
 

 

 

  

Abstract— Usually, the identification of the dynamic 

parameters of robot makes use of the inverse dynamic model 

which is linear with respect to the parameters. This model is 

sampled while the robot is tracking exciting trajectories. This 

allows using linear least squares (LS) techniques to estimate the 

parameters. The efficiency of this method has been proved 

through experimental identifications of a lot of prototypes and 

industrial robots. However, it is known that LS estimators are 

sensitive to outliers and leverage points. Thus, it may be helpful 

to verify their reliability. This is possible by using robust 

regressions and residual analysis. Then, we compare the results 

with those obtained with classical LS regression. This paper 

deals with this issue and introduces the experimental 

identification and residual analysis of an one degree of freedom 

(DOF) haptic interface using the Huber’s estimator. To verify 

the pertinence of our analyses, this comparison is also 

performed on a medical interface consisting of a complex 

mechanical structure. 

I. INTRODUCTION 

HE usual identification method based on the inverse 

model and LS technique has been successfully applied 

to identify inertial and friction parameters of a lot prototypes 

and industrial robots [1]-[13] among others. The obtained 

results were interesting and consistent. At any case, a 

derivative pass band data filtering is required to calculate the 

joint velocities and accelerations. In addition, LS estimators 

are sensitive to outliers and leverage points [14]-[19]. 

To avoid the calculation of joint velocities and 

accelerations, we can use the Simple Refined Instrumental 

Variable (SRIV) Method [21]-[23] or the Direct and Inverse 

Dynamic Identification Model (DIDIM) method [24]. As 

these techniques are consistent at any case and practically 

unbiased, the control law applied to the robot must be known 

to use them correctly. 

In 1972, Huber purposes a category of estimators 

generalizing the maximum likelihood estimators called the 

M-estimators. These estimators decrease the influence of 

outliers and they are close to LS estimators when the error 

distribution is Gaussian [15]. Holland and Welsch have 

proposed an algorithm based on iteratively re-weighted least 
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squares (IRLS) which is numerically stable [17]. Hence, one 

can verify the reliability of LS regressions by comparing 

their results with those given by the Huber’s estimator. An 

analysis of residuals is also performed. 

This paper introduces the identification of a single DOF 

interface with LS regression and the Huber’s estimator. 

These results are supported by those obtained on a 3 DOF 

medical interface. 

 

The paper is organized as follows: second section reviews 

the usual method in robotics; the third section presents the 

Huber’s estimator and the algorithm of Holland and Welsch; 

the experimental validation performed on a 1 DOF robot is 

presented in section 4. 

II. INVERSE DYNAMIC IDENTIFICATION MODEL METHOD 

The inverse dynamic model (ID) of a rigid robot 

composed of n moving links calculates the motor torque 

vector Γ (the control input) as a function of the generalized 

coordinates (the state vector and it is derivative). It can be 

written as the following relation which explicitly depends on 

the joint acceleration: 

) ,( +  )(= qqNqqM &&&Γ  (1) 

Where q, q& and q&&  are respectively the (nx1) vectors of 

generalized joint positions, velocities and accelerations, 

M(q) is the (nxn) robot inertia matrix and ) ,( qqN &  is the 

(nx1) vector of centrifugal, Coriolis, gravitational and 

friction torques. 

The choice of modified Denavit and Hartenberg frames 

attached to each link allows to obtain a dynamic model 

linear in relation to a set of standard dynamic parameters χS 

[9]-[10] : 

( ) Sχq,qq,DS
&&&=Γ  (2) 

Where ( )q,qq,DS
&&&  is the regressor and χS is the vector of the 

standard parameters which are the coefficients XXj, XYj, 

XZj, YYj, YZj, ZZj of the inertia tensor of link j denoted 
j
Jj, 

the mass of the link j called mj, the first moments vector of 

link j around the origin of frame j denoted 
j
Mj = [MXj MYj 
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MZj]
T
, the friction coefficients fVj, fCj and the actuator inertia 

called Iaj and the offset of current measurement denoted 

offset. 

The base parameters are the minimum number of 

mechanical parameters from which the dynamic model can 

be calculated. They are calculated from the standard inertial 

parameters. The minimal inverse dynamic model can be 

written as: 

( )χq,qq,D &&&=Γ  (3) 

Where ( )q,qq,D &&&  is the minimal regressor and χ is the vector 

of the base parameters. 

