

Abstract— This paper presents a bio-inspired, distributed
control algorithm called TENTACLES for a group of radio
robots to move, self-configure and maintain communication
between some critical entities (such as humans, command
centers, or other systems) in an unknown environment. The
basic idea is to direct robots’ explorative movements to grow
“tentacles” from entities and establish links when tentacles
meet. This approach can self-heal failures of robots and
improve communication coverage and quality over time.
Experiments in simulations and real robots have shown positive
results.

I. INTRODUCTION
stablishment and maintenance of communication
between entities in an unknown and dynamic

environment is a very challenging problem. This is due to
the unknown locations and distances between entities,
obstacles that may block or deflect signals, unexpected
changes in the environment, and movement of or damage to
the entities. One possible solution is to deploy a group of
intelligent robots to explore the environment and position
themselves to provide relays. Such robots must self-
configure into an effective network, self-optimize the
performance of the network, self-heal changes and damages,
and adapt to movements of the critical entities.

Researches have studied the robotic radio network both in
open areas and in indoor environments. For open areas, the
nodes of the radio network are able to form different patterns
using attraction-repulsion fields [1], self-heal broken links
[2] and self-optimize connectivity [3]. The assumptions
usually include a nearly perfect inverse square radio model.
However, the multipath property of indoor radio signal
environments causes signal strength to be noisy and
unpredictable within nearby locations. Howard et al. [4]
incrementally build a sensor network covering indoor
building, which relies on another radio network node as a
landmark. Stump et al. [5] optimizes the connectivity of the
robotic radio network with a known global map. Both
approaches require the robots to be initially connected and
the relative position between robots to be known. Compared
to these and other previous work, the main contribution of

H. Chiu, P. Szekely, R. Maheswaran, C. Rogers, A. Galstyan, M.
Rubenstein, B. Salemi and W.M. Shen are with Information Sciences
Institute, The University of Southern California, Marina Del Rey, CA
90292, USA
Email: chichiu@usc.edu, shen.usc.edu
Hua Zhu and Bo Ryu are with ArgonST. 6696 Mesa Ridge Road, Suite A,
San Diego, CA 92121.
Email: Hua.Zhu@argonst.com, Bo.Ryu@argonst.com

this paper is a distributed coordination algorithm for self-
organization and self-healing of robotic networks to
establish radio links between critical entities despite the
unpredictability and noise of radio signals and unknown
locations of entities and relay nodes. The ideal resulting
network should support high-quality communication
between the critical entities yet use as few robots as possible.

One example of possible applications is urban search and
rescue where rescuers have to enter unknown buildings and
communications to the outside world is vital. In a complex
environment, walls, doors, obstacles and other materials
make radio propagation hard to predict. At the same time,
relay nodes may be damaged and unpredictable changes of
environment, such as changes in signal propagation due to
fire damage, may occur. This often results in a situation
where it is essentially impossible to determine the accurate
relative positions of other nodes, and how the signal
strengths may change when transmitters and receivers move.
In these scenarios, pre-deployment of relay nodes can be
infeasible. Radio nodes must to self-organize the
communication links between entities to be effective.

In this paper, we address a subset of the problem of self-
organization and self-healing of robotic radio networks by
assuming that the critical entities (non-robots) are stationary
even though their locations and the map of the environment
are unknown to the robots.

The paper is organized as follows. Section II describes the
problem in detail. Section III presents the TENTACLES
algorithm with illustrations of how a tentacle is built and
removed, how robots explore the environment, and how they
locally optimize network performance. Section IV and V
discusses the implementation of the algorithm and the
experimental results in simulation and on real robots.
Section VI concludes the paper with future research
directions.

