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Abstract— This paper addresses the problem of tracking a
planar region of the scene using an uncalibrated omnidirec-
tional camera. Omnidirectional cameras are a popular choice
of visual sensors in robotics because the large field of view is
well adapted to motion estimation and obstacle avoidance. The
novelty of this work resides in simplifying the calibration phase
by providing a direct approach to tracking without any prior
knowledge of the camera, lens or mirror parameters. We deal
with a nonlinear optimization problem that can be solved for
small displacements between two images like those acquired
at video rate by a camera mounted on a robot. In order to

assess the performance of the proposed method, we perform
experiments with synthetic and real data.

I. INTRODUCTION

Omnidirectional cameras are important in areas where

large visual field coverage is needed, such as motion es-

timation and obstacle avoidance [13], [3]. However their

practical use is often burdened by the calibration phase that

can be time consuming and require an experienced user.

The motivation for this work is thus to simplify this phase

by providing a direct approach to tracking a planar region

without any prior knowledge of the camera, lens or mirror

parameters.

Visual tracking methods can be classified in two main

groups: feature-based methods and direct approaches. In

the first case, local features such as points, line segments,

edges or contours are tracked across the sequence. By using

adequate descriptors and extractors (such as SIFT) combined

with robust computation using for example RANSAC, wide

baseline uncalibrated omnidirectional structure from motion

is possible. Successful approaches have been demonstrated

by extending the concept of fundamental matrix leading

to poly-eigenvalue problems that can be solved efficiently

[5], [12]. These approaches however require specialized

image processing tools due to the anisotropic resolution

of paracatadioptric cameras. The second group of methods

minimises a cost function based on the image data directly.

The approach studied in this article uses gradient descent

to minimise the sum of squared differences of the image

intensities as in [8], [7], [4], [1], [10]. It assumes small inter-

frame motion such as what is typically produced by a 30Hz

camera mounted on a mobile robot. The advantages of this
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technique compared to feature-based methods are the sub-

pixel accuracy and the high frame-rate. The disadvantages

come from the assumption on small inter-frame motion that

makes it unable to cope with rapid motion. In [10], the au-

thors proposed a direct method for tracking piecewise planar

objects with a central catadioptric camera. They extended the

standard notion of homography to omnidirectional cameras

using the unified projection model on the sphere. One of

the limitations of this work was the need for a precisely

calibrated omnidirectional sensor.

The aim of this article is to show how this assumption can

be lifted paving the way for a direct approach to uncalibrated

structure from motion. The proposed approach minimises the

sum of squared differences (SSD) between a region in a

reference image and a warped region of the current image.

We deal with a nonlinear optimization problem that can be

solved for small displacements between two images acquired

by a camera mounted on a robot. In order to solve the least-

squares optimization problem we apply the efficient second-

order minimization method (ESM) [9]. Experimental results

show that, unlike previous work, our method is able to track

planar objects with an uncalibrated catadioptric camera and

thus can be helpful in robotic applications where camera

calibration is impossible or hard to obtain.

The paper is organized as follows. In Section II we describe

the projection model. The main contribution in this paper,

uncalibrated visual tracking, is described in Section III. The

experimental results are shown in Section IV. Finally, Section

V concludes the paper and presents ideas for future work.

II. THEORETICAL BACKGROUND

A. Projection Model

This section describes the projection model and defines

the calibration parameters. We followed the model proposed

in [11] that is a slightly modified version of the projection

model of Geyer [6] and Barreto [2]. We assume the camera

and mirror to be a single imaging device and use a general-

ized focal length that is a product between the camera focal

length and a parameter that defines the shape of the mirror.

The projection of a 3D point into the image can be modeled

as follows.

Let m be a 3D point having Cartesian coordinates m =
(X, Y, Z)⊤ in the camera frame Cm. The point is projected

onto the point s = (Xs, Ys, Zs)
⊤ on the unit sphere S

centered at the origin: s = m
‖m‖ . The point on the sphere is

then projected from a point at a distance ξ from the origin of

the sphere. ξ depends on the mirror parameters as described
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in Table I. Let q = (qu, qv)⊤ be the new point after this

projection: q = h(ξ, s) =
(

Xs

Zs−ξ
, Ys

Zs−ξ

)⊤

TABLE I

MIRROR PARAMETER

ξ Mirror type

1 Parabolic

>0 and <1 Hyperbolic, elliptic, conical or spherical

0 Planar

>1 Fish eye

<0 No mirror

Finally, we obtain the coordinates (u, v) of an image

point p = k(γ,q) =




ku 0 u0

0 kv v0

0 0 1


 q.

ku and kv represent the generalized focal length and

(u0, v0) is the principal point (in pixels). γ contains the

camera intrinsic parameters.