The inverse dynamic model (2) is sampled while the robot 

is tracking a trajectory to gat an over-determined linear such 

that [9]: 

( ) ( ) ρχq,qq,WY +=Γ &&&  (4) 

With, Y(Γ) being the measurements vector, W the 

observation matrix and  ρρρρ the vector of errors. 

 

The L.S. solution χ̂  minimizes the 2-norm of the vector 

of errors ρρρρ. W is a r×b full rank and well conditioned matrix 

where r=Nexn, Ne being the number of samples, obtained by 

tracking “exciting” trajectories and by considering the base 

parameters. The LS solution χ̂ is given by: 

( ) YWYWWWχ
T1T +−

=





=ˆ  (5) 

It is calculated using the QR factorization of W. Standard 

deviations 
iχ̂

σ  are estimated using classical and simple 

results from statistics. The matrix W is supposed 

deterministic, and ρ, a zero-mean additive independent 

noise, with a standard deviation such as: 

Cρρ=E(ρρΤ)= 2
ρσ Ir (6) 

where E is the expectation operator and Ir, the r×r identity 

matrix. An unbiased estimation of ρσ  is: 

2
ρσ̂ =||Y-W χ̂ ||/(r-b) (7) 

The covariance matrix of the standard deviation is calculated 

as follows: 

χχC ˆˆ =E[(χ - χ̂ )(χ- χ̂ )
T
]=

2
ρσ (W

T
W)

-1
 (8) 

iiχ̂χ̂
2
iχ̂ Cσ =  is the i

th
 diagonal coefficient of χ̂χ̂C . The relative 

standard deviation 
riχ̂

%σ is given by: 

i
i
χ̂χ̂ χ̂σ100%σ

ri
=  (9) 

However, in practice, W is not deterministic. This 

problem can be solved by filtering the measurement matrix 

Y and the columns of the observation matrix W as described 

in [9],[10] and [12]. 

 

The use of LS is particularly interesting because no 

integration of the differential equations is required and there 

is no need of initial conditions. However, the calculation of 

the velocities and accelerations are required using well tuned 

band pass filtering of the joint position [9] and [12]. 

III. HUBER’S ESTIMATOR 

 

The Huber’s estimator of X is given by the following 

equation: 

( )∑
=

−
r

1i

iiyfMin X
X

l  (10) 

Where f is a convex continuous and derivable function, yi is 

the i
th

 sample of Y and ℓi being the i
th

 line of W (that is Wi,:). 

 

In 1964, Huber defined a function keeping the same 

properties of the LS estimators for small errors and those of 

the L1 (least absolute value) estimators for large errors [14]. 

ψ(.) being the derivative function of f(.), called also score 

function, H being a scalar fixed by the user, the Huber’s 

function is defined by: 

ψH(t) = Min(H,Max(-H,t))  (11) 

Generally, H varies from 1 up to 1,8. The most common 

choice consists in fixing H at 1,345 [14]. 

 

However, these functions do not respect the invariance 

property when the errors are multiplied with a scalar α. 

Hence, Huber modifies (10) by introducing a dispersion 

measurement of errors denoted d. So, (10) is substituted by 

(12): 

( ) [ ]( )∑
=

−=
r

1i

iiH /dyρd,QMin XX l  (12) 

As d is unknown, d and X are estimated simultaneously. 

They are the solutions of the following problem: 

( ) ( )[ ] 0X
X

X
=−=

∂

∂
∑

=

r

1i

T
iiiH /dyψ

d,Q
ll  (13.a) 

( ) ( ) ( )[ ] 0XX
X

=−−







−=

∂

∂
∑

=

r

1i

iiHii2
/dyψy

d

1

d

d,Q
ll (13.b) 

However, this algorithm is not easy to solve and can exhibit 

some problems of convergence [16]. 

 

An interesting algorithm was purposed by Holland and 

Welsch which is based on the weighted least squares (WLS). 

Minimize a WLS criterion turns to solve: 

( ) ( )( )∑
=

−=
r

1i

2
iii y.wd,QMin XX l  (14) 

Where wi(.) is a weight function defined by ψ(ρ)/ρ. If an 
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estimation of d noted d̂  is known, it is sufficient to solve: 

( )( ) 0yd̂,,yw

r

1i

T
iiiii =−∑

=

ll XX  (15) 

 

The weight function wi(.) gives a weight wi close to zero for 

outliers and gives a weight wi close to one for inliers. If we 

choose the function wi(.) given by (16) then (15) verifies 

(17). Hence, we retrieve the Huber’s criteria given by (13.a) 

( ) ( )( )
( ) d̂/y

d̂/yψ
d̂,,yw

ii

iiH
ii

X

X
X

l

l

−

−
=  (16) 

( )[ ] 0X =−∑
=

r

1i

T
iiiH d̂/yψ ll  (17) 

This reasoning is based on the fact that we have an 

estimation of d. The most common robust estimator of 

dispersions used is defined by (18): 

( ) ( )

6745,0

yMedyMed

d̂
ii

i
ii

i
XX ll −−−

=  (18) 

Holland and Welsch show that we can estimate d and X 

simultaneously. We start with an initial estimation of X 

(obtained with the LS estimator for example), then d is 

estimated with (18), next we compute the wi with (16) and X 

is estimated once again with (15) until the convergence [17]. 

