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Abstract— In this paper, we present a new algorithm for the
alignment of two 3D scans. The approach uses a region-based
matching technique. We make no assumptions about the initial
positions of the scans. Regions are described by a probability
density function (pdf) computed from low dimensional surface
descriptors (curvature or normal cone). The algorithm allows
registering directly raw noisy data, possibly with the presence
of outliers, without any pre-processing, such as filtering, denois-
ing, or reconstruction. Region correspondence is found using
similarity function based on the comparison of regions pdf and
under geometry constraints. Results on raw scan data sets are
presented to illustrate and evaluate the algorithm.

I. INTRODUCTION

The scans alignment, or global registration, problem con-

sists in finding the common overlapping area between two

3D scans, called model and data, and in estimating a coarse

rigid transformation that registers the data with respect to

the model. This problem is encountered not only in the 3D

registration pipeline but also in many other applications such

as 3D shape retrieval, shape modeling, 3D object recognition,

etc.

Commonly, global registration is done pairwise and it can

be divided in two sub-problems. First, the portions of the

two scans that overlap are established through point or region

correspondence. Next, using a set of point correspondences

on the overlapping area, the estimation of an initial transfor-

mation is performed. The result has to be sufficiently close

to the correct registration pose in order to be used as the

starting pose for automatic fine registration.

Missing data and holes currently occur in the input data

due to occlusions and material reflections during the acqui-

sition procedure. This raw data challenges the entire global

registration methods in several ways. First, the input data

set is too large for exhaustive point correspondence search.

Second, noise and missing data affect the local geometry

around a point and the global properties of the sample. Since

the scans are in arbitrary initial position, the solution space

of all possible alignment transformation is huge and search

in this entire space is unfeasible.

Earlier work has identified several promising strategies

that could be employed for pairwise scans alignment under

these conditions. Nearly all global registration algorithms

use a feature-based strategy. To deal with the growing data

volume, salient features on both scans are identified and

only a smaller sub-sample of data and model are used to

match features under some rigidity (distance) constraint. The

main drawback of feature-based approach is its performance

directly related to the feature estimation.

Our global registration algorithm presents a different

strategy to align pairs composed of two unstructured point

clouds. We propose a region-based instead of feature-based

approach. Region is preferred because of its descriptive

power. Region representation also reduces the data volume

and minimizes the noise effect on the global registration

pipeline.

We use a local histogram as the region representation,

which embeds the descriptor probability distribution over

the region. The similarity function is based on histogram

matching, and it gives a set of potentially corresponding

region pairs. We assume that there is an one-to-one region

correspondence. In addition, we increase the robustness of

the matching by applying a combinatorial optimization to

discard wrong correspondences, under the assumption that

two point sets are related by a rigid transformation.

This article is organized as follows. In section II is

presented some previous works on global registration. The

input data and the local surface descriptor used are presented

in section III. In section IV, an overview of our algorithm is

presented, with the main steps of the pipeline. Region repre-

sentation, matching algorithm and alignment transformation

estimation is presented in section V. Experimental results on

real scans are showed in section VI. Finally, we present the

conclusions and the perspectives in section VII.

II. RELATED WORKS

Despite of the abundant literature about the problem of

global registration, most commercially available systems still

require user interaction for this step. The past research efforts

to solve this problem concentrated mainly on matching

local shape features [15]. Region-based matching for scans

alignment has gained less attention, partly because of the lack

of segmentation algorithms which produce repeatable regions

[19]. While the first approach focuses mainly on selecting

sparse local surfaces descriptors and comparing them over

different scans, region approaches is less depend on the local

feature itself and more dependent on the feature distribution

over the region.

Feature-based approaches are categorized according to

the dimension, or level of details, of their local surface

descriptors. A survey on scan initial alignment based on

features is presented in [15]. High-dimensional features used

for global registration include spin-images [13], harmonic-

shapes [20], point signatures, splash, etc. The advantage of

high-dimensional descriptors is that, given a discriminant

point in one scan, it is likely that it will be found only a
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Fig. 1: Region-based global registration algorithm pipeline. This paper contributes the outlined stages of the global registration

pipeline.

few points with similar descriptors. Scans alignment is solved

through descriptors matching and outliers filtering. However,

the scan alignment algorithms using high-dimensional de-

scriptors are both time and memory consuming and they are

difficult to compare efficiently.