II. THE PROBLEM DESCRIPTION
Figure 1 illustrates an overview of the problem to be

solved. The nodes Si and Gi are the critical entities to be
connected (they are assumed stationary in this paper) and the
nodes Ni are the mobile robots with relay radios. We assume
the distance between the Gi and Si nodes are too large for
them to communicate directly. There are unknown obstacles
in the environment (not shown) that may prevent robots
from going freely to wherever they want. The goal of the
robots is to move to positions where they can relay the
communication between the Gi and Si nodes with sufficient

TENTACLES: Self-Configuring Robotic Radio Networks in
Unknown Environments

Harris Chi Ho Chiu, Bo Ryu, Hua Zhu, Pedro Szekely, Rajiv Maheswaran, Craig Rogers,
Aram Galstyan, Behnam Salemi, Mike Rubenstein, and Wei-Min Shen

E

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 1383

bandwidth and throughput. They accomplish that by
growing “tentacles” (the thick links between nodes) from the
Gi and Si nodes and hope the tentacles will meet (shown by
the dashed lines). The robots may notice that they are non-
critical in certain tentacles such as N3, N4, N6, N8 and N9 and
such nodes in the tentacles should be removed to establish
more promising tentacles somewhere else. The
TENTACLES algorithm to be described below will run on
each robot and together the robots will self-configure, self-
improve, and self-maintain the network even in case of node
damages.

To ease our following descriptions of radio signal
strength, the range of the strength will be in 4 regions:
Strong, Good, Normal, and Weak separated by three signal
strength threshold values α, β and γ (α > β > γ). A
connection is considered as disconnected if its strength
signal is in the Weak range.

III. TENTACLE BUILDING ALGORITHM
Without global map information and accurate relative

physical positions of other radio nodes, connecting the
entities and even the robotic radio nodes themselves does not
come easily. At the same time, robotic radio nodes must
balance the tradeoff between moving/exploring unknown
areas for possible connections and staying/maintaining the
existing links (i.e., not moving). Intuitively, a radio node
should stop moving once it realizes it has already been
relaying network traffic between the critical entities. If
relaying is not possible without multiple agents, a “tentacle”
should be grown. Technically, a tentacle consists of a series
of stationary robotic radio nodes stretching out from the
entities. These entities can communicate when the tentacles
meet one another. If a tentacle is deemed to be useless
(based on its lifetime and whether it carries communication
traffic or not), that tentacle will be rebuilt and nodes become

“free”. A free node continues to explore candidate positions
to join a tentacle by detecting the gradual change of radio
signal strength of its neighboring nodes in the tentacle.
Nodes that are part of a tentacle or are relaying network
traffic remain relatively stationary, following a local
optimization policy to gradually adjust their position to
increase their relay bandwidth and throughput and hence
overall network performance.

The TENTACLES algorithm consists of four parts:
Tentacle Building, Tentacle Rebuild, Radio Guided
Exploration and Local Flow Optimization. Table I shows the
data structure used in the algorithm. Each node N stores its
node data including node identifier nodeIDN, a tentacle array
tentacleN[] storing the identifiers of all its ancestors up to a
entity node and ending with its own nodeIDN e.g. [G1,N5,
N6], a distance vector array distanceVectorN[] determining
the criticality of the node in current network topology and a
boolean flag specifying whether it is the end of a tentacle or
not. This node data structure is sent periodically as a probe
message to all its one-hop neighbors. All receiving nodes
store or renew corresponding node information in
NeighborTable with a new timestamp; expired information
will be ignored. Once a node ceases to receive updated
messages from its immediate parent node, it becomes a free
node.

A. Tentacle Building
A tentacle always starts with an entity (root) node and

ends with a robotic (leaf) node. The idea of tentacle building
is to incrementally connect free nodes to the leaf node of a
tentacle with a proper connection link with Good signal
strength. Initially, a root node is also a leaf node. In
summary, a free node considers joining a tentacle based on
four criteria. (1) Good Signal Rule -To build a tentacle good
for communication, the signal strength between the free
node and the leaf node should be in the Good range (not in
the Strong range). (2) No Branching Rule - To reach out as
long as possible, tentacles may not branch. However,
multiple tentacles are allowed to grow from the same entity
node as long as the children of this entity node are not
connected in Good signal range to each other. (3) Weak
Grandparent Rule - To prevent “folding” of the tentacle, a
free node joins a tentacle only when the signal strength to
the parent of the leaf node is much weaker than to the leaf.
(4) Avoid Previous Parent Rule - To avoid repeatedly

TABLE I
DATA STRUCTURE IN TENTACLE BUILDING ALGORITHM

Local Data Structure:
Node myNode
 int nodeID; int tentacle[]; int distanceVector[]; bool isLeaf;

NeighborNodeEntry nbrNode
 Node nbr; int timestamp;

NeighborNodeEntry NeighborTable[];
Node Msg;

Fig. 1. A tentacle building and connection map with distance vector.
Node P => node Q means P is a parent of Q in a tentacle with Good
signal strength. Dotted lines represent radio links between nodes in
Normal range of signal strength or better. Distance vectors [Sink,
Source] are used for differentiation between open nodes and closed
nodes.