 

Finally, the covariance matrix of the solution X solution of 

(17) will be: 

( )

( )













−
−

=














=

∑

∑

=

−

=

r

1i

2

iii
2
w

1
r

1i

i
T
ii

2
w

y(.)w
br

1
σ

(.)wσˆVar

X

X

l

ll

 (19) 

This algorithm is the iteratively re-weighted least squares 

technique (IRLS). It decreases the influence of outliers 

automatically, is easy to implement, has good numerical 

stability and does not exhibit some problems of convergence 

compared with (13.a) and (13.b). 

IV. APPLICATIONS 

A. Modeling of the one DOF system 

In this section, the dynamic model of the one DOF haptic 

device is briefly recalled. More details about its modeling 

can be found in [20]. 

The interface to be identified is presented Fig. 1. It consists 

of synchronous machine and a handle actuated by means of 

a cable transmission. The modeling and the identification are 

made under the rigid model assumption. Hence, the inverse 

dynamic model is given by (20): 

)qsign(fqfgsin(q)MYgcos(q)MXqZZΓ c1v1111
&&&& +++−=

 (20) 

Where q , q& and q&& are respectively the joint position velocity 

and acceleration. The torque Γ is calculated through the 

current measurement, that is, Γ=NKTI, where N is the gear 

ratio, KT the torque constant and I the measured current. 

The dynamic model can be thus written as a sampled linear 

form: 

Γ = W X + ρ (21) 

















−

−

=

)qsign(q)gsin(q)gcos(qq

)qsign(q)gsin(q)gcos(qq

rrrrr

11111

&&&&

MMMMM

&&&&

W ,

















Γ

Γ

=

r

1

MY  

and [ ]Tc1v1111 ffMYMXZZ=X . 

Hence, we have: 

[ ])qsign(q)gsin(q)gcos(qq iiiiii
&&&&l −= , yi = Γi. 

 

 
Fig. 1. Haptic device to be identified 

 

B. Data acquisition and LS estimation 

For all experimental identifications, current I and joint 

position q are measured, with a sampling period of 240µs. 

Vectors q&  and q&&  are derived from the position vector q, and 

all data are filtered. The cut-off frequencies of the lowpass 

Butterworth filter and of the decimate filter are close to 

20Hz. Because of the friction model, the velocities close to 

zero are eliminated. 

The values identified with the LS estimator are given 

Table 1. They are close to their nominal values. 

 
TABLE 1: NOMINAL VALUES AND IDENTIFIED VALUES WITH THE LS 

ESTIMATOR 

Mechanical 

parameters 

Nominal 

values 

Estimated 

values 

Relative 

deviation 

ZZ1 1.45 10-3 Kgm2 1.45 10-3 Kgm2 0.5 % 

MX1 2.40 10-3Kgm 2.40 10-3Kgm 5.0 % 

MY1 0.0 Kgm 1.0 Kgm 8.7 % 

fv1 1.50 10-3Nm/rad/s 1.45 10-3Nm/rad/s 2.6 % 

fc1 67.00 10-3 Nm 66.00 10-3 Nm 0.8 % 

 σρ = 0.01 Nm   

 

In Fig. 2, the histogram of the residual vector and its 

estimated Gaussian are plotted. This shows clearly that the 

statistical assumptions made on ρ are practically not 
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violated. Indeed, the residuals distribution is very close to a 

Gaussian distribution. In addition, they are few outliers, that 

is, points being outside of the confidence interval [-3σρ 3σρ].  
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Fig. 2. Histogram of the residual torque when the data filtering is adapted 

 

In this case, the identified values are close to their nominal 

values and the distribution of residuals tends to a Gaussian 

one. So, we can suppose that the LS estimator is consistent. 

Now, we use robust regression to confirm that. 

