
Autonomous Science Target Identification and Acquisition (ASTIA)

for Planetary Exploration

Dave Barnes, Stephen Pugh and Laurence Tyler

Abstract— We introduce an autonomous planetary explo-
ration software architecture being developed for the purpose
of autonomous science target identification and surface sample
acquisition. Our motivation is to maximise planetary science
data return whilst minimising the need for ground-based human
intervention during long duration planetary robotic exploration
missions. Our Autonomous Science Target Identification and
Acquisition (ASTIA) architecture incorporates a number of
key software components which support 2D and 3D image
processing; autonomous science target identification based upon
science instrument captured data; a robot manipulator control
software agent, and an architecture software executive. ASTIA
is being developed and tested within our Trans-National Plan-
etary Analogue Terrain Laboratory (PATLab). This provides
an analogue Martian terrain, and a rover chassis with onboard
manipulator, cameras and computing hardware. Experimenta-
tion results with ASTIA and our PATLab rover are presented.

I. INTRODUCTION

A major mission driver for space exploration is to max-

imise science data return whilst minimising ground-based

human intervention and hence associated operations costs.

Future robotic exploration such as the ESA ExoMars mission

[1] (launch 2018), and the eventual Mars Sample Return

(MSR) [2] mission will require rovers to travel further and

faster than has been achieved to date. The current NASA

Mars Exploration Rover mission has shown the need to

reduce the number of full sol (Martian day) command cycles

required to accurately place an instrument upon a terrain ob-

ject once ground based scientists have identified this science

target. Greater rover autonomy is an essential requirement if

full sol command cycles are to be reduced. Going a stage

further, we envisage the deployment of scout rovers capable

of both autonomous science target identification and science

sample acquisition. Such autonomous rovers could be utilised

to identify and cache science samples as a precursor to a

subsequent MSR mission.

The research presented here builds upon previous work

[3] funded by the UK STFC. This work demonstrated

autonomous science target identification and rover arm place-

ment within our Trans-National Planetary Analogue Terrain

Laboratory (PATLab). Since this work we have developed
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a new knowledge-based approach to science target identifi-

cation, together with improvements to the calibration and

control of our rover robotic arm and pan and tilt (P&T)

hardware. What has emerged is a new software architecture

design called ASTIA - Autonomous Science Target Identifi-

cation and Acquisition, and this paper presents our ASTIA

implementation progress to date. ASTIA comprises a number

of (agent-like) software modules which are described here.

We present more detail on a new module called KSTIS

(Knowledge-based Science Target Identification System),

together with an overview of the additional modules that have

allowed us to perform end-to-end science target identification

and rover arm placement trials. The results from this work

are presented.

II. ASTIA BACKGROUND

Current research into autonomous systems for planetary

exploration includes studies into rock detection and target

prioritisation [4], feature detection [5], and novelty detection

[6]. Typically, isolated rocks serve as potential science targets

with the aim of assigning scientific parameters such as

albedo, texture and colour, together with parameters such as a

rock’s shape and size. In some cases spectral signature and

fluorescence indicators constitute analytical inputs. Results

of this nature can be used to identify targets of interest and

unexpected objects, and to characterise an exploration site.

A notable body of work is OASIS, the On-board Au-

tonomous Rover Science Investigation System [4]. This

has been designed to enable a rover to identify and react

to serendipitous science opportunities such as dust devils,

clouds and novel rocks that the rover has not seen before.

OASIS analyses data that the rover captures, and then

prioritises this data based upon established target attributes.

It may also schedule new observations of interesting targets.

The criteria for prioritisation are set to be appropriate to

the current environment and science goals. OASIS currently

uses greyscale (single filter) images for its rock identification

and analysis, concentrating mainly on rock shape, size and

albedo.