Low dimensional descriptors, on the other hand, compute

only a few values per point. Examples of such descriptors

include curvature-based quantities [9], [18], [5], shape index

[4], integral volume descriptor [7], [11]. These descriptors

are computed around a small neighborhood. Consequently,

many points on both model and data can have the same

feature value. Since these descriptors are not discriminant,

matching low-dimensional descriptors does not guarantee

one-to-one robust feature correspondence. The scan align-

ment methods using these descriptors perform feature selec-

tion pre-processing, in order to find salient features and filter

the set of points used in matching process.

Only a few region-based global registration algorithms

were proposed in the literature [12]. Region-based global

registration algorithms have more resemblance to the works

on partial shape matching [6], [14], [17] and shape regis-

tration [12]. Compared to the matching problem, where the

goal is to define a similarity function to compare shapes,

the global registration problem have some additional issues,

such as registration and integration.

In [12] is proposed a complete pipeline to solve the regis-

tration problem. They use a region-based global registration

approach, where they partition the input dataset into homoge-

neous regions. They find the initial region correspondence set

through region matching and use a forward search algorithm

to find all correct surface matches. Our method differs from

the one in [12] in both input data representation, region

matching and correspondence strategy. First, while in [12]

the input data is partition into homogeneous regions, we have

regions with bounded descriptor variation. It provides regions

with more dynamic and matching turns to be more stable,

since regions are more discriminant. Both approaches use a

set of corresponding regions to compute the initial alignment.

However, while in [12] they aim at finding all corresponding

regions and use a foward search algorithm for that, we find a

minimum number of corresponding regions and use a branch-

and-bound algorithm.

III. RAW POINT CLOUDS AND LOCAL SURFACE

DESCRIPTORS

In our approach, we use raw point clouds as our modeling

primitive. A 3D scan is then represented by an unstructured

point cloud defined by S = (X, I). Let X = {xi} be

the finite set of sample points that approximates to some

underlying piecewise smooth surface Σ, where the point xi

is defined by its 3D coordinates in the metric space R
3. The

mapping I assigns to each point xi ∈ X a descriptor vector,

I(xi) ∈ R
m which characterizes locally the surface around

the point. This descriptor can be both estimated from the

input data or provided by the acquisition system.

We are particularly interested in low-dimensional geomet-

ric descriptors, such as curvature and various curvature-based

quantities [9], [18], [5], [7]. These descriptors measure how

gently or strongly curved a surface is around a point. The

properties that make low-dimensional descriptors appropriate

to be applied to large data set are their invariability under

rigid transformation and their low memory and computa-

tional cost. While the first property allows direct feature

estimation and distribution comparison, the second yields

into feature computation and comparison efficiency.

Any low-dimensional descriptors can be taken in our

algorithm. In this paper, we use three possible geometric

descriptors: the Mean and Gaussian curvatures [5], and the

normal cone [2].

To compute these descriptors, the normal vector associated

with the point must be estimated from the input data. We

use a local neighborhood of a point which it assumed to

be homeomorphic to a disc to estimate the normal vector.

The neighborhood system is the sphere around a point xi,

consisting of all points in X that are inside a sphere centered

in xi with a radius r, where r is proportional to the input data

density [2]. The normal vector is estimated using the prin-

cipal component analysis [10], minimizing in least square

best fitting the plane formed by the neighborhood. Mean

and Gaussian curvature is computed using the technique

presented in [5]. In the next section we present an overview

of the algorithm and its main steps.

IV. ALGORITHM OVERVIEW

We formulate our global registration algorithm as the

problem of finding a set of region correspondences and

use these correspondences to compute the initial alignment

transformation. The algorithm pipeline is illustrated in figure

1.