1384

forming similar tentacles searching the same area, the free
node will avoid joining previous parents within a certain
time period.

 Whenever a free node N detects the fulfillment of all four
tentacle-building criteria, it stops its exploration and extends
a tentacle from leaf node L. A Join-Tentacle request
message is sent to node L and an acknowledgement message
is received with node information. The data variable isLeafN
is set to true and tentacleN[] is updated by concatenating
tentacleL[] with nodeIDN. For missing acknowledgements,
node N resumes exploration. There are two mechanisms to
prevent “dead tentacle” and branching effects. To prevent a
“dead tentacle” with isLeafL being false, node L only
confirms node N received the acknowledgement from probe
messages with the updated tentacleN[] from N. To prevent
branching due to simultaneous Join-Tentacle requests from
free nodes, a Rebuild message will be propagated from the
branching node to a randomly selected branch to free the
radio nodes.

B. Tentacle Rebuild
Tentacle rebuild aims at releasing non-critical radio nodes

from tentacles. This involves evaluating the criticality of
radio nodes and freeing up stationary nodes in a distributed
way. Critical nodes are the ones (1) not connected to other
entities or (2) not essential for carrying traffic between any
two entities.

 To identify the connectivity of a node between 2 entities,
we define two node types, closed and open and assume
network traffic always goes through Normal links between
relay nodes and a shortest route from one entity to another
entity with smallest hop count. Closed nodes are on the
shortest path to another entity for every link from one entity.
For example, in Figure 1 node S1 has three links to node N1,
N7 and N9. Only links to N1 and N7 have a route to another
entities. and therefore N1, N2, N5, and N7 are closed nodes.
An open node is simply a non-closed node. It is either not on

the shortest path to another entity, whether ot not it belongs
to a tentacle. Open and Closed nodes are determined by a
distance vector based on the “distance” (number of hops)
from each entity initialized with infinity. A distance vector
m is said to dominate another distance vector n when all
entries in m is smaller or equal to the corresponding entries
in n with at least one entry in m strictly smaller than that in
n. Therefore, a closed node has its distance vector with at
least 2 finite entries and not domninated by the one of any
neighboring nodes. Table II shows the function for updating
distance vectors distributedly. Each entry of a distance
vector is updated by taking the minimum among the
neighbors and adding one. If the corresponding node is in a
tentacle, the entry will be based on the hop count distance
from the root node.

Sometimes, closed nodes are not very useful for overall
network performance with some adhoc network protocols,
like OLSR[6]. Route selection is usually based on the cost of
communication relating to the link quality and hop count.
For example, in Figure 1, if the network protocol chooses
hop count as its cost function, the route with node N7 is
sufficient for the traffic and the route with node N1, N2 and
N5 becomes redundant. These nodes can set themselves free
if there is no network traffic going through for a period of
time.

To release open nodes in a tentacle after a certain waiting
period, a Rebuild message is initiated from an open leaf node
and propagates to all the ancestors. A closed node will stop
the propagation while an open node will forward the
message and resume exploration upon receiving Rebuild
message. For example, in Figure 1, N4, N6, N8 and N9
initiates Rebuild messages and together with N3 free
themselves from the tentacle. Each node remembers the
identifier of its previous parent which it uses to avoid
forming the same tentacle repeatedly.

C. Radio Guided Exploration
 To speed up tentacle creation, the gradient of radio signal
strength may be a good source of localization information
through triangulation. Figure 2 shows an experimental

Fig. 2. Trend of signal strength signal. Raw data is in blue. Averaged
data over last 10 raw data points is in red with α, β, γ threshold
specified.

