
with their lifestyle and needs. One of the key issues for realizing 
the intelligent building is how to detect the locations of residents, 
so that it can provide the interactive services based on the 
identified need and requests. 

In this work, we develop a wireless pyroelectric sensory 
system embedded with traditional fire detector, which can be 
implanted on the ceiling. Both of wireless transmission model 
and pyroelectric sensor monitoring system can provide the 
rough information of residents’ location respectively. These 
data can be further improved by reducing the sensory 
uncertainty through covariance intersection (CI) data fusion 
method. Pyroelectric localization system suffers from multi 
target tracking and wireless pyroelectric sensor system works 
this issue. With the location obtained from wireless pyroelectric 
sensor system, intelligent building can offer suitable services. 

Keyword: Sensor network, pyroelectric sensor, data fusion, 
location recognition 

I. INTRODUCTION 
HE intelligent building as a way to provide convenient, 
comfortable, and safe residential environment [1][2]. The 

intelligent building can offer service for inhabitant such as 
HVAC (heating, ventilating and air conditioning) system, 
lighting, humidity control and so on.  

 The location information of pedestrian is important for 
these services. According to the record and recognize the 
living pattern of users, an intelligent building system can 
anticipate the users’ needs and provide appropriate services.  

 There are a lot of researches discuss the indoor 
localization systems[3],[4],[5], however, most of them suffer 
from multi target tracking or  expensive implementation cost.   

The researches Active Badges[6], Active Bats[7], and Easy 
Living [8], which use infrared sensors, ultrasonic sensors, and 
vision sensors, respectively. MotionStar[9] uses a DC 
magnetic tracker, and RADAR [10] uses wireless local area 
network for localization. Smart Floor[11] uses pressure 
sensors to measure proximity to a known set of points. 

Indoor localization systems can be classified according to 
the need of a terminal should be carried by pedestrian. For 
non-terminal localization methods such as Smart Floor can 
locate the pedestrian without carrying any devices 
Terminal-based methods such as Active Badges, which needs 
human carried a transceiver device or it is not possible to 
report the location of people without carrying these 
identification devices.  
 

 

 In this work, we propose an indoor surveillance system 
which replaces the traditional fire detector with pyroelectric 
human detector and low power wireless communication 
device. We also design a low power wireless device, which 
can replace the traditional badge/indentify card (ID card) 
which is wore on people. The fact is that pyroelectric sensor 
system provides the inaccurate position information, and 
wireless propagation model between the new ceiling 
implanted fire detector embedded with ZigBee and wireless 
ID card offers other imprecision location information. The 
obtained location information from pyroelectric sensor and 
wireless propagation model can use covariance intersection 
data fusion algorithm to generate a more reliable coordinate 
of residents, as shown in Fig. 1.  

 
Fig. 1 Architecture of Location Information Obtained from Pyroelectric and 

Wireless Propagation Model 
With such device implanted on the ceiling to replace the 

original fire detector, the multi target of residents’ location 
information can be obtained. According to the recognized 
position of people, the intelligent building system can provide 
appropriate services.  

This paper is organized as follow. Section II presents the 
architecture of our system. Section III describes the position 
information which obtained from radio propagation model. 
The pyroelectric location recognition system is discussed in 
section IV. Section V presents the covariance intersection 
algorithm. Section VI is our experimental results. Finally, 
summary and conclusion are presented in section VII. 

II. SYSTEM ARCHITECTURE 

A. Wireless Communication Platform 
Our low power wireless device uses CC2431 which 

produces by Texas Instrument. The CC2431 is a 
System-On-Chip (SOC) for wireless sensor networking 
ZigBee/IEEE 802.15.4 solutions. The chip includes a location 
detection hardware module that can be used in so-called blind 
nodes (i.e. nodes with unknown location) to receive signals 
from nodes with known location’s. Based on this the location 
engine calculates an estimate of a blind node’s position. The 
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CC2431 enables ZigBee nodes to be built with very low total 
costs. The CC2431 combines the performance of the leading 
CC2420 RF transceiver with an industry standard enhanced 
8051 microprocessor control unit (MCU), 128 KB flash 
memory, 8 KB RAM and many other features.  

The CC2431 is highly suited for systems where ultra low 
power consumption is required. This is achieved by various 
operating modes. Short transition times between these modes 
further ensure low power consumption. 

B. Pyroelectric Sensor Module 
According to the datasheet [12], the pyroelectric infrared 

(PIR) sensor has detection distance of maximum 10m and 
detection range of 110° in horizontal and 93° in vertical as Fig. 
2. The detection region of the PIR sensor is not continuous. 
Instead, it is divided into several detection zones as shown in 
Fig. 3. Detection zone is a small region within the whole 
detection region of the PIR sensor. Objects would not be 
detected by the PIR sensor if they are not in the detection zone 
although they are in the detection region. Fig. 3 is a 
cross-sectional view of detection zones.  

 
Fig. 2 Horizontal and vertical view of detection zones of the PIR sensor 

according the datasheet. 
As we can see in those figures about detection zones, there 

is a possibility that the PIR sensor cannot detect human within 
detection region because detection zones are spatially 
distributed in the region. In our lab test, this sensor is quite 
sensitive even human stay still in the detection region are also 
can be detected.  