It is interesting to compare the target evaluation processes

undertaken by previous autonomous science research with

those processes undertaken by a human field geologist. Given

that we are attempting to emulate the expertise possessed by

a human planetary scientist, we realised that a human field

geologist [7] typically assesses a potential science target in

terms of its structure (e.g. geometric shape, scale, orientation

and form), texture (e.g. luster, relief, grain size, shape, and

sorting), and composition (e.g. colour, albedo, specularity
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and mineralogy). This approach has been used with good

results in SARA (Science Assessment and Response Agent)

[3]. SARA accumulates a numeric score value for poten-

tial science targets in an image, concentrating mainly on

rock morphology at various scales. Whilst it is possible to

represent some target attributes by a singleton value, many

attributes are difficult to represent in such a manner. We

realised that many science target attributes can be likened to

a fuzzy linguistic variable [8] (e.g. the “roundness” of a rock,

or its “distinct” cross-bedded structure). This led us to adopt

a knowledge-based approach and we decided to represent

the human geologist domain expertise as a fuzzy-rule set.

This knowledge representation approach is fundamental to

our KSTIS module.

Previous research has also addressed the problems asso-

ciated with autonomous arm placement, i.e. given a target

rock, the operation of moving an instrument and contacting

the science target using autonomous arm control methods.

A large body of work has been undertaken in this area [9]

[10], and is generally described as SCIP (Single-Cycle In-

strument Placement), or SCAIP (Single Command Approach

and Instrument Placement). The main driver for this work

has been the desire to maximise the science data return

rate by limiting the number of required command cycles

for each individual instrument placement operation. An

added benefit is minimisation of the ground-based operator

workload. The SCIP goal is to autonomously approach and

place an instrument on multiple features of scientific interest

in a single command sequence uplink. Vision-based target

tracking techniques are key to the general SCIP approach,

and 2D feature-based visual servoing has been used to keep

a rover’s navigation cameras foveated onto a science target

while commanding the rover to move directly towards the

given target. It should be noted that with the current SCIP

work, it is a ground-based scientist(s) who identifies and

selects the desired science target from a previously captured

Panoramic Camera (PanCam) image.

Given the promising results emerging from research into

autonomous science and autonomous arm placement, we

believe that it is timely to combine both of these areas

into a single advanced rover capability. Our resultant ASTIA

architecture has been designed to facilitate this integration.

III. ASTIA SYSTEM OVERVIEW

The ASTIA system is directed towards planetary explo-

ration missions such as ExoMars and MSR, and makes

use of typical rover hardware. Key hardware components

of the ASTIA architecture include: a pair of wide angle

cameras (WACs) for stereo imaging; a high resolution cam-

era (HRC) for detailed target analysis; a P&T mechanism,

which together with the cameras form the PanCam unit;

a robotic arm for deploying close-up or contact science

instruments, and a rover locomotion chassis with associated

on-board infrastructure. The key software components within

the designed ASTIA architecture are shown in Fig. 1. Each

rectangular box represents a software agent, and the lines

indicate the flow of relevant information between agents.

Fig. 1. Schematic diagram of the ASTIA architecture. Dotted lines denote
work areas not addressed in this paper.

Note that the Chassis Agent (denoted by dotted lines in the

diagram) is not addressed in this paper.

The Executive represents the operation sequencing and

decision-making component of ASTIA. In a real mission

scenario, the Executive would be closely linked with the

onboard mission operations planning and resource manage-

ment subsystems. Upon instruction from the Executive, The

Pan/Tilt Camera Agent captures one or more stereo image

pairs of a possible target site using the WACs, and passes

them to other agents for analysis.

The Rock Identification Agent examines one image (typ-

ically the left-hand image) from each stereo pair. Rock

regions within the image are identified and information about

the size, location and centroid of each candidate rock is

produced. KSTIS then applies domain expert knowledge to

assess each candidate rock to identify the ‘best’ science

target. The image pixel coordinates of this object (i.e. the

rock’s centroid) are then passed to the 3D Vision Agent.

Additionally, KSTIS may request a higher magnification

image of a candidate rock from the HRC to verify its

choice of science target. Using the candidate science target

image pair and the pixel coordinates from KSTIS, the 3D

Vision Agent applies stereo triangulation to calculate the 3D

position of the science target relative to the rover. If a zoom

image is required by KSTIS, the Pan/Tilt Camera Agent

can use this information to centre the science target in the

HRC field of view and capture a suitable image. Knowledge

of the 3D position also allows a science acquisition ‘cost’

to be calculated, based primarily upon the power and time

that would be required for the rover to traverse to the

science target location. This cost information can used by

the Executive to assess the resource implications of a science

activity, especially if the target is currently out of reach. If
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the projected resource usage is acceptable, a rover traverse

may be scheduled to place the science target within reach of

the arm.

