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Abstract— This paper deals with the tracking of persons
in a human cluttered environment. It is performed by an
active perception system, consisting of a camera mounted on
a pan-tilt unit and a 360◦ RFID detection system which are
embedded on a mobile robot. Particle filters enable the fusion
of heterogeneous data into the proposal distribution from which
the particles are sampled. The information provided by the
tracker is then used to build sensor-based dedicated control
laws in order to make the robot follow the RFID tagged person.
Finally, experiments on our mobile robot are presented in order
to highlight the relevance and complementarity of the developed
perceptual functions.

I. INTRODUCTION AND FRAMEWORK

The ability for a mobile robot to automatically follow a
person in public areas is a key issue to effectively interact
with the surrounding world. To fulfill this objective, robust
algorithms able to track a given person thanks to multiple on-
boarded sensors are required. Particle filters [2] are currently
investigated for person tracking in both robotics and vision
communities. Their popularity stems from their ability to
fuse in a probabilistic way various kinds of visual measure-
ments. Pérez et al. in [10] highlight the fact that intermittent
cues are suitable candidates for the construction of detection
modules and efficient proposal distributions. Clearly, reliable
people detectors improve the tracking performance.

Visual detectors commonly assume that people face to-
ward the robot, so that methods based on face detec-
tion/recognition [5], [12] can be applied to successfully (re)-
initialize successfully the tracker after temporary occlusion,
camera out view-field, or target loss. Their performances
heavily depend on the light conditions, viewing angle, dis-
tance to persons, and variability of humans’ appearance in
video streams. Consequently, numerous approaches consider
multimodal sensor fusion. Their issue is to combine dif-
ferent sensor streams from microphones [10], laser range
finders [13] with the video stream.

Recent approaches have also focused on “emerging tech-
nologies” based on both wireless networking indoor infras-
tructure and ultrasound, infrared [11], or radio frequency
(RF) badges worn on clothes [8].

Such passive ID-sensors provide explicit information
about the person ID, even if the location information is
relatively coarse. Our system combines the accuracy and
information richness advantages of active color vision with
the identification certainty of RFID and has not been ad-
dressed in the literature yet. This tracker is expected to be
more resilient to occlusions than vision-based only systems,
since the former benefits from a coarse estimate of people
location in addition to the knowledge of his/her appearance.
Furthermore, the ID-sensor can act as reliable stimuli that
triggers the vision system. Finally, when several people lie
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in the camera view-field, this multimodal sensor data fusion
will simplify the data association problem.

To our knowledge, only Hahnel et al. in [6] has considered
an on-board RF device for people detection. However, the
detection range was limited to 180◦ angle and a sole sensor
is used: the RFID tag. Common applications involving RFID
technologies assume stationary readers distributed through-
out the settings [8], [11], namely ubiquitous sensors. Our
approach privileges on-board perceptual resources in order
to limit the hardware installation cost and therefore the
indoor setting support. Using visual and RF detectors into the
proposal distribution of the PF, should improve our tracker
so that it becomes much more resilient to occlusions, data
association, and target loss than vision-based only systems.
Our multimodal tracker allows to reliably follow a person in
a complex dynamic, crowded environments.

The paper is organized as follows. Section II depicts our
omnidirectional RFID prototype. Section III recalls some PF
basics and details our importance function for multimodal
person tracking. Section IV details the developed control
strategy to achieve a person following task in a crowded
environment. Section V presents our robotic platform and
associated live experiments. Finally, section VI summarizes
our contributions and discusses future extensions.

II. HUMAN USER DETECTION BASED ON RFID

A. Device description

The device consists of: (i) a CAENRFID A941 off-the-
shelf multiprotocol reader working at 870MHz, (ii) 8 direc-
tive antennas to detect the passive tags worn by the customer,
(iii) a prototype circuit in order to sequentially adress each
antenna (figure 1). With a single antenna, only a tag angle
relative to the antenna plane can be estimated. Thus, with
our 8 antennas, the tag can be detected all around the robot.