From a point p measured in the image, it is possible to lift

it to the unit sphere. The first step is to apply the inverse

projection induced by k. We then obtain a point on the

normalized plane q = k−1(γ,p). The second step projects

this on the unit sphere using the inverse function proposed

by Barreto [2]: s = h−1(ξ,q) = (α qu, α qv, α + ξ)⊤ with

α = − ξ+
√

1+(1−ξ2)(q2
u
+q2

v
)

q2
u
+q2

v
+1

B. Motion Model

If we suppose that the camera observes a planar object

in the scene, the displacement of a point on the sphere can

be represented by a homography. The homography contains

the 3× 3 rotation matrix R of the camera and its translation

vector t. Figure 1 illustrates the transformation induced by

a planar homography using the spherical projection model.

Two planar points are related by a homography H by X′ =
HX, so the projection of points s and s′, belonging to a

planar region of the scene, on the sphere are related by ρ′s′ =
ρHs. The standard planar homography matrix H is defined

up to a scale factor: H ∼ R + tn∗⊤
d , where n∗

d = n∗/d∗ is

the ratio between the normal vector to the plane n∗ (a unit

vector) and the distance d∗ of the plane to the origin of the

reference frame.

C. Warping

Warping will be for us a function that allows to find

the coordinates of reference image points in the current

image (See Figure 1). We will denote by w the warping

function which depends on the homography and the sensor

parameters:

w : SL(3)× R× R
6 × R

2 → P
2

(H, ξ, γ,p) →p
′

= w (H, ξ, γ,p)

The steps of warping function include basically three

transformations: 1) The transformation between the image

plane and the unit sphere, 2) The transformation between

spheres and 3) The transformation between the unit

sphere and the image plane. Figure 1 depicts the three

Fig. 1. Motion model. Transformation induced by a planar homography
using the spherical projection model. The points s and s′ are related by
ρ′s′ = ρHs.

transformations.

Let c(ξ, γ, s′) = k(γ,h(ξ, s′)) be the transformation

between the sphere and the image plane:

c : R× R
4 × S

2 −→ P
2

(ξ, γ, s′) −→ p = c(ξ, γ, s′)

This transformation uses h(ξ, s) and k(γ,q) to project

a point from the unit sphere to the image. The inverse of

this transformation applies the inverse projection induced by

k−1(γ,p) and h−1(ξ,q) to lift a point from the image to

the unit sphere.

For the transformation between spheres let Ψ(H, s) =
Hs

‖Hs‖ be the function that transforms the points s and s′

between the spheres:

Ψ : SL(3)× S
2 −→ S

2

(H, s) −→ s′ = Ψ(H, s)

If theses expressions are combining, the warping function

can be written as:

w(H, ξ, γ,p) = c(ξ, γ,Ψ(H, c−1(ξ, γ,p))) (1)

This warping expression will be higly usefull in the rest

of paper.

III. UNCALIBRATED VISUAL TRACKING

The tracking problem will essentially be considered as an

image registration problem which will be related directly to

the grey-level brightness measurements in the catadioptric

images via the non-linear model presented in section II which

accounts for the model formation of the image. Since our

final objective is to track a plane in catadioptric images an

image reference of that plane is considered.

Let I be the reference image. We will call reference template,

a region of size R (rows × columns) of I corresponding to

the projection of a 3D planar region of the scene. To track the
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reference template in the current image I
′

, we look for a set

of parameters including the mirror parameter ξ, the camera

intrinsic parameters γ and the transformation H such that

current image will be aligned with the reference template.

I ′ (w (H, ξ, γ,p)) = I(p) (2)

These parameters needn’t be unique. For example, in the

perspective case, two views are not sufficient to estimate the

camera intrinsic parameters. Our aim in this article is not to

recover the true parameters but to align the image regions.

