
  

  

Abstract— This paper presents a bio-inspired, distributed 
control algorithm called TENTACLES for a group of radio 
robots to move, self-configure and maintain communication 
between some critical entities (such as humans, command 
centers, or other systems) in an unknown environment. The 
basic idea is to direct robots’ explorative movements to grow 
“tentacles” from entities and establish links when tentacles 
meet. This approach can self-heal failures of robots and 
improve communication coverage and quality over time. 
Experiments in simulations and real robots have shown positive 
results. 

I. INTRODUCTION 
stablishment and maintenance of communication 
between entities in an unknown and dynamic 

environment is a very challenging problem. This is due to 
the unknown locations and distances between entities, 
obstacles that may block or deflect signals, unexpected 
changes in the environment, and movement of or damage to 
the entities.  One possible solution is to deploy a group of 
intelligent robots to explore the environment and position 
themselves to provide relays. Such robots must self-
configure into an effective network, self-optimize the 
performance of the network, self-heal changes and damages, 
and adapt to movements of the critical entities. 

Researches have studied the robotic radio network both in 
open areas and in indoor environments. For open areas, the 
nodes of the radio network are able to form different patterns 
using attraction-repulsion fields [1], self-heal broken links 
[2] and self-optimize connectivity [3]. The assumptions 
usually include a nearly perfect inverse square radio model. 
However, the multipath property of indoor radio signal 
environments causes signal strength to be noisy and 
unpredictable within nearby locations. Howard et al. [4] 
incrementally build a sensor network covering indoor 
building, which relies on another radio network node as a 
landmark. Stump et al. [5] optimizes the connectivity of the 
robotic radio network with a known global map. Both 
approaches require the robots to be initially connected and 
the relative position between robots to be known. Compared 
to these and other previous work, the main contribution of 
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this paper is a distributed coordination algorithm for self-
organization and self-healing of robotic networks to 
establish radio links between critical entities despite the 
unpredictability and noise of radio signals and unknown 
locations of entities and relay nodes. The ideal resulting 
network should support high-quality communication 
between the critical entities yet use as few robots as possible. 

One example of possible applications is urban search and 
rescue where rescuers have to enter unknown buildings and 
communications to the outside world is vital. In a complex 
environment, walls, doors, obstacles and other materials 
make radio propagation hard to predict. At the same time, 
relay nodes may be damaged and unpredictable changes of 
environment, such as changes in signal propagation due to 
fire damage, may occur. This often results in a situation 
where it is essentially impossible to determine the accurate 
relative positions of other nodes, and how the signal 
strengths may change when transmitters and receivers move.  
In these scenarios, pre-deployment of relay nodes can be 
infeasible. Radio nodes must to self-organize the 
communication links between entities to be effective. 

In this paper, we address a subset of the problem of self-
organization and self-healing of robotic radio networks by 
assuming that the critical entities (non-robots) are stationary 
even though their locations and the map of the environment 
are unknown to the robots. 

The paper is organized as follows. Section II describes the 
problem in detail. Section III presents the TENTACLES 
algorithm with illustrations of how a tentacle is built and 
removed, how robots explore the environment, and how they 
locally optimize network performance. Section IV and V 
discusses the implementation of the algorithm and the 
experimental results in simulation and on real robots. 
Section VI concludes the paper with future research 
directions. 

II. THE PROBLEM DESCRIPTION 
Figure 1 illustrates an overview of the problem to be 

solved. The nodes Si and Gi are the critical entities to be 
connected (they are assumed stationary in this paper) and the 
nodes Ni are the mobile robots with relay radios. We assume 
the distance between the Gi and Si nodes are too large for 
them to communicate directly. There are unknown obstacles 
in the environment (not shown) that may prevent robots 
from going freely to wherever they want. The goal of the 
robots is to move to positions where they can relay the 
communication between the Gi and Si nodes with sufficient 

TENTACLES: Self-Configuring Robotic Radio Networks in 
Unknown Environments 

Harris Chi Ho Chiu, Bo Ryu, Hua Zhu, Pedro Szekely, Rajiv Maheswaran, Craig Rogers,  
Aram Galstyan, Behnam Salemi, Mike Rubenstein, and Wei-Min Shen 