Fig. 1. RF multiplexing prototype
to adress 8 antennas.

Given the placement of the
antennas and their own field
of view, the robot surround-
ing is divided into 24 ar-
eas (figure 3(a)), depending
on the number of antennas
detecting simultaneously the
RFID tag. This lattest can
be detected by the reader
all around the robot at any
distance between 0.5m (i.e.
approximately the robot’s ra-
dius) and 4.5m. To determine
the observation model for the
whole antenna set, statistics
are performed by counting
frequencies depending on the
number (three at a maxi-
mum, figure 3(a)) of anten-
nas that detect the same tag.
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The resulting normalized histograms are shown in figure 2
where the x-axis represents the azimuthal angle (denoted by
θ)1. The resulting sensor model assumes that both azimuth
and distance histograms can be approximated by Gaus-
sians respectively defined by the couples (µtag

θ , σ
tag
θ ) and

(µtag
d , σ

tag
d ) where µ

tag

(.) and σ
tag

(.) are the mean and standard

deviation. Afterwards, we project these probabilities for the
current tag position to a saliency map of the floor. Each
pixel probability is calculated given the antenna outputs to
achieve approximate position estimation of the RFID tag
(figure 3). Given this model observation, evaluations allow
to characterize the ID-sensor performances.

Fig. 2. From left to right: occurrence frequencies of azimuthal angle given
one, two or three detections.

(a) (b) (c) (d)

Fig. 3. Azimuthal view field of 8 antennas (a) and saliency map for tag
detection respectively for 1 (b), 2 (c) and 3 (d) antennas.

B. Evaluations from feasibility study

The RF system has been mounted on our robot Rackham,
an iRobot B21r mobile platform and evaluated in a crowded
context. We have generated a statistics by counting frequen-
cies on a 81m2 area around the robot. Obstacles with random
positions uniformly distributed in this area are added one
by one during the test runs. The corresponding ground-truth
is based on the ratio between the areas occluding the tag
induced by obstacles (assuming an average person-width of
40cm) and the total area. Given such various “crowdedness”
situations, the RFID tag is moved around the robot. We
repeat this experimental protocol for different distances and
count for every point in a discrete grid whether the tag
worn by a fixed person is detected or not, depending on
the crowdedness. Comparisons between experimental and
theoretical detection rates are reported in figure 4 thanks
to box-and-whisher plots. The x-axis and y-axis denote
the “crowdedness” and the detection rate while the box
plots and the thick stretches inside indicate the degree of
dispersion (for 50% of the trials) and median of the trials.
Our experimental curves are shown to be closed to the
theoretical ones. As the system is disturbed by occlusions, the
number of false-negative readings logically increases with
the number of obstacles. Nevertheless, the detection rate
remains satisfactory even for overcrowded scenes (e.g. 70%
in average for 7 persons around the robot). Furthermore, very
few false-positive readings (reflections, detections with the
wrong antennas...) are observed in practice2.

1Histograms relatively to the tag/reader distances (noted d) are not
presented for space reasons but they are available on request.

2Passive tags induce few signal reflections contrary to their active
counterparts.

Fig. 4. Detection rate versus crowdedness in the robot surrounding.

III. PERSON TRACKING USING VISION AND RFID

A. Basics about particle filters

Particle filters (PF) aim to recursively approximate the
posterior probability density function (pdf) p(xk|z1:k) of the
state vector xk at time k conditioned on the set of measure-
ments z1:k = z1, . . . , zk. A linear point-mass combination

p(xk|z1:k) ≈
N

X

i=1

w
(i)
k δ(xk − x

(i)
k ),

N
X

i=1

w
(i)
k = 1, (1)

is determined – with δ(.) the Dirac distribution – which

expresses the selection of a value – or “particle” – x
(i)
k with

probability – or “weight” – w
(i)
k , i = 1, . . . , N . An approxi-

mation of the conditional expectation of any function of xk,
such as the MMSE estimate Ep(xk|z1:k)[xk], then follows.