Once we have an approximation Ĥ of the transformation H

and an approximation ξ̂ and γ̂ of the intrinsic parameters ξ
and γ, the problem is to find the incremental transformation

of H, ξ, and γ, that minimize the sum of square differences

over all the pixels of the cost function:

1

2

∑

p∈R

‖I ′

(
w

(
ĤH, ξ̂ + ξ, γ̂ + γ,pi

))
− I(pi)‖2 (3)

The homography and intrinsic parameters of the imaging

device are then updated as follows:

Ĥ ← ĤH

ξ̂ ← ξ̂ + ξ
γ̂ ← γ̂ + γ

(4)

Similarly to [10] the incremental homography H ∈ SL(3)
and the intrinsic parameters updated are parametrized with

local coordinates of the Lie algebra sl(3). However, let

us remark that the optimization problem is much more

challenging than the problem solved in [10] where only the

homography was computed because they used a calibrated

camera (known intrinsic parameters).

In this work we do not attempt to estimate the motion

and structure directly but estimate the relative motion as

a homography. Although this approach does not use the

minimal amount of parameters and could lead to a less stable

estimate, it circumvents the issue of choosing the correct

homography decomposition and deciding when reliable 3D

tracking can occur.

A. Application of the Efficient Second-order Method (ESM)

The aim now is to minimise the objective criterion defined

previously in equation (3) in an accurate and robust manner.

As this is a non-linear function of the unknown parameters,

an iterative procedure is employed. Let x = (z, ξ, γ) be

the state vector. z contains the homography parameters. The

objective function is minimized by:∇xfi(x)|x=ex = 0, where

∇x is the gradient operator with respect to the unknown

parameters and there exists a stationary point x = x̃ which

is the global minimum of the cost function.

Since both the reference image and current image are

available it is possible to use the efficient second-order

approximation method (ESM) [9] to solve the optimization

problem. In this case the current and reference jacobians are:

J(0) = JI
′Jw

[
JwH

JH(0) Jξ(0) Jγ(0)
]

(5)

J(x̃) = JIJw

[
JwH

J
H−1 bH

(x̃) Jξ(x̃) Jγ(x̃)
]

(6)

Because J(x̃) depends explicity on the unknown optimal

increment x̃ we use the left invariance property J(x̃)x̃ =
J(0)x̃ in order to avoid the computation of J

H−1 bH
(x̃), Jbξ

(x̃)

and Jbγ(x̃) by assuming H ≈ Ĥ, ξ ≈ ξ̂ and γ ≈ γ̂.

Therefore, the update x̃ of the solution can then be computed

as follows:

x̃ =

((
JI + JI′

2

)
Jw [JwH

JH(0) Jξ(0) Jγ(0)]

)+

f(0)

(7)

where ’+’ indicates the matrix pseudo-inverse.

JI′ represents the current image gradient ∇I′ evaluated

on a point p of the reference image I . Jw represents the

variation from a point p′ in the current image I ′ with

respect to a point p in the reference image I . JwH
JH

represents the variation from a point p
′

in the current image

I ′ with respect to the homography parameters. Jξ and Jγ

represent the variation from a point p′ in the current image

I ′ with respect to the mirror parameter ξ and the intrinsic

parameters γ respectively. JI is the Jacobian of the image

reference and therefore only needs to be calculated once.

The rest of Jacobians are recomputed at each iteration.

IV. RESULTS

In order to assess the performance of the proposed method

we performed experiments with synthetic and real data. The

synthetic image sequence is composed of 100 images. To

create this sequence we transformed a real parabolic image.

The synthetic images were created from this image assuming

constant intrinsic parameters such as: a catadioptric camera

with a parabolic mirror (ξ = 1), a generalized focal length

ku = −250, kv = −250 and an image center (u0, v0) =
(512, 384). The homography matrices are different for each

image. The real image sequence is composed of 120 images

of size is 1024× 768 combining a camera with a parabolic

mirror. In both experiments, we compared our results with

the visual tracking algorithm proposed in [10] where the

authors assumed known intrinsic camera parameters.

A. Synthetic data

In the first experiment with synthetic data we considered

known intrinsic parameters. The assumed constant intrinsic

parameters for both methods were ξ = 1, ku = −250,

kv = −250 , u0 = 512 , v0 = 384. The initial guess

for the homography parameters was given by the identity

3 × 3 matrix. Figure 2 shows the reprojection error (norm)

using the visual tracking algorithm proposed in [10] (left)

and for the method proposed in this paper (right). For all the

sequence, the reprojection errors are almost the same.