E 

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 1383



  

bandwidth and throughput. They accomplish that by 
growing “tentacles” (the thick links between nodes) from the 
Gi and Si nodes and hope the tentacles will meet (shown by 
the dashed lines). The robots may notice that they are non-
critical in certain tentacles such as N3, N4, N6, N8 and N9 and 
such nodes in the tentacles should be removed to establish 
more promising tentacles somewhere else.  The 
TENTACLES algorithm to be described below will run on 
each robot and together the robots will self-configure, self-
improve, and self-maintain the network even in case of node 
damages.   

To ease our following descriptions of radio signal 
strength, the range of the strength will be in 4 regions: 
Strong, Good, Normal, and Weak separated by three signal 
strength threshold values α, β and γ (α > β > γ). A 
connection is considered as disconnected if its strength 
signal is in the Weak range. 

 

III. TENTACLE BUILDING ALGORITHM 
Without global map information and accurate relative 

physical positions of other radio nodes, connecting the 
entities and even the robotic radio nodes themselves does not 
come easily. At the same time, robotic radio nodes must 
balance the tradeoff between moving/exploring unknown 
areas for possible connections and staying/maintaining the 
existing links (i.e., not moving). Intuitively, a radio node 
should stop moving once it realizes it has already been 
relaying network traffic between the critical entities. If 
relaying is not possible without multiple agents, a “tentacle” 
should be grown. Technically, a tentacle consists of a series 
of stationary robotic radio nodes stretching out from the 
entities. These entities can communicate when the tentacles 
meet one another. If a tentacle is deemed to be useless 
(based on its lifetime and whether it carries communication 
traffic or not), that tentacle will be rebuilt and nodes become 

“free”. A free node continues to explore candidate positions 
to join a tentacle by detecting the gradual change of radio 
signal strength of its neighboring nodes in the tentacle.  
Nodes that are part of a tentacle or are relaying network 
traffic remain relatively stationary, following a local 
optimization policy to gradually adjust their position to 
increase their relay bandwidth and throughput and hence 
overall network performance. 

The TENTACLES algorithm consists of four parts: 
Tentacle Building, Tentacle Rebuild, Radio Guided 
Exploration and Local Flow Optimization. Table I shows the 
data structure used in the algorithm. Each node N stores its 
node data including node identifier nodeIDN, a tentacle array 
tentacleN[] storing the identifiers of all its ancestors up to a 
entity node and ending with its own nodeIDN e.g. [G1,N5, 
N6], a distance vector array distanceVectorN[] determining 
the criticality of the node in current network topology and a 
boolean flag specifying whether it is the end of a tentacle or 
not. This node data structure is sent periodically as a probe 
message to all its one-hop neighbors. All receiving nodes 
store or renew corresponding node information in 
NeighborTable with a new timestamp; expired information 
will be ignored. Once a node ceases to receive updated 
messages from its immediate parent node, it becomes a free 
node. 

A. Tentacle Building 
A tentacle always starts with an entity (root) node and 

ends with a robotic (leaf) node. The idea of tentacle building 
is to incrementally connect free nodes to the leaf node of a 
tentacle with a proper connection link with Good signal 
strength. Initially, a root node is also a leaf node. In 
summary, a free node considers joining a tentacle based on 
four criteria. (1) Good Signal Rule -To build a tentacle good 
for communication, the signal strength between the free 
node and the leaf node should be in the Good range (not in 
the Strong range). (2) No Branching Rule - To reach out as 
long as possible, tentacles may not branch. However, 
multiple tentacles are allowed to grow from the same entity 
node as long as the children of this entity node are not 
connected in Good signal range to each other. (3) Weak 
Grandparent Rule - To prevent “folding” of the tentacle, a 
free node joins a tentacle only when the signal strength to 
the parent of the leaf node is much weaker than to the leaf. 
(4) Avoid Previous Parent Rule - To avoid repeatedly 

TABLE I 
DATA STRUCTURE IN TENTACLE BUILDING ALGORITHM 

Local Data Structure: 
Node myNode 
      int nodeID; int tentacle[]; int distanceVector[]; bool isLeaf; 
 