TABLE II
PSEUDO CODE FOR UPDATING DISTANCE VECTOR

dv[i] = infinity //for all node i is sink/source node
UpdateDistanceVector()
 FORALL (node i is a source or sink)
 dVMin= infinity
 IF (node i is the root of current path)
 dv[i] = path.size -1
 ELSE
 FORALL (Neighbor n in NbrTable)
 IF (SignalStrength(n) is better than Normal)
 THEN
 IF (n is a sink/source node)
 dv[n] = 1;
 ELSE
 dVMin = min(dVMin, n.distanceVector[i])
 IF dv[i] < dVMin +1
 THEN dv[i] = infinity
 ELSE dv[i] = dVMin +1
 ENDIF
 ENDIF
 ENDFORALL
 ENDIF
 ENDFORALL

1385

measurement of a radio node approaching, passing by and
leaving another radio node. Values are obtained through
averaged smoothing of collected signal strength values. In
our experimental setup, we obtained only ~2 dB difference
over 1 meter, which made it hard to triangulate the position
of other nodes in our indoor office-like environment.

To guide the exploration without triangulation, a radio
node can hypothesize whether it is going Towards (T) a node
or it is going Away (A) from another radio node by
comparing its increased or decreased averaged values
respectively to those at a previous location over a fixed
travel distance, such as 1 meter. A decision on the
continuation of current action can then be made based on the
observed signal strength changes. A decision to
“Turn_Back” means the node should reverse previous
behaviors and search backwards. “Continue” means the
node should continue with its previous behavior. “Random
Turn” means the node should turn to a random direction and
resume its exploration behavior.

To travel along a multi-node tentacle, we start with a
simple case of two-node tentacle. Figure 3 shows five
regions defined according to the relative signal strength
between 2 nodes – node P (parent) and node L (leaf). Our
goal is to move a free node from any region to the boundary
of region 4 and 5 and join the tentacle.

Region 1: SignalStrength(L) is Weak
 Region 2: SignalStrength(P) > SignalStrength(L)
 Region 3: SignalStrength(P) > β and SignalStrength(L) >β
 Region 4: SignalStrength(P) < Signal Strength (L)
 Region 5: SignalStrength(P) is Weak

We also define signal trend tuple (TP, TL) with TP ={A,T}
and TL = {A,T} indicating the movement trend of node P and
L respectively. A decision can be made based on the region.
For example, in Region 2, trend (T,T) means the exploration
is moving towards node P and L. This behavior should be
Continued. A Random Turn is taken for uncertain trends
resulting from noise and the randomness can help the robotic
node to leave the uncertainty area and local minima. By
always considering two nodes closest to the leaf of the
tentacle, a free node is able to traverse along a tentacle to its
leaf and extend the tentacle.

D. Local Flow Optimization
Even though a node should remain stationary to maintain

connectivity whenever it carries network traffic, a better
bandwidth might result if a node just slightly explores the
nearby area. For example, a node has joined a tentacle and
just missed line-of-sight to some other node as it moved
around a corner. In this case, a local search is essential to
improve network performance.

Local Flow Optimization mode (LocalOpt) is activated for
a node with a low traffic flow. The node goes forward for a
fixed distance (1 meter) with one random direction out of
eight 45-degree separated directions. The node stops
whenever the new location is reached or hits an obstacle. It
stays if it receives increased traffic, else it returns to its
original position. If the node gets blocked while returning,
the node quits LocalOpt and moves again only if there is
insufficient traffic flow to anchor it in place.

To avoid destroying the link due to simultaneous
movement, nodes are coordinated through the periodic probe
messages to inform neighbors about current LocalOpt
modes. Once neighboring nodes both enter LocalOpt mode,
they go backward towards their original positions and quit
the mode. They restart the mode only if they still carry low
traffic flow after a random period of time.

IV. SIMULATION
Figure 4 shows a snapshot of a simulated scenario having

five sources connected to a gateway (sink). Radio nodes (x)
move around with wall-following behavior in an office-like
environment to search for connections between source
entities (+) and the gateway entity (.). Other legends are
detailed in the figure.

 In the simulation, radio signal strength decreases over
distance based on an inverse square model. The strength of a
radio signal is fractioned when it penetrates a wall. Each
node is able to communicate and detect the signal strength of
its connected neighbors. The TENTACLES algorithm is
implemented without Local Flow Optimization.

Experiments have been carried out with three initial
connections.

Fig. 3. Breakdown of decision making of radio guided exploration
in a 2-node tentacle scenario.

Fig. 4. A snapshot of simulation for TENTACLE algorithm and 5
source nodes have connected to the gateway.