Let SA and SB be the data and the model raw point

clouds, respectively. After segmentation, both data and

model clouds are partitioned into a set of regions, PSA
=

{A1, . . . , An} and PSB
= {B1, . . . , Bm}. Segmentation step

aims at reducing the volume of data treated without loosing
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discriminant information about initial scans. A region is

characterized by a descriptor vector. This descriptor vector

is composed by the region barycenter and an histogram

representing the probability density function of a geometric

descriptor over the region.

In the case of rigid motion, three corresponding points

are sufficient to uniquely determine the alignment transform.

Working in the region space, the alignment transform is

determined by three corresponding regions. Assuming that,

on the overlapping area, there are at least three corresponding

region pairs, a naive alignment scheme has a time complexity

of O(m3n3): for each region triplet from PSA
take a set of

three regions from PSB
, solve the unique rigid transforma-

tion using this correspondence, and evaluate the quality of

the current transform. This solution requires to compute the

transformation for the entire set [7] and it becomes overly

expensive as the number of regions grows. In the present

paper we propose an algorithm to explore efficiently the

search space of possible set of corresponding region triplet

pairs.

The correspondence between two regions Ai and Bj is

establish through their equivalence relation. We say two

regions Ai and Bj are equivalent if it is observed similarity

in their absolute region properties and geometric consistency,

or relational constraints, among regions on the overlapping

area.

We use the first equivalence condition to build an initial

set of potential correspondences. This set is built by finding,

for each region Ai ∈ PSA
in the data, a set of regions

C(Ai) = {Bj} ⊂ PSB
in the model which have similar

attribute probability distribution. Intuitively, two regions Ai

and Bj potentially correspond if they have similar attribute

distribution.

The second equivalence condition states that the geometric

constraints given by the transformation class that is consid-

ered for registration (e.g. rigid objects, rigid transformation,

etc.) result in a set of conditions that need to be verified

between correspondences. From body rigidity hypothesis,

we have that any rigid transformation has to preserve inter-

point distance, which is based on the distance between two

points on the same point cloud. We use the internal pairwise

distance to build, from the initial potential correspondence

set, a set of potential region triplet pairs. In this way, we

avoid the computation and evaluation of the alignment for

each potential pair of region triplets. Furthermore, this step

filters wrong correspondences and, consequently, reduces the

search space of possible correspondences.

Finally, we have only a small set of region triplet pairs

that potentially are in correspondence. For each region triplet

pair in this set, it is computed the candidate transformation

that aligns the region triplet pairs. The initial alignment

transformation is the one that minimizes the distance between

the two point sets. In figure 2 we shows the main steps of the

pipeline and the resulting alignment on the Bunny dataset.

Fig. 2: Region-based global registration algorithm. First

column: raw point clouds. Data (top) and model (bottom).

Second column: regions obtained from segmentation and

region triplet pairs that produces the best initial alignment.

Third column: point clouds after alignment transformation is

applied.

V. PAIRWISE REGION-BASED MATCHING

As explained earlier, the algorithm relies on triplets of

regions to estimate the transformation. We developed a

branch-and-bound algorithm to search efficiently the solution

space of possible regions correspondences. Finding the best

triplet of corresponding regions is done by descending the

decision tree, incrementally making choices about which

pairs of regions should be in the correspondence. This is

a greedy algorithm, since it never backtracks to reconsider

the choice.

A. Region Representation

In order to find region correspondences, we derive a

concise representation of each region. We store the following

information for each region Ri:

Ri −→ {c(Ri), |Ri|, H(Ri)} (1)

where,

• The point c(Ri) represents the position of the region,

defined as the closest point to the barycenter of the

region.

• |Ri| is the size (number of points) of the region Ri.

• H(Ri) contains the signature of the region Ri. The

mapping I defines the geometric descriptor and asso-

ciates with each point x ∈ Ri a value I(x). In this

paper, we assume that I(x) ∈ R is one dimension.

H(Ri) is the descriptor values histogram of points

x ∈ Ri.