NeighborNodeEntry nbrNode 
      Node nbr; int timestamp; 
 
NeighborNodeEntry NeighborTable[]; 
Node Msg; 
 

 

 
Fig. 1. A tentacle building and connection map with distance vector. 
Node P => node Q means P is a parent of Q in a tentacle with Good 
signal strength. Dotted lines represent radio links between nodes in 
Normal range of signal strength or better. Distance vectors [Sink, 
Source] are used for differentiation between open nodes and closed 
nodes. 
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forming similar tentacles searching the same area, the free 
node will avoid joining previous parents within a certain 
time period. 

 Whenever a free node N detects the fulfillment of all four 
tentacle-building criteria, it stops its exploration and extends 
a tentacle from leaf node L. A Join-Tentacle request 
message is sent to node L and an acknowledgement message 
is received with node information. The data variable isLeafN 
is set to true and tentacleN[] is updated by concatenating 
tentacleL[] with nodeIDN. For missing acknowledgements, 
node N resumes exploration. There are two mechanisms to 
prevent “dead tentacle” and branching effects. To prevent a 
“dead tentacle” with isLeafL being false, node L only 
confirms node N received the acknowledgement from probe 
messages with the updated tentacleN[] from N. To prevent 
branching due to simultaneous Join-Tentacle requests from 
free nodes, a Rebuild message will be propagated from the 
branching node to a randomly selected branch to free the 
radio nodes. 

B. Tentacle Rebuild 
Tentacle rebuild aims at releasing non-critical radio nodes 

from tentacles. This involves evaluating the criticality of 
radio nodes and freeing up stationary nodes in a distributed 
way. Critical nodes are the ones (1) not connected to other 
entities or (2) not essential for carrying traffic between any 
two entities.  

 To identify the connectivity of a node between 2 entities, 
we define two node types, closed and open and assume 
network traffic always goes through Normal links between 
relay nodes and a shortest route from one entity to another 
entity with smallest hop count. Closed nodes are on the 
shortest path to another entity for every link from one entity. 
For example, in Figure 1 node S1 has three links to node N1, 
N7 and N9. Only links to N1 and N7 have a route to another 
entities. and therefore N1, N2, N5, and N7 are closed nodes. 
An open node is simply a non-closed node. It is either not on 

the shortest path to another entity, whether ot not it belongs 
to a tentacle. Open and Closed nodes are determined by a 
distance vector based on the “distance” (number of hops) 
from each entity initialized with infinity. A distance vector 
m is said to dominate another distance vector n when all 
entries in m is smaller or equal to the corresponding entries 
in n with at least one entry in m strictly smaller than that in 
n. Therefore, a closed node has its distance vector with at 
least 2 finite entries and not domninated by the one of any 
neighboring nodes. Table II shows the function for updating 
distance vectors distributedly. Each entry of a distance 
vector is updated by taking the minimum among the 
neighbors and adding one. If the corresponding node is in a 
tentacle, the entry will be based on the hop count distance 
from the root node.  

Sometimes, closed nodes are not very useful for overall 
network performance with some adhoc network protocols, 
like OLSR[6]. Route selection is usually based on the cost of 
communication relating to the link quality and hop count. 
For example, in Figure 1, if the network protocol chooses 
hop count as its cost function, the route with node N7 is 
sufficient for the traffic and the route with node N1, N2 and 
N5 becomes redundant. These nodes can set themselves free 
if there is no network traffic going through for a period of 
time.  

To release open nodes in a tentacle after a certain waiting 
period, a Rebuild message is initiated from an open leaf node 
and propagates to all the ancestors. A closed node will stop 
the propagation while an open node will forward the 
message and resume exploration upon receiving Rebuild 
message. For example, in Figure 1, N4, N6, N8 and N9 
initiates Rebuild messages and together with N3 free 
themselves from the tentacle.  Each node remembers the 
identifier of its previous parent  which it uses to avoid 
forming the same tentacle repeatedly. 