1386

Excellent – radio nodes connects source to gateway entity
with Good link quality.

Fair – source and gateway are initially disconnected
and only one radio node next to each entity.

Poor – same as Fair condition, but radio nodes are
far away from gateway entity.

The performance Coverage measures the percentage of
total sources that carried traffic to the sink over a period of
time. Table III shows that the resulting network is able to
cover at least 4 out of 5 sources most of the time, despite the
noisy signal in the simulation.

Table IV gives the self-healing result of the simulation.
The goal is to test the recovery of the network after nodes
are turned off in steps. Results show at least 60% of the
sources can still be connected all the time.

V. EXPERIMENTS ON REAL ROBOTS
Similar experiments were carried on the iCreate[7]

platform. Figure 5 shows a picture of the robotic radio node.
Each iCreate robot featured bumper sensors, an odometer,
and wall following infrared sensors on its right. Movement
commands were issued from a Gumstix Verdex
Microprocessor. Each iCreate was equipped with an Ubiquiti
5 GHz XR5 module for radio communication with OLSR [6]
as the routing protocol. In our experiment, all stationary
entities had the same Ubiquiti radio unit connected to a
Linux PC, which sent and received traffic flows to and from
the network, but did not make any intelligent decisions about
tentacle building. iCreate built-in wall following behavior
was used as the primary exploration behavior in our
experimental office environment.

A tough challenge for indoor environments is the
unpredictable signal spikes due to multipath radio signals.
For the rest of the section, the algorithm is able to guide a 7-
robot radio network into a self-organizing and self-healing

network. We have also experimented on how fast Radio
Guided Exploration is able to speed up a free node joining a
tentacle. The experiments were performed on a floor of
Information Sciences Institute (ISI), about 30m x 40m. The
doors of the rooms were closed during experiments. Figure 6
shows the floor plan of this floor.

A. Experiments on Self-Organization and Self-Healing
Seven robots were placed randomly on the hallways of the

environment. Robots were started in pairs, with 45 seconds
between pairs, to simulate the deployment delay of the
robots in a real environment. Figure 6 shows a converged
instance of one of the three runs where every source entity
(S1, S2 and S3) has a connected route (in red) to the gateway
entity G1 represented in green. In this instance, node N1 was
a closed node having distance vector [G1, S1, S2 , S3] = [3, 1,
2, ∞] while N7 had [2,2,1, ∞] and S1 had [4, 0, 3, 3]. N1 was
a closed node as it was not dominated by any other nodes.
However, since there was no traffic going through for a
certain time (two minutes in the experiment), node N1
became a free node again.

We have also observed that the algorithm allows free
nodes to improve the performance of the network. When
node N6 moved to the gray shaded area, it began to carry
traffic. The underlying ad-hoc routing protocol in the
network module (OLSR) switched network traffic from
source S1 and S3 to use N4 instead of N6. Since N1, N4 did not
carry any further traffic, they became free nodes after a two-
minute timeout.

During the experiment, we also noticed that node N2 had
entered LocalOpt mode with traffic at half of the maximum
throughput. After testing new locations for several times, the

Fig.5. A radio node built by iRobot Create with Ubiquiti radio
module and Gumstix Verdex.

TABLE IV
PERFORMANCE OF SELF-HEALING IN SIMULATION

Time(sec) Actions Results
t=600 Powered off 4

nodes (Remain 6)
Self healed – no coverage loss

t=1200 Powered off 3
nodes (Remain 3)

Self healed – no coverage loss

t=1800 Powered off 1
nodes (Remain 2)

Lost one source (Supporting 4
sources)

t=2400 Powered off 1
nodes (Remain 1)

Lost one source
(Supporting 3 sources)

t – time after starting up the nodes.

Fig. 6. A snapshot of the position of 7 robots during 3-source and 1-
gateway experiment. Red lines are radio links with traffic.

TABLE III
PERFORMANCE OF TENTACLES IN SIMULATION

Condition Signal Strength
Noise stdv (dB)

Coverage (%)

Excellent 2.2 97.64
Excellent 7 97.07
Fair 2.2 94.26
Fair 7 93.15
Poor 2.2 83.26

Poor 7 80.58

1387

radio node ended up with a location with better line of sight
as shown in Figure 7.