Recall that the SIR – or “Sampling Importance Resam-
pling” – algorithm is fully described by the prior p(x0), the
dynamics pdf p(xk|xk−1) and the observation pdf p(zk|xk).
After initialization of independent identically distributed
(i.i.d.) sequence drawn from p(x0), the particles evolve
stochastically, being sampled from an importance function

q(xk|x
(i)
k−1, zk). They are then suitably weighted so as to

guarantee the consistency of the approximation (1). Then

a weight w
(i)
k is affected to each particle x

(i)
k involving its

likelihood p(zk|x
(i)
k ) w.r.t. the measurement zk as well as the

values of the dynamics pdf and importance function at x
(i)
k .

In order to limit the well-known degeneracy phenomenon
[2], a resampling stage is introduced so that the particles
associated with high weights are duplicated while the others

collapse and the resulting sequence {x
(s(i))
k }Ni=1 is i.i.d.

according to (1).
With respect to our heterogenous data fusion context, we

have chosen to use ICONDENSATION [7], that consists in
sampling some particles from the observation (namely π(.)),
some from the dynamics and some w.r.t. the prior so that the
importance function is given by:

q(x
(i)
k |x(i)

k−1, zk) =

απ(x
(i)
k |zk) + βp(x

(i)
k |x(i)

k−1) + (1 − α − β)p0(x
(i)
k ). (2)

with α, β ∈ [0; 1]. π(.) relates to detector outputs which,
despite their intermittent nature, are proved to be very
discriminant when present [10].

B. Tracking implementation

The aim is to fit a template relative to the RFID-tagged
person all along the video stream through the estimation
of his/her image coordinates (u, v) and its scale factor s
of his/her head. All these parameters are accounted for
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in the above state vector xk related to the k-th frame.
With regard to the dynamics p(xk|xk−1), the motions of
humans in an image are difficult to characterize over time.
This weak knowledge is formalized by defining the state

vector as xk = [uk, vk, sk]
′

and assuming that it evolves
according to mutually independent random walk models,
viz. p(xk|xk−1) = N (xk;xk−1,Σ) where N (.;µ,Σ) is a
Gaussian distribution with mean µ and covariance Σ =
diag(σ2

x, σ2
y, σ2

s).
In importance sampling, fusing multiple cues enables the

tracker to better benefit from distinct information, and to
decrease its sensitivity to temporary failures in some of the
measurement processes. The underlying unified likelihood

p(zk|x
(i)
k ) in the weighting stage is more or less conven-

tional. It is computed by means of several measurement func-
tions, according to persistent visual cues, namely: (i) multiple
color distributions to represent the person’s appearance (both
head and torso), (ii) edges to model the silhouette. The reader
is referred to [5] for more details. Otherwise, our importance
function is unique in the literature and so is detailed here
below.

C. Importance function based on visual and RF cues

Recall that the function π(.) in equation (2) offers a
mathematically principled way of directing search according
to multiple and possibly heterogeneous detectors. Given L
independent detectors and κ their predefined weights, the
function π(.) can be reformulated as

π(x
(i)
k |z1

k, . . . , z
L
k ) =

L
X

l=1

κl.π(x
(i)
k |zl

k), with
X

κl = 1. (3)

Three functions π(xk|zc
k), π(xk|zs

k) and π(xk|zr
k), respec-

tively based on skin probability image [9], face detector and
RF identification are here considered.