C. Radio Guided Exploration 
 To speed up tentacle creation, the gradient of radio signal 
strength may be a good source of localization information 
through triangulation. Figure 2 shows an experimental 

Fig. 2. Trend of signal strength signal. Raw data is in blue. Averaged 
data over last 10 raw data points is in red with α, β, γ threshold 
specified. 
 

TABLE II 
PSEUDO CODE FOR UPDATING DISTANCE VECTOR 

dv[i] = infinity //for all node i is sink/source node  
UpdateDistanceVector()  
  FORALL (node i is a source or sink)  
 dVMin= infinity 
 IF (node i is the root of current path) 
         dv[i] = path.size -1 
     ELSE 
         FORALL (Neighbor n in NbrTable)  
            IF  (SignalStrength(n) is better than Normal) 
     THEN  
                    IF (n is a sink/source node) 
                         dv[n] = 1; 
                    ELSE 
                          dVMin = min(dVMin, n.distanceVector[i])   
                  IF  dv[i] < dVMin +1 
                 THEN dv[i] = infinity 
                    ELSE dv[i] = dVMin +1 
                   ENDIF 
          ENDIF 
   ENDFORALL 
     ENDIF 
  ENDFORALL 
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measurement of a radio node approaching, passing by and 
leaving another radio node. Values are obtained through 
averaged smoothing of collected signal strength values.  In 
our experimental setup, we obtained  only ~2 dB difference 
over 1 meter, which made it hard to triangulate the position 
of other nodes in our indoor office-like environment.   

To guide the exploration without triangulation, a radio 
node can hypothesize whether it is going Towards (T) a node 
or it is going Away (A) from another radio node by 
comparing its increased or decreased averaged values 
respectively to those at a previous location over a fixed 
travel distance, such as 1 meter. A decision on the 
continuation of current action can then be made based on the 
observed signal strength changes. A decision to 
“Turn_Back” means the node should reverse previous 
behaviors and search backwards. “Continue” means the 
node should continue with its previous behavior. “Random 
Turn” means the node should turn to a random direction and 
resume its exploration behavior.  

To travel along a multi-node tentacle, we start with a 
simple case of two-node tentacle. Figure 3 shows five 
regions defined according to the relative signal strength 
between 2 nodes – node P (parent) and node L (leaf). Our 
goal is to move a free node from any region to the boundary 
of region 4 and 5 and join the tentacle.  

Region 1: SignalStrength(L) is Weak 
 Region 2: SignalStrength(P) > SignalStrength(L) 
 Region 3: SignalStrength(P) > β and SignalStrength(L) >β 
 Region 4: SignalStrength(P) < Signal Strength (L) 
 Region 5: SignalStrength(P) is Weak 

We also define signal trend tuple (TP, TL) with TP ={A,T} 
and TL = {A,T} indicating the movement trend of node P and 
L respectively. A decision can be made based on the region.  
For example, in Region 2, trend (T,T) means the exploration 
is moving towards node P and L. This behavior should be 
Continued. A Random Turn is taken for uncertain trends 
resulting from noise and the randomness can help the robotic 
node to leave the uncertainty area and local minima. By 
always considering two nodes closest to the leaf of the 
tentacle, a free node is able to traverse along a tentacle to its 
leaf and extend the tentacle. 

D. Local Flow Optimization 
Even though a node should remain stationary to maintain 

connectivity whenever it carries network traffic, a better 
bandwidth might result if a node just slightly explores the 
nearby area. For example, a node has joined a tentacle and 
just missed line-of-sight to some other node as it moved 
around a corner. In this case, a local search is essential to 
improve network performance.  

Local Flow Optimization mode (LocalOpt) is activated for 
a node with a low traffic flow. The node goes forward for a 
fixed distance (1 meter) with one random direction out of 
eight 45-degree separated directions. The node stops 
whenever the new location is reached or hits an obstacle. It 
stays if it receives increased traffic, else it returns to its 
original position. If the node gets blocked while returning, 
the node quits LocalOpt and moves again only if there is 
insufficient traffic flow to anchor it in place. 

To avoid destroying the link due to simultaneous 
movement, nodes are coordinated through the periodic probe 
messages to inform neighbors about current LocalOpt 
modes. Once neighboring nodes both enter LocalOpt mode, 
they go backward towards their original positions and quit 
the mode. They restart the mode only if they still carry low 
traffic flow after a random period of time.  