To test the capability of self-healing, node N5 was turned
off while N6 was stationary and N4 was a free node. Traffic
from S1 and S3 stopped immediately. Nodes N3, N4 and N6
resumed exploration and built tentacles in the lower hallway
in approximately 10 minutes. These three nodes spread out
evenly in the hallway and resumed carrying the traffic from
S1 and S3 to G1.

B. Experiment of Radio Guided Exploration
The convergence speed highly depends on how fast a radio

node can explore to the leaf of a tentacle with Radio Guided
Exploration. As shown in Figure 8, a source node was
placed in an office in the middle of the hallway. A free
radio node was switched on next to it. The node selected its
exploration behavior every 15 seconds. With five runs using
Radio Guided Exploration, the node picked whether to
Continue, Turn_Back, or do a Random Turn every 15
seconds with the history of signal strengths. For five runs
without Radio Guided Exploration, it made a Random Turn
every 15 seconds before resuming wall following behavior.
With a maximum of 15 minutes for each search, results
showed random exploration around an average of 10.5
minutes with 4.5 minutes standard deviation to explore the
shaded area. For the test using Radio Guided Exploration, it
took only an average of 2.5 minutes with 30 seconds
standard deviation to get to the right position and start a
tentacle with the source entity. The decision made every 15
seconds had about 90% accuracy. This shows that Radio
Guided Exploration is at least 3 times faster than random for
a radio node to look for the leaf of a tentacle to join in
hallway scenario.

VI. CONCLUSIONS AND FUTURE WORK
This paper addresses the problem of connection

establishment and maintenance between entities in an indoor
unknown environment. A bio-inspired TENTACLES
algorithm is introduced to stretch “tentacle” from stationary
entities to connect another entity by incrementally
connecting radio nodes to the leaf of tentacle. Tentacle
rebuild frees up non-useful tentacle resources to build new
connections. Local flow optimizations help to maximize
traffic based on local view of network traffic condition.

Experiments in simulation and practical robots show the
solution converges with good coverage. In spite of the
unknown environment, a noisy radio signal is able to give
coarse direction, allowing free nodes to build tentacles more
quickly.

Future work includes algorithm development with the
removal of the stationary assumption of sources to allow
dynamic movement of entities, exploration of environments
with frequent branches (such as open rooms), and theoretical
analysis on the relationship between convergence time and
different parameters such as number of robotic nodes and
tentacle rebuild time.

ACKNOWLEDGEMENTS
We are very grateful that robots and radio units were

sponsored by the DARPA LANDroids program. We would
like to thank the Information Sciences Institute of the
University of Southern California and ArgonST for
providing office areas for experiments.

REFERENCES
1. Spears, William, M., Spears, Diana, F., Hamann, Jerry, C., & Heil,

Rodney (2004) Distributed, Physics-Based Control of Swarms of
Vehicles. Auton. Robots 17, 137--162.

2. Zhang, F., & Chen, W. (2007) Self-healing for mobile robot networks
with motion synchronization. Intelligent Robots and Systems, 2007.
IROS 2007. IEEE/RSJ International Conference on , 3107-3112.

3. Zavlanos, M. M., & Pappas, G. J. (2005) Controlling Connectivity of
Dynamic Graphs. Decision and Control, 2005 and 2005 European
Control Conference. CDC-ECC '05. 44th IEEE Conference on ,
6388-6393.

4. Howard, A., Matarić, M. J., & Sukhatme, G. S. (2002) An incremental
self-deployment algorithm for mobile sensor networks. Autonomous
Robots, Special Issue on Intelligent Embedded Systems 13, 113--126.

5. Stump, E., Jadbabaie, A., & Kumar, V. (2008) Connectivity
management in mobile robot teams. Robotics and Automation, 2008.
ICRA 2008. IEEE International Conference on , 1525-1530.

6. Jacquet, P., Clausen, T., Laouiti, A., Qayyum, A., & Viennot, L.
(2001) Optimized link state routing protocol for ad hoc networks. ,
62--68.

7. iRobot. iRobot Create Owner's Guide.
http://www.irobot.com/filelibrary/create/Create%20Manual_Final.pdf.

Fig. 7. Node N2 moves to a new position and stays for better traffic
flow

Fig. 8. Blue shaded areas are the candidate position for a radio node to start
a tentacle with node S1 as parent.

1388