The importance function π(xk|z
c
k) at location xk = (u, v)

is described by π(x|zc) = h(cz(x)) (4)

given that cz(x) is the color of the pixel situated in x
in the input image zc and h is the normalized histogram
representing the color distribution of the skin a priori learnt.
The function π(xk|z

s
k) is based on a probabilistic image

based on the well-known face detector pioneered by Viola
et al. in [12]. Let NB be the number of detected faces and
pi = (ui, vi), i = 1, . . . , NB the centroid coordinate of each
such region. The function π(.) at location x = (u, v) follows,
as the Gaussian mixture proposal3

π(x|zs) ∝

NB
X

j=1

P (C|Fj , z).N (x;pj , diag(σ2
uj

, σ
2
vj

)), (5)

with P (C|Fj , z) the face ID probabilities for each detected
face Fj given previously learnt eigenfaces of the tracked
person. The technique, which is out of the paper scope,
is detailed in [4]. Concerning the RF outputs, the function
π(xk|zr

k) follows
π(x|zr) = N (θx;µtag

θ , σ
tag
θ ), (6)

given that θx is the azimuthal position of the particle x in
the robot frame, deduced from its horizontal position on the
image and the camera pan angle, and µ

tag
θ and σ

tag
θ are

respectively the mean and the covariance of the estimated
position of the tag in the robot frame depending on the
antenna outputs and described in section II.

3Index k and (i) are omitted for the sake of clarity and space.

The particle sampling is done using the importance func-
tion q(.) in equation (2) and a process of rejection sampling.
This process constitutes an alternative when q(.) is not ana-
lytically described. The principle is described in algorithm 1
with g(.) an instrumental distribution to make the sampling
easier under the restriction that q(.) < Mg(.) where M > 1

is an appropriate bound on
q(.)
g(.)

4.

Algorithm 1 Rejection sampling algorithm.

draw x
(i)
k according to Mg(xk)

r ← q(xk|xk−1,zk)

Mg(x
(i)
k

)

draw u according to U[0,1]

if u ≤ r then

accept x
(i)
k

else
reject it

end if

Figure 5 shows an illustration of the rejection sampling
algorithm described for a given image. Our importance
function (2) combined with rejection sampling ensures that
the particles will be placed in the relevant areas of the state
space i.e. concentrated on the tracked person or potential
canditate areas.

IV. A SENSOR-BASED CONTROL LAW FOR PERSON

FOLLOWING TASK

Here, our idea is to benefit from the information provided
by the previously developed multimodal tracker to build a
control strategy able to achieve a particular mission consist-
ing in following the user thanks to his image coordinate.

A. Modelling the problem: the robot and the control strategy

Our robot Rackham (depicted in section V) consists of an
nonholonomic mobile base equipped with a pan-tilt unit on
which is mounted a camera. Four control inputs can then be
used to act on our robot: the linear and angular mobile base
velocities (vr, ωr) and the pan/tilt unit velocities (ωp, ωt).
Our goal is to compute these four velocities so that the robot
can efficiently and safely achieve the person following task
thanks to visual servoing techniques [3].

We have chosen to separately design the necessary con-
trollers to dissociate at best the different degrees of freedom
of the camera. Analyzing the robot structure shows that
the two control inputs ωr and ωp appear to be redundant.
Although this property can be used to perform additional
objectives such as obstacle avoidance5 for example , here,
we have simply chosen to fix ωp to zero, so that we control
the horizontal position of the features in the image using a
unique controller. Another interest in using ωr instead of ωp

is that it allows to orientate the whole robotic system (and
not only the camera) towards the targeted person, improving
the task execution. Therefore, we will finally have to design
three control laws to compute (vr, ωr, ωt).

4In our experiments, g(.) is a uniform distribution over the state space.
5We have elaborated a first simple strategy allowing to follow a person.

The obstacle avoidance problem is only roughly treated by stopping the
robot when the collision risk is too high. It will be more deeply addressed
through further works.
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Fig. 5. From left to right: original image, skin probability image4, face detection (5), azimuthal angle from RFID detection (6), unified importance
function (2) (without dynamic), accepted particles (yellow dots) after rejection sampling.