The histogram H(Ri) is a non-parametric representation

of the probability density function of a region. Histograms

have been used in both 3D global shape representation [3]

and high-dimensional local descriptors [13], [20]. We pre-

ferred a non-parametric pdf representation over a parametric
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one because of its ability to discriminate higher dimensional

information.

To be able to compare histograms, we will construct a

histogram for every region pair Ai and Bj with the same

parameters. The number of bins β in the histogram is

computed using Scott’s rule [16], β = 3.49σIN
−

1

3 , where

σI is the standard deviation of the N points. We take

N = |Ai|+|Bj | and σI is computed over the data represented

by Ai and Bj .

Then, each histogram H(Ai), H(Bj) is characterized by:

Hmin = min{I(x)
x∈Ai

, I(x)
x∈Bj

} (2)

Hmax = max{I(x)
x∈Ai

, I(x)
x∈Bj

} (3)

Regions are obtained through the segmentation of the input

datasets. We formulate 3D point cloud segmentation as a

graph partition. The point cloud is partitionned into subsets

(regions), where the maximum descriptor variation between

region points is bounded. For this, we use a modified ver-

sion of the data-driven MST-based segmentation algorithm

presented in [1], [2], where the partition criteria relies on

region homogeneity.

Let S be the input point cloud. The MST-based segmenta-

tion algorithm partitions the input into n subsets or regions,

PS = {R1, . . . , Rn}. Each region Ri ∈ PS is represented by

a set of points that are linked by a unique tree with minimal

cost. The resulting edges have weights that are ε-bounded

in descriptor space. In the original algorithm, ε is a fixed

input parameter. It bounds the tolerated noise level. Here,

we estimate ε from the input data. Given the point cloud S,

we compute a histogram of the descriptor variation on the

edges. This histogram is an approximation of the probability

density function (pdf) that represents the variation of the

descriptor over the region. We choose ε as the value on the

pdf function that guarantees to cover K% of the input edge

set.

Data-driven segmentation algorithms sometimes result in

an over-segmentation or under-segmentation of the same

object and they can produce different results under slightly

different acquisition conditions [19]. The main advantages

of using the MST-based segmentation algorithm over other

data-driven methods are that the solution space of all possible

partitions is drastically reduced and that the noise can be

filtered during segmentation process [2].

B. Pairwise region correspondence

There is a large number of dissimilarity functions to

compare histograms, such as euclidean distance, quadratic

form distance [3], statistical and probabilistic approaches

[13], [8], among others. In this paper we restrict ourselves

to statistical similarity functions.

The formal statistical method for assessing the dissimi-

larity between two probability functions is the χ2-test [8].

Another equivalent comparison measure to histograms is the

intersection measurement, a similarity function which quan-

tifies the common parts of two histograms. The intersection

of two histograms H(Ai) and H(Bj) is defined as:

Fig. 3: The initial of potential correspondences for the Happy

Buddha dataset.

∩(H(Ai), H(Bj)) =
1

β

∑

k

min(ak, bk)

max(ak, bk)
(4)

where β is the number of bins on the histograms and ak, bk

are the k-th histogram cell. Equation (4) is the normalized

intersection function presented in [8] and it assumes values

in the range [0, 1]. We define the dissimilarity cost function

between two regions Ai and Bj from the intersection simi-

larity as :

Ds(Ai, Bj) = [1 − ∩(H(Ai), H(Bj))]
2

(5)

The dissimilarity function Ds(Ai, Bj) assumes values in

the range [0, 1]. The main advantage of this measurement is

that it does not consider regions shape or points location,

which is an advantage when matching partial overlapping

regions. Furthermore, all histogram cells are supposed to

be equally probable. Additionally, this distance function

defavours regions of similar sizes.

The initial set of potential correspondences for each region

C(Ai) is found by taking all regions Bj ∈ PSB
where

the dissimilarity between the regions histograms is such that

Ds(Ai, Bj) < εDs, where εDs is an user-defined parameter.