IV. SIMULATION 
Figure 4 shows a snapshot of a simulated scenario having 

five sources connected to a gateway (sink). Radio nodes (x) 
move around with wall-following behavior in an office-like 
environment to search for connections between source 
entities (+) and the gateway entity (.). Other legends are 
detailed in the figure. 

 In the simulation, radio signal strength decreases over 
distance based on an inverse square model. The strength of a 
radio signal is fractioned when it penetrates a wall. Each 
node is able to communicate and detect the signal strength of 
its connected neighbors. The TENTACLES algorithm is 
implemented without Local Flow Optimization. 

Experiments have been carried out with three initial 
connections.  

 
Fig. 3. Breakdown of decision making of radio guided exploration 
in a 2-node tentacle scenario. 

 
Fig. 4. A snapshot of simulation for TENTACLE algorithm and 5 
source nodes have connected to the gateway.  

1386



  

Excellent –  radio nodes connects source to gateway entity 
with Good link quality. 

Fair –  source and gateway are initially disconnected 
and only one radio node next to each entity. 

Poor –  same as Fair condition, but radio nodes are 
far away from gateway entity. 

The performance Coverage measures the percentage of 
total sources that carried traffic to the sink over a period of 
time. Table III shows that the resulting network is able to 
cover at least 4 out of 5 sources most of the time, despite the 
noisy signal in the simulation. 

Table IV gives the self-healing result of the simulation. 
The goal is to test the recovery of the network after nodes 
are turned off in steps. Results show at least 60% of the 
sources can still be connected all the time. 

V. EXPERIMENTS ON REAL ROBOTS 
Similar experiments were carried on the iCreate[7] 

platform. Figure 5 shows a picture of the robotic radio node. 
Each iCreate robot featured bumper sensors, an odometer, 
and wall following infrared sensors on its right.  Movement 
commands were issued from a Gumstix Verdex 
Microprocessor. Each iCreate was equipped with an Ubiquiti 
5 GHz XR5 module for radio communication with OLSR [6] 
as the routing protocol. In our experiment, all stationary 
entities had the same Ubiquiti radio unit connected to a 
Linux PC, which sent and received traffic flows to and from 
the network, but did not make any intelligent decisions about 
tentacle building. iCreate built-in wall following behavior 
was used as the primary exploration behavior in our 
experimental office environment.   

A tough challenge for indoor environments is the 
unpredictable signal spikes due to multipath radio signals. 
For the rest of the section, the algorithm is able to guide a 7-
robot radio network into a self-organizing and self-healing 

network. We have also experimented on how fast Radio 
Guided Exploration is able to speed up a free node joining a 
tentacle. The experiments were performed on a floor of 
Information Sciences Institute (ISI), about 30m x 40m. The 
doors of the rooms were closed during experiments. Figure 6 
shows the floor plan of this floor. 

A. Experiments on Self-Organization and Self-Healing 
Seven robots were placed randomly on the hallways of the 

environment. Robots were started in pairs, with 45 seconds 
between pairs, to simulate the deployment delay of the 
robots in a real environment. Figure 6 shows a converged 
instance of one of the three runs where every source entity 
(S1, S2 and S3) has a connected route (in red) to the gateway 
entity G1 represented in green. In this instance, node N1 was 
a closed node having distance vector [G1, S1, S2 , S3] = [3, 1, 
2, ∞ ] while N7 had [2,2,1, ∞] and S1 had [4, 0, 3, 3]. N1 was 
a closed node as it was not dominated by any other nodes. 
However, since there was no traffic going through for a 
certain time (two minutes in the experiment), node N1 
became a free node again. 

We have also observed that the algorithm allows free 
nodes to improve the performance of the network. When 
node N6 moved to the gray shaded area, it began to carry 
traffic. The underlying ad-hoc routing protocol in the 
network module (OLSR) switched network traffic from 
source S1 and S3 to use N4 instead of N6. Since N1, N4 did not 
carry any further traffic,  they became free nodes after a two-
minute timeout. 