B. Control design

We have then developed three classical controllers allow-
ing to orientate the camera and to move the robot, so that
the person to be followed is always kept in its line of sight.
To this aim, the idea is to exploit the tracker information.
Indeed, from the images provided by the camera, this tracker
can characterize the coordinates of the head gravity center
in the image (ugc, vgc) and its associated scale sgc. Our goal
is to design three vision-based PID controllers to minimize
Eptv . Eu represents the abscissa error in the image and can
then be regulated to zero by acting on the robot angular
speed ωr . Following the same reasoning, Ev corresponds to
the ordinate error in the image and can be decreased to zero
thanks to the tilt velocity ωt of the PTU and Es corresponds
to the scale error regulated to zero thanks to the robot linear
velocity vr. The proposed control laws are given as follows:

8

<

:

ωr = KppEu + Kip

R

Eudt + Kdp
dEu

dt

ωt = KptEv + Kit

R

Evdt + Kdt
dEv

dt

vt = KpvEs + Kiv

R

Esdt + Kdv
dEs

dt

(7)

where (Kpp,Kip,Kdp) (respectively, (Kpt,Kit,Kdt) and
(Kpv,Kiv,Kdv)) are the control gains which are experimen-
tally tuned.

However, these control laws can be used only when the
target lies in the image. When the latter is lost, they cannot be
applied anymore and the control strategy has to be enhanced.
To this aim, we use the information provided by the RFID
system. Indeed, as previously mentioned, the targeted person
wears a RFID tag so that, when he/she leaves the camera
field of view, it is possible to get the distance dtag and the
orientation θtag of the tag in the robot frame. Therefore,
the direction towards which the camera must be oriented
to retrieve the user is known as well as the approximated
distance to the user. Our idea is then to make the camera
turn until the robot faces the tag, so that the tracker can
retrieve the user if possible. To this aim, we simply impose
a constant value ω0

r for the robot angular velocity ωr to
make it turn towards this direction. The tilt velocity is
controlled so that the corresponding angle is brought back
to its reference position, that is the position reached after
each initialization of the pan/tilt unit. With this procedure,
we maximize the possibility for the tracker to detect the user
again. When this event occurs, the control strategy switches
back to the three vision-based controllers given above. We
also impose a linear velocity whose value depends on the
distance dtag and on the angle θ. In this way, we try6 to keep
on satisfying the constraint on the social distance, despite
the visual information loss. The robot is then kept in a close
neighborhood of the user in order to ease the visual signal
recovery.

V. INTEGRATION AND LIVE EXPERIMENTS

A. Rackham description and software architecture

6The distance dtag provided by the RFID system is rather inaccurate.

Fig. 6. Rack-
ham.

Rackham is an iRobot B21r mobile plat-
form. Its standard equipment has been ex-
tended with one digital camera mounted
on a Directed Perception pan-tilt unit, one
ELO touch-screen, a pair of loudspeakers,
an optical fiber gyroscope, wireless Eth-
ernet, and the previously described RFID
system (figure 6). All these devices en-
able Rackham to act as a service robot in
utilitarian public areas. It embeds robust
Human Robot interaction abilities and ef-
ficient basic navigation skills.

We focus here on the software mod-
ules named ICU which stands for “I see you”, RFID and
Visuserv, which respectively encapsulate human recog-
nition/tracking, RFID localization, and visual servoing. The
data fusion extracted from Camera and RFID is performed
within the ICU module as vision constitutes the ”central”
sensor. The motions of the camera and of the robot are
performed within Visuserv which controls both actuators
modules: Platine and Rflex. These modules have been
implemented within in the “LAAS” architecture [1] using
C/C++ interfacing scheme. The OpenCV library is used for
low-level features extraction e.g. edge or face detection. The
entire system operates at an average framerate of 6 Hz.

B. Targeted scenario

Fig. 7. Environment map showing the
path of the user.