Figure 3 illustrates the initial correspondence set of the

Happy Buddha dataset.

C. Finding triplets correspondence through geometric con-

sistency

Given a initial set of potential correspondences

{C(A0), C(A1), · · · , C(An)}, the goal of the

correspondence search algorithm is to find three

corresponding regions to estimate the alignment transform.

One way to evaluate the quality of the correspondence is

to compute the alignment transformation for each possible

triplet, or the cRMS (coordinate root mean squared error)

distance, which has been showed to be overly expensive

(see section 2). Another solution is a pairwise comparison of

internal distance between regions taken in each set. Under

rigid transformation assumption, we have that for any region

pair (Ai, B
l
i) and (Aj , B

k
j ) in correspondence, the distance

between the pairs (c(Ai), c(Aj)) should be the same as
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between their corresponding regions (c(Bl
i), c(B

k
j )). The

error metric based on inter-point distance is known as

distance root mean squared error, or dRMS.

We will use the last solution, once it has the advantage

to avoid the computation of the transformation that aligns

the two point clouds. The distance root mean square error

dRMS is defined as

dRMS2 =
1

n

n∑

i=1

n∑

j=1

(‖c(Ai)−c(Aj)‖−‖c(Bl
i)−c(Bk

j )‖)2

(6)

where n is the number of correspondences for the given re-

gions Bl
i ∈ C(Ai) and Bk

j ∈ C(Aj). The dRMS function is

used as an alternative distance function in [7] to robustly find

a set of corresponding features. They proved the equivalence

between the dRMS and the cRMS functions, by showing that

dRMS is both lower and upper bounded by cRMS.

The main advantage of using dRMS to evaluate potential

correspondences is that it does not require to compute

the alignment transformation. In fact, dRMS cost is only

paid once for every point pair, since it compares intrinsic

properties of two sets of corresponding points, namely the

internal pairwise distances of each pointset. It means that, for

each point cloud, the internal pairwise distance of its features

is computed only once and stored in a matrix. To compare

potential correspondence sets in a second point cloud, it is

sufficient to compare their respective matrices.

D. Algorithm

The input of the algorithm is a region set taken from both

data and model. Each region is represented by the descriptor

vector (1). The correspondence problem is viewed as a search

over all possible sets of regions in the model, where we

want to find three corresponding region pairs that minimizes

the distances functions (5) and (6). Our global registration

algorithm proceeds as follow:

1) Build the initial potential correspondence set: For

each region Ai, we will designate the j-th member

of the potential correspondence set C(Ai) as B
j
i , if

Ds(Ai, Bj) < εDs.

2) Form region pairs: For each region pair (Ai, Aj) ∈
PSA

, it is taken the set of corresponding pairs

(Bo
i , B

p
j ) ∈ PSB

, where Bo
i ∈ C(Ai) and B

p
j ∈

C(Aj), characterized by a dRMS (6) less equal than

a given threshold εdRMS . It leads to a set of potential

initial correspondences. We sort this set in order of

increasing distance discrepancy.

3) Add a region to form triplets: From the set of poten-

tial corresponding region pairs, we traverse the search

space looking for a third correspondence, (Ak, B
q
k).

If we do not find a third potential correspondence,

we remove the correspondence pair from the potential

pair. Otherwise, we find the region pair (Ak, B
q
k) that

minimizes the dRMS function.

4) Prune region triplets: At the end of steps 1 and 2, we

obtain a set of potential triplets characterized both by

a minimum dissimilarity (5) and a minimum dRMS

error (6). A prune process is performed in order to

retain triplets that minimize both distance functions.

We sort this set in order of increasing dRMS distance

discrepancy, followed by a pruning. We repeat the

same procedure using the region dissimilarity cost.

5) Registration test: Once only a few potential triplets

are left, we apply the coarse alignment transformation

and take the triplet corresponding to the regions with

the minimum cRMS cost.