During the experiment, we also noticed that node N2 had 
entered LocalOpt mode with traffic at half of the maximum 
throughput. After testing new locations for several times, the 

 

 
Fig.5. A radio node built by iRobot Create with Ubiquiti radio 
module and Gumstix Verdex. 
 

TABLE IV 
PERFORMANCE OF SELF-HEALING IN SIMULATION 

Time(sec) Actions Results 
t=600 Powered off 4 

nodes (Remain 6) 
Self healed – no coverage loss 

t=1200 Powered off 3 
nodes (Remain 3) 

Self healed – no coverage loss 

t=1800 Powered off 1 
nodes (Remain 2) 

Lost one source (Supporting 4 
sources) 

t=2400 Powered off 1 
nodes (Remain 1) 

Lost one source 
(Supporting 3 sources) 

t – time after starting up the nodes. 
 

Fig. 6. A snapshot of the position of 7 robots during 3-source and 1-
gateway experiment. Red lines are radio links with traffic. 
 

TABLE III 
PERFORMANCE OF TENTACLES IN SIMULATION 

Condition Signal Strength 
Noise stdv (dB) 

Coverage (%) 

Excellent 2.2 97.64 
Excellent 7 97.07 
Fair 2.2 94.26 
Fair 7 93.15 
Poor 2.2 83.26 

Poor 7 80.58 
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radio node ended up with a location with better line of sight 
as shown in Figure 7. 

To test the capability of self-healing, node N5 was turned 
off while N6 was stationary and N4 was a free node. Traffic 
from S1 and S3 stopped immediately. Nodes N3, N4 and N6 
resumed exploration and built tentacles in the lower hallway 
in approximately 10 minutes. These three nodes spread out 
evenly in the hallway and resumed carrying the traffic from 
S1 and S3 to G1. 

 

B. Experiment of Radio Guided Exploration 
The convergence speed highly depends on how fast a radio 

node can explore to the leaf of a tentacle with Radio Guided 
Exploration. As shown in Figure 8, a source node was 
placed in an office in the middle of the hallway.  A free 
radio node was switched on next to it. The node selected its 
exploration behavior every 15 seconds. With five runs using 
Radio Guided Exploration, the node picked whether to 
Continue, Turn_Back, or do a Random Turn every 15 
seconds with the history of signal strengths. For five runs 
without Radio Guided Exploration, it made a Random Turn 
every 15 seconds before resuming wall following behavior. 
With a maximum of 15 minutes for each search, results 
showed random exploration around an average of 10.5 
minutes with 4.5 minutes standard deviation to explore the 
shaded area. For the test using Radio Guided Exploration, it 
took only an average of 2.5 minutes with 30 seconds 
standard deviation to get to the right position and start a 
tentacle with the source entity. The decision made every 15 
seconds had about 90% accuracy. This shows that Radio 
Guided Exploration is at least 3 times faster than random for 
a radio node to look for the leaf of a tentacle to join in 
hallway scenario. 

VI. CONCLUSIONS AND FUTURE WORK 
This paper addresses the problem of connection 

establishment and maintenance between entities in an indoor 
unknown environment. A bio-inspired TENTACLES 
algorithm is introduced to stretch “tentacle” from stationary 
entities to connect another entity by incrementally 
connecting radio nodes to the leaf of tentacle. Tentacle 
rebuild frees up non-useful tentacle resources to build new 
connections. Local flow optimizations help to maximize 
traffic based on local view of network traffic condition. 

Experiments in simulation and practical robots show the 
solution converges with good coverage. In spite of the 
unknown environment, a noisy radio signal is able to give 
coarse direction, allowing free nodes to build tentacles more 
quickly. 

Future work includes algorithm development with the 
removal of the stationary assumption of sources to allow 
dynamic movement of entities, exploration of environments 
with frequent branches (such as open rooms), and theoretical 
analysis on the relationship between convergence time and 
different parameters such as number of robotic nodes and 
tentacle rebuild time. 
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Fig. 7. Node N2 moves to a new position and stays for better traffic 
flow  

 

 
Fig. 8. Blue shaded areas are the candidate position for a radio node to start 
a tentacle with node S1 as parent. 
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