Experimental
evaluations were
conducted in our robotic
hall in the presence of
crowds. Let us recall
that the goal is to make
Rackham follow a non-
expert tagged person in
natural, dynamic, cluttered scenes in real time. Rackham is
supposed to accompany the person while (i) maintaining
enough space between itself and the person (to avoid
collisions), (ii) respecting his/her personal space (social
distance maintained within [1.5; 2.5]m) during the mission
execution.

Figure 7 shows the environment where the experiments
took place and the typical path to be followed by the RFID
tagged person (see the blue line). He/she enters the hall in
point #1 and goes to point #2 before freely walking to
#4 via #3. Finally, he/she stops and comes back to #1 to
exit the hall. Thus, from #1 to #4, Rackham is expected to
follow behind the person while from #4 to #1, it has to leave
the person path to maintain the social distance to a suitable
value. Given the overall path, the robot is expected to follow
the target for about 20m. During the mission execution, other
people may cross the robot trajectory, occluding the camera
field of view. Both qualitative and quantitative results on trial
runs are reported below in order to validate our multimodal
person tracking and the proposed control strategy.
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We first validate the system behavior in nominal condi-
tions, i.e. without any disturbance. Note that, even in this
context, the RFID tag is not always detected due to self-
occlusions. Associated signals provided by the modules ICU,
RFID, and Visuserv are collected to illustrate sequencing
and synchronization aspects. Figure 9 shows a typical run
of the system where the robot executes the above scenario.
Figure 8 shows the corresponding evolution of these data,
namely:

• two flags ICU and RFID which are respectively set to
1 when the tagged user is detected either in the image
or in the RFID area located within the distance range
[0.5; 4.5]m,

• the angle θtag and the distance dtag which provides the
direction where lies the tagged user with respect to the
robot frame,

• the three control inputs (vr, ωr, ωt) computed by the
Visuserv module and sent to the robot by respec-
tively Rflex and Platine modules.

Fig. 8. Synchronization of the data flow outputs between the different
modules.

Let us consider figure 9 and 8. After the mission initializa-
tion (a), the tracker focuses on the tagged person thanks to
the video stream (b). The four steps of the scenario are then
executed. Between points #1 and #2, the contact with the
target is maintained thanks to the vision system. The control
law is then computed using equations (7) on the base of the
visual data provided by the tracker. The target is centered
in the image while the robot adjusts its relative distance
thanks to the visual template scale. Between point #2 and
#4 (c), the target disappears from the camera view field
(due to the joined movements of the two mobile entities),
which induces a visual tracker failure. The control law is then

(a) (b) (c)

(d) (e) (f)

Fig. 9. Snapshots of a trial. Notice that the pan-tilt unit azimuthal position
is given by the red arch on the RFID map. The blue and green squares
respectively depict the face detection (user gazing the camera) and the
MMSE estimate while the yellow dots represent the particles before the
resampling step.

computed on the base of RFID data (θtag, dtag) to make the
robot face the targetted person, and converge towards him/her
until dtag reaches a close neighborhood of the chosen social
distance value. Therefore, the person following task is still
executed despite the visual target loss, while the RFID
system triggers the camera in order to recover the target in
the view field (d). Face detection/recognition allows to re-
initialize the visual tracker while the person goes back to
#1 (e). During this last part of the mission, the trajectory
of the robot crosses the user’s one. The robot then moves
backwards to fulfill the requirement about the imposed social
distance to the user. We have also quantitatively evaluated
the above scenario when numerous persons lie in the robot
neighborhood. This study has been performed during an
informal gathering by several participants. Few of them had
an advanced knowledge of our multimodal person tracker.
The person following system was tested for 10 trial runs for
a given targeted person. We have progressively added the
number of people in the robot vicinity in order to disturb
the scenario execution by inducing sporadic occlusions of
the tagged person. Figure 10 shows snapshots of a typical
run while the associated video and additional runs can be
found at the URL www.laas.fr/∼tgerma/IROS.