The basic idea is, at each step of the algorithm, to

narrow the solution space of potential correspondences and

increase the complexity of the operations performed. At

each step, it is removed correspondences that do not respect

one of the equivalence conditions. The algorithm is efficient

because it only computes the alignment transformation and

the alignment error (the most expensive operation of the

pipeline) for a small subset of the initial search space.

VI. EXPERIMENTAL RESULTS

We tested our region-based global registration algorithm

on a variety of input data with varying amount of noise,

outliers, and extent of overlap. We now report performance

regarding the robustness to noise and to partial region

overlapping. Figure 2 shows the main steps of the algorithm

and the resulting transform when our algorithm is applied on

the Stanford Bunny scans dataset. Although in the examples

the model and data point clouds are shown in similar

positions, we stress out that algorithm does not depend on

any assumptions about the initial positions of the input point

clouds.

Figure 4 shows the robustness of the region-based global

registration algorithm under a zero-mean Gaussian noise

without any ICP refinement. We align the Stanford Dragon

model to a copy of itself corrupted by zero-mean Gaussian

noise. Figure 4 (a) shows the principal curvature colormap,

and illustrates how noise affects the estimation of geometric

descriptors. We set the segmentation partition threshold K =
30% for both data and model. Figure 4 (b) shows the

resulting regions after segmentation. Despite the noise affects

geometric descriptor values, the regions of both data and

model were exactly the same. It shows the repeatability of

the segmentation [1] under noise. In this scenario, we have

that each region in both point clouds has the same barycenter,

but different histograms. The initial potential correspondence

set was built using εDs = 0.5. Our alignment brings the

data (noisy) point cloud into exact alignment to the model

(smooth) point cloud (fig. 4 (c)).

Figure 5 shows the robustness of the region-based global

registration algorithm under different segmentations. We

align two raw point clouds of the Stanford Happy Buddha

model. The magnitude of the segmentation partition thresh-

old ǫ is varied in a scale where K = 30% was taken as one

unit. Figure 3 shows the initial potential correspondence set

for K = 30% .The pose computed by our algorithm is refined

by running two iterations of ICP and the alignment error

is computed using the cRMS point-point error metric [21].
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(a)

(b) (c)

Fig. 4: Dragon example. (a) Input to the region-based global

registration algorithm: raw point cloud (the model) and the

noisy dragon (the data) with the curvature colormap. (b)

Regions obtained after segmentation. (c) Registration after

applying our algorithm.

The results are showed in figure 5(b). For all segmentations,

our region-based global registration converges to a correct

alignment.

When K < 30%, the point clouds are over-segmented.

Thus, the number of regions per point cloud is larger, and,

consequently, the search space of possible region correspon-

dences. The alignment error for over-segmented regions is

similar to the error of a correct segmentation. The algorithm

robustness to over-segmentation is due to the three region

correspondence hypothesis. As the regions get small, region

histogram descriptor is not enough discriminant and the

alignment relies mostly on the geometric constraint. Notice

how the alignment error increases when the input point

clouds are under-segmented. This is because there are less

regions and a smaller search space of possible correspon-

dences. In this condition, the algorithm only finds the correct

alignment because both point clouds have a large overlapping

area.

VII. CONCLUSION

In this paper, we have presented an algorithm that solves

the alignment problem using regions correspondence for

two three-dimensional scans without any assumption about

(a)

(b)

Fig. 5: Evaluation of the initial alignment quality under

segmentation variation. (a) Initial alignment when ǫ = 1.

Detail shows the error in the alignment. (b) Graph of cRMS

error as the function of the segmentation partition threshold

ǫ.

their initial position. The main contribution of the work

concerns the use of a region-based matching to estimate the

coarse alignment transformation. We proposed an algorithm

to search efficiently the solution space of possible regions

correspondences. Our algorithm is able to align whole and

partially overlapping shapes, and is robust to noisy data and

unstable segmentation. Experimental results on raw point

clouds have showed that the algorithm finds the coarse

alignment even under noise and partial overlapping. In the

future, we would like to study the exact relationship between

the size of the regions, the geometric descriptors and the

performance of global registration to develop a method to

estimate robustly the input parameters.
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