The second experiment with synthetic data achieves with

the aim of this paper. Therefore, we considered unknown

intrinsic parameters to start the minimization method so,
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we gave an initial guess of ξ = 0.7, ku = −100, kv =
−100, u0 = 506 and v0 = 375. The initial guess for the

homography parameters was given by the identity 3 × 3
matrix. Figure 3 shows 6 images of the test sequence with

the tracked image region marked in red for the method in

[10]. Figure 4 shows 6 images of the test sequence with the

tracked image region marked in red for the proposed method

in this paper. Figure 5 shows the reprojection error (norm)

using the visual tracking algorithm proposed in [10] (left) and

for the method proposed in this paper (right). As we can see,

the proposed method in [10] is not able to track accurately

the expected path along the sequence. On the other hand,

even if the camera is not calibrated, the proposed algorithm

is capable to track accurately the chosen plane along the

sequence.
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Fig. 2. Reprojection error. Reprojection error (norm) using the visual
tracking algorithm proposed in [10] (left) and for the method proposed
in this paper (right). The method propose in [10] computes only the
homography parameters. We compute the homography parameters and the
intrinsic parameters. For all the sequence, the reprojection errors are almost
the same.

Fig. 3. Visual tracking. Plane tracked using the proposed method in
[10]. It only computes the homography parameters. We supposed unknown
intrinsic parameters.

B. Real data

For this experiment we only considered the case with

unknown intrinsic parameters. To start the minimization

method we gave an initial guess of ξ = 0.7, ku = −100,

kv = −100, u0 = 512 and v0 = 384. The initial guess for

the homography parameters was given by the identity 3× 3
matrix. Figure 6 shows 6 images of the real sequence with

the tracked image region marked in red for the method in

[10]. Figure 7 shows 6 images of the real sequence with

the tracked image region marked in red for the proposed

method in this paper. Figure 8 shows the reprojection error

(norm) using the visual tracking algorithm proposed in [10]

(left) and for the method proposed in this paper (right).

As we can see, the proposed method in [10] is robust to

track at least 50 images with unknown intrinsic parameters

Fig. 4. Visual tracking. Plane tracked using the proposed visual track-
ing algorithm. We compute the homography parameters and the intrinsic
parameters ξ, ku, kv, u0 and v0.
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Fig. 5. Reprojection error. Reprojection error (norm) using the visual
tracking algorithm proposed in [10] (left) and for the method proposed
in this paper (right). The propoposed method in this paper computes the
homography parameters and the intrinsic parameters ξ, ku, kv , u0 and v0.
The proposed method in [10] does not compute the intrinsic parameters.
For all the sequence, the reprojection error is different.
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computing only the homography parameters. However, it

start to loose the expected path after 60 images. That means

that the homography matrix is not enough to minimise

the reprojection error between the reference image and the

current image while the displacement is increasing. On other

hand, even if the camera is not calibrated, the proposed

algorithm is capable to track accurately the choosen plane

along the sequence.

Fig. 6. Visual tracking. Plane tracked using the proposed method in
[10]. It only computes the homography parameters. We supposed unknown
intrinsic parameters. We supposed unknown intrinsic parameters.

V. CONCLUSION

In this paper, we have shown how to efficiently track

a plane in an omnidirectional image without requiring the

prior calibration of the sensor. On the other hand, a set of

required parameters are estimated on-line for each new image

to align the current image with a reference template. The

approach is very interesting because the estimated parameters

are integrated into a single global warping function and we

developed the Jacobian matrix of this warping function in

easy modular parts. Furthermore, the efficient second order

minimisation technique was applied in order to allow us

minimisation of a highly redundant non-linear function in

a precise manner. Avoiding the awkward calibration steps

should facilitate the adoption of omnidirectional sensors in

robotics. Future work will focalise on the self-calibration of

the sensor on-line by using several of the tracked views.

This should also enable to fix the values being estimated,

providing a faster and more robust algorithm.

Fig. 7. Visual tracking. Plane tracked using the proposed visual track-
ing algorithm. We compute the homography parameters and the intrinsic
parameters ξ, ku, kv, u0 and v0.
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Fig. 8. Reprojection error. Reprojection error (norm) using the visual
tracking algorithm proposed in [10] (left) and for the method proposed
in this paper (right). The propoposed method in this paper computes the
homography parameters and the intrinsic parameters ξ, ku, kv , u0 and v0.
The proposed method in [10] does not compute the intrinsic parameters.
For all the sequence, the reprojection error is different.
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