 

C. Experimental identification of the one system with the 

Huber’s estimator 

At present the Huber’s estimator with the algorithm of 

Holland and Welsch is used. The initial values are those 

identified with the LS estimator. The results are summed up 

in Table 2. 

 
TABLE 2: IDENTIFIED VALUES WITH THE ALGORITHM OF HOLLAND AND 

WELSCH 

Mechanical 

parameters 

Estimated 

values 

Relative 

deviation 

ZZ1 1.45 10
-3

 Kgm
2
 0.3 % 

MX1 2.40 10
-3

Kgm 1.9 % 

MY1 1.00 10
-3

Kgm 6.8 % 

fv1 1.60 10
-3

Nm/rad/s 3.4 % 

fc1 66.00 10
-3

 Nm 0.6 % 

 σw = 0 .01 Nm  

 

The identified values are very close to their nominal 

values. They equal the values identified with the LS 

regression. The algorithm converges after only 3 steps. 

 

The Huber’s weight function is illustrated Fig. 3. For small 

errors, the estimator acts as the LS estimator (weights equal 

1), and for large errors, it acts like the L1 estimator (weights 

decreasing in 1/ρ). 

A residuals analysis was also performed. The histogram of 

residuals was plotted and we retrieve exactly the same 

exposed in Fig. 2. In addition, we have σρ = σw. 

 

In this case, the distribution of residuals is close to a 

Gaussian one and the identified values are very close to 

those identified with the LS estimator while the Huber’s 

estimator is reputed to be more robust than classical LS 

estimator. That simply means that, when everything is 

alright, then the LS estimator gives consistent results. 

 

 

 
Fig. 3. Huber’s weight function 

 

We have tested the Huber’s estimator with different values 

of H. When H tends to infinity, the Huber’s estimator tends 

to the classical LS estimator. Hence, we retrieve the values 

and their relative deviations exposed Table 2. When, H tends 

to zero, the Huber’s estimator tends to the L1 estimator. The 

identified values are close to their initial values. The 

variations observed are less than 2%. 

 

D. Robustness to data filtering 

In this section, we analyze the robustness of the LS 

estimator and Huber’s estimator to a bad data filtering. The 

data filtering is a key point of the identification process 

because it takes place when the robot is controlled by 

feedback. Thus, W is correlated with ρ and the LS estimator 

could be biased. A well designed data filtering can remove 

this problem. However, as shown in [22], when the data is 

not adapted the LS estimator is not consistent. It may be 

helpful to detect this trouble by using robust regressions and 

residuals analysis. 

 

For all experiments, the cut-off frequency of the filters is 

tuned at 200Hz. In this case, the data filtering is not adapted. 

The LS identified values are summed up in Table 3. One 

notes that they are far from their nominal values. 

 
TABLE 3: IDENTIFIED VALUES WITH THE LS ALGORITHM WHILE THE CUT OFF 

FREQUENCY OF FILTERS IS TUNED AT 200HZ 

Mechanical 

parameters 

Estimated 

values 

Relative 

deviation 

ZZ1 0.86 10
-3

 Kgm
2
 0.10 % 

MX1 6.80 10
-3

Kgm 0.45 % 

MY1 -5.00 10
-3

Kgm 2.50 % 

fv1 1.56 10
-3

Nm/rad/s 3.50 % 

fc1 6.56 10
-2

 Nm 0.40 % 

 σρ = 0.039 Nm  
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In Fig. 4, the histogram of residuals and its estimated 

Gaussian are plotted. In this case, the estimation does not 

match the “measurement”. Furthermore, outliers appear and 

their quantity tends to be not negligible. This is shown with 

the evolution of error plotted in Fig. 5. In this case, we can 

suspect that the LS estimator is biased. 
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Fig. 4. Histogram of the residual torque when the data filtering is not 

adapted 
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Fig. 5. Evolution of residual and estimated deviation 

 

The Huber’s estimator is initialized with the values 

identified with the LS estimator summed up in Table 3. 

These values are not compatible with their nominal values. 

So, the Huber’s estimator is badly initialized. 

The optimization converges after 5 iterations and the 

results are given Table 4. Although these values are quite far 

from their nominal values, the Huber’s estimator can 

eliminate some outliers. However, because of the high 

corruption of the noise modeling resulting from a bad data 

filtering, it tends to be very difficult to distinguish outliers 

from inliers. 

Hence, we try to identify the mechanical parameters by 

changing H. Indeed, if we decrease H, then one supposes 

that noise modeling is increasingly corrupted. 

As an example, the results, obtained when H equals 0.2, 

are summed up in Table 5. 