For each run, we have computed the Visual Contact Rate.
This rate correspond to the ratio of the frames where the user
was in the field of view over the total number of frames.
This parameter indirectly measures the system robustness
to artifacts such as occlusions and sporadic target losses.
Table I shows these rates for the vision system only and
its multimodal counterpart when increasing the number of
passers-by during the scenario execution.

We can notice that the average Visual Contact Rate
decreases with the increasing number of persons lying in
its neighborhood while it remains almost constant for the
multimodal system. These results highlights the multimodal
tracker efficiency as the RFID system allows to keep the
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Fig. 10. Snapshots of a run for the quantitative evaluation. The first line shows the current human robot situation, the second line depicts the tracking
outputs and the third line is the current RFID saliency map.

Sensor system Number of passers-by: Total
1 2 3 4 Mean Std.

Vision only 0.22 0.50 0.47 0.19 0.35 0.23
Vision + RFID 0.93 0.93 0.90 0.85 0.90 0.08

TABLE I

RESULTS OF THE Visual Contact Rate WHEN CONSIDERING 1 TO 4

PASSERS-BY.

target in the visual view-field for 85% of the video stream
despite the presence of four passers-by.

Finally, after the mission execution, the participants were
asked to evaluate the robot’s behaviour i.e. whether the
behaviour met their expectations, how natural the behaviour
was, and how appropriate the robot’s following and stopping
distances were. Two cases of discontent were mentioned:

1) the robot stayed too close from the tagged per-
son: this situation mainly happens because of the
RFID rough evaluation of the distance to the target.
Sometimes, the tracker initializes to a too small scale,
making the robot confuse about its distance.

2) the robot stayed too far away from the person: this
situation is mainly due to the fact that the robot remains
static when it loses both visual and RFID contacts with
the user. This phenomenon appears in over-crowded
scenes. As soon as RFID or face detection occurs, the
tracker recovers the user and the robot continue its
mission.

VI. CONCLUSION

Tracking provides important capabilities for human robot
interaction and assistance of humans in utilitarian populated
spaces. The paper exhibits several contributions. First, we
have adapted an off-the-shelf RFID system to detect tags in
an 360◦ view field thanks to the multiplexing of 8 antennas
and embed such a system on our mobile robot Rackham to
evaluate this new ID-sensor. Then, we have developed a per-
son tracker that combines the accuracy benefits of monocular
active vision with the identification certainty of such RFID-
based sensor. Our technique uses the ICONDENSATION
scheme, heterogeneous data driven proposals and rejection
sampling mechanism to (re)-concentrate the particles on the
right person during the sampling step. To our best knowl-
edge, such data driven approach is unique in the robotics or
vision literature. Finally, we have demonstrated the tracker
robustness to sporadic occlusions, camera out field-of-view,
and appearance changes during live experiments. These
experiments have also shown that the person following task

inherits the advantages of both sensor types, thereby being
able to robustly track people and estimate their identity.

Several directions are currently studied regarding the
whole system. Further investigations will concern the design
of more compact antennas as the embeddability is essential
for autonomous robots. We will also extend our tracker to
multiple person as several RFID can be detected at the same
time while an obstacle detection devoted to over-crowded
spaces will be then outlined.
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[10] P. Pérez, J. Vermaak, and A. Blake. Data fusion for visual tracking
with particles. IEEE, 92(3):495–513, 2004.

[11] D. Schulz, D. Fox, and J. Hightower. People tracking with anonymous
and ID-sensors using rao-blackwellised particle filters. In Int. Joint
Conf. on Artificial Intelligence (IJCAI’03), Acapulco, Mexico, August
2003.

[12] P. Viola and M. Jones. Fast multi-view face detection. In Int Conf. on
Computer Vision and Pattern Recognition (CVPR’03), Madison, USA,
June 2003.
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