 
Fig. 3  X-Y cross-sectional view of detection zones of the PIR sensor 

according the datasheet. 

C. Wireless Pyroelectric Sensor System 
In this work, we use the radio frequency and wireless 

pyroelectric sensor localization system. We develop this 
sensor system with CC2431 and Panasonic motion sensor. 
The algorithms can be installed into flash memory of 
CC2431. 

Fig. 4 The experimental platform integrated with CC2431 and pyroelectric 
sensor 

D. Identification Card System 
Monitoring people in the indoor environment, a wireless 

transmission device is required for our wireless pyroelectric 
sensor system. With this device, the location information can 
be obtained through radio frequency propagation model and 
triangulation method. The identification card in our system is 
a simple ZigBee/IEEE 802.15.4 transceiver. The ZigBee 
protocol can provide unique ID for each device in the same 
ZigBee environment and can be used to tracking multi 
targets.  

 

(a) (b) 
Fig. 5  (a) Identification card (b) wear on human   

III. RADIO FREQUENCY SIGNAL 

A. Radio Received Signal Strength Model 
Consider the static environment first, as shown in Fig. 6, 

where two sensor nodes are mounted on the ceiling with d 
distance apart and h height from ground. As the dynamic 
environment, as shown in Fig. 7, one moving object passes 
through the surveillance environment.   

In an indoor static environment, there are two main radio 
propagation paths between the transmitter and the receiver 
besides the multi-path reflections of the surroundings. One is 
the direct transmission path and the other is the ground 
reflection path as illustrated in Fig. 6. For the direct line of 
sight propagation path, according to the free space model, the 
power received by the receiver is given by the Friis free space 
equation (1) as 
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Fig. 6 Static environment  

 P୰ ൌ P౪G౪G౨஛మሺସ஠ሻమୢమ                    (1) 
Where Pt is the transmitted power in watts, Pr is the 

received power in watts, Gt is the transmitter antenna gain, Gr 
is the receiver antenna gain, d is the distance from transmitter 
to receiver and  λ is the wavelength in meters. 
 

 
Fig. 7 Dynamic environment  

For the ground reflection path, the power received by the 
receiver can be expressed as P୰୥ ൌ P౪G౪G౨஛మሺସ஠ሻమሺୢమାସ୦మሻ                  (2) 
 Assume that the intensity magnitudes of the direct 
transmission path and the ground reflection path are Ed and Eg 
respectively.  Eother is the intensity magnitude of other radio 
propagation paths, such as the reflections or diffractions of 
the surroundings. The total received power by the receiver 
Ptotal in the indoor static environment is expressed below. P୲୭୲ୟ୪ ן  ห  Eୢ ൅ E୥ ൅ E୭୲୦ୣ୰  หଶ

            (3) 
This value is almost stable in a static environment although 

noise does exist.  
When a pedestrian comes into this static environment, the 

moving target will scatter the incident radio signal in various 
directions as illustrated in Fig. 7. According to radio equation 
[15], the received power influenced by the moving target is 
 P୲ୟ୰୥ୣ୲ ൌ P౪G౪G౨஛మ஢ሺସ஠ሻయሺ୰భమ୰మమሻ              (4) 

where D1 is the distance from the transmitter to the target, 
D2 is the distance from the target to the receiver, and σ is the 
radar cross section of the target object. The radar cross section 
σ is defined as the ratio of scattered to incident power density. 
According to scattering theory [14], in the dynamic 
environment, Ed, Eg and Eother will remain the same. The total 
power received by the receiver is the sum of incident and 
scatted waves as shown below P ן ห  Eୢ ൅ E୥ ൅ E୭୲୦ୣ୰ ൅ E୭ୠ୨  หଶ

          (5) 
where Eobj is the intensity of scatted radio wave caused by 

the moving target. 

B. Triangulation Method 
Triangulation algorithms are generally used for 

determining the absolute positions, especially localization 
problems. Triangulation is the process to find absolute 
coordinates and distances between ZigBee devices. 

 
Fig. 8 Basic triangulation method 

IV. PYROELECTRIC SENSOR LOCALIZATION ALGORITHM 
In order to determine the location of pedestrians within the 

indoor environment, the PIR sensors are used as shown in Fig. 
9. In this figure, the sensing area of each PIR sensor is shown 
as a circle, and some area will have overlap of sensing areas. 

The PIR sensors are installed on ceiling, the coordinates of 
sensors are known. The overlap regions can be calculated 
from the specification of PIR sensors. When a pedestrian 
enters the sensing region, the PIR system will collect all 
sensing information of the PIR sensors and then decide the 
location of target. For example, a pedestrian enter the PIR 
sensing system, as Fig. 9, only sensor B reported “ON” and 
sensors A,C reported “OFF” signal. After collecting all 
information, the system can locate the target in sensing area 
B. 

If only one sensor reports “ON”, the pedestrian will be 
reported at center of the corresponding sensor as the point 1 in 
Fig. 9.  If two adjacent sensors reports “ON”, the coordinate 
of pedestrian is considered as the center of overlap region 
such as point 2 in Fig. 9. If three or more sensors report “ON”, 
the pedestrian is located at the centroid of the overlap region 
of the corresponding sensors.  
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intelligent building can facilitate appropriate services for 
people. 
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