 

TABLE 4: IDENTIFIED VALUES WITH THE ALGORITHM OF HOLLAND AND 

WELSCH WHILE THE CUT OFF FREQUENCY OF FILTERS IS TUNED AT 200HZ 

Mechanical 

parameters 

Estimated 

values 

Relative 

deviation 

ZZ1 1.07 10
-3

 Kgm
2
 0.15 % 

MX1 5.29 10
-3

Kgm 0.50 % 

MY1 -3.00 10
-3

Kgm 1.43 % 

fv1 1.72 10
-3

Nm/rad/s 1.15 % 

fc1 6.56 10
-2

 Nm 0.25 % 

 σw = 0.029 Nm  

 
TABLE 5: IDENTIFIED VALUES WITH THE ALGORITHM OF HOLLAND AND 

WELSCH, THE CUT OFF FREQUENCY OF FILTERS IS TUNED AT 200HZ AND H = 

0,20. 

Mechanical 

parameters 

Estimated 

values 

Relative 

deviation 

ZZ1 1.07 10
-3

 Kgm
2
 0.10 % 

MX1 5.29 10
-3

Kgm 0.30 % 

MY1 -3.00 10
-3

Kgm 1.13 % 

fv1 1.72 10
-3

Nm/rad/s 0.65 % 

fc1 6.56 10
-2

 Nm 0.15 % 

 σw = 0.029 Nm  

 

Once again, the identified values are not really compatible 

with their nominal values. This illustrates one important 

result from robust statistics: the M-estimators can eliminate 

outliers from the measurement vector but not outliers from 

the observation matrix. They can not eliminate the bias. 

When data filtering is not adapted, the observation is 

strongly noisy because of the joint accelerations calculation. 

 

However, we can use robust regressions to check the 

reliability of the LS estimators by calculating relative 

variations between LS and Huber identified values. These 

relative variations are given by (22): 

 

j
LS

j
Huber

j
LSj

X

XX
100)%e(X

−
=  (22) 

 
TABLE 6: RELATIVE VARIATIONS 

 Relative variations 

%e(ZZ1) 25% 

%e(MX1) 23% 

%e(MY1) 38% 

%e(fv1) 11% 

%e(fc1) < 1% 

%e(σ) 34% 

 

Compared with the previous experimental results, strong 

and unacceptable variations occur. This means that the LS 

identified values do not match with those identified with the 

Huber’s estimator. Hence, we can suspect that the LS 

estimator is biased. 

 

E. Extension to multi DOF systems 

The CEA LIST has recently developed a 6DOF high 

fidelity haptic device for telesurgery. As serial robots are 
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quite complex to actuate while fully parallel robots exhibit a 

limited workspace, this device makes use of a redundant 

hybrid architecture composed of two 3 DOFs branches 

connected via a platform supporting a motorized handle, 

having thus a total of 7 motors. Each branch is composed of 

a shoulder (link 1), an arm (link 2) and a forearm (link 3) 

actuated by a parallelogram loop (link 5 and 6). To provide a 

constant orientation between the support of the handle (link 

4) and the shoulder, a double parallelogram loop is used 

(Fig. 6). The complete modeling of the branches can be 

found in [13]. 

 

 
Fig. 6. CEA LIST high fidelity haptic interface. Description of the upper 

branch 

 

The analysis described in the previous subsection was also 

applied on the medical interface described above. We 

retrieve the same results obtained with the one DOF system. 

When the data filtering is well designed, the LS estimator 

gives reliable results because no relative variations with the 

Huber’s estimator are observed. Otherwise, strong variations 

occur. This checking may be helpful in practice. 

V. CONCLUSION 

In this paper, the Huber’s estimator with the algorithm of 

Holland and Welsh was applied to identify mechanical 

parameters of robots. A residual analysis was also designed 

and applied. Adding both, one can check the reliability of 

the LS estimator. 

The results obtained on the one DOF interface were 

detailed for a better clarity but they were supported by those 

obtained on a 3 DOF medical interface. 

When the identification protocol is well designed, the LS 

estimation is consistent. Indeed, experiments have showed 

that the residuals tend to a Gaussian distribution and no 

variations are observed with the Huber’s estimation. 

However, if something goes wrong, such as the data 

filtering, then strong and unacceptable variations occur and 

the residuals are not Gaussian. So, robust regressions and 

residuals analysis can be used to verify the reliability of the 

LS regressions. In addition, these robust regressions and 

analyses are easy to use and implement. Unfortunately, these 

robust regressions cannot eliminate the bias, we can only 

detect it. 
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