Once a traverse has completed, further stereo image pairs

may be captured and passed to the Rock Identification Agent

and KSTIS for a final science target assessment, and the 3D

Vision Agent is notified of the image pixel coordinates of the

chosen science target. The 3D Vision Agent and the ARM

Agent then use stereo triangulation and the arm’s kinematics

model respectively to confirm target reachability. An ap-

propriate arm configuration, instrument placement trajectory

and contact region on the science target are determined.

This process may involve generating a mini-DEM (Digital

Elevation Model) of the science target. Arm placement costs

are also calculated, and if a final ‘go’ is issued by the

Executive, then the arm (with attached instrument) is moved,

and science target contact is made.

IV. ROCK IDENTIFICATION AGENT (RIA)

A computationally minimal region growing algorithm has

been developed to identify potential science targets. Each

pixel in a WAC image is first polled to see if it currently

has a region assignment. If not, a pixel object is created

and is passed to a function which then examines all its

neighbouring regions and finds the closest region for the

pixel to join. If no region is found to be close enough, the

pixel will stand on its own and create a new region. After

this assignment stage all neighbouring regions are examined,

and very close regions (currently regions with a difference of

average pixel value less than 20) are merged. The next stage

is an examination of all pixel regions that contain a small

number of members: these are merged with their closest

neighbour. The region data is then converted into an image

for further processing. Here the regions are examined as

objects with a uniform background and all adjoining objects

are joined, numbered and labeled. This isolates the rock

targets from the background image and reconstructs large

rocks that were split into separate regions by the region

growing algorithm. Note that the current algorithm has been

tailored towards identifying strewn boulders as found in

a boulder field. This constraint has both helped speed up

development and reduce some of the target identification

complexity. Additionally RIA can determine the centre-of-

area for each identified rock region, and this can be used by

the 3D Vision Agent to generate a 3D science target for the

Chassis and Arm Agents.

V. KSTIS

A. Target Region Fuzzy Input Parameter Assignment

KSTIS is responsible for processing the images to de-

termine the Science Value (SV) of any identified target.

KSTIS is still in development and we foresee continued

collaboration with our planetary geologist [7] (see section

XI). For the current implementation, there is some need

for human interaction during the image assessment stage,

however there are four (automatically) calculated parameters:

albedo, colour, whiteness and roundness. As the albedo is

approximated without any chemical knowledge or knowl-

edge of the ambient lighting, the whiteness calculation is

exactly the same, therefore both whiteness and albedo are

represented on a sliding scale between 0 (black/very low

albedo) and 255 (white/very high albedo). As it was desirable

for colour to be represented by a single value, it was

decided that the best way was through the use of a hue

value taken from the hue, saturation and luminosity (HSL)

colour space. The images taken by the Pan/Tilt Camera

Agent are standard RGB images so it was necessary to

convert the colour space representing the target area to

HSL. The H value was chosen as on a scale of 0 to 1 it

represented all available colours. The “roundness” indicator

was determined by examining the eccentricity of the rock.

This was represented by a number between 0 and 100, with

0 being “angular” and 100 being “very round”. Other fuzzy-

linguistic inputs processed by KSTIS include: “Surface”,

“Sphericalness”, “Roundness”, “Disk-likeness”, “Rod-Type”,

“Scale”, “Stratification”, “Curviness” and “Lenticularity”.

B. Fuzzy Rule-Base Implementation

The implementation takes the form of three fuzzy logic

rule-bases: Structure, Texture, and Composition; one re-

sponsible for each of the three examined attributes. These

rule-bases utilise Mamdani’s fuzzy inference method [11], a

number of membership functions, and a collection of rules.

The combined output is then de-fuzzified using Centre of

Gravity (COG) defuzzification. This returns a crisp number

which represents a rock’s SV. The implemented rules and

membership functions have been developed through exten-

sive collaboration with our Domain Expert [7]. This has

led to a group of membership functions which model the

way that the expert’s interest in certain features developes.

Trapezoidal functions were used where a range of inputs

could be viewed as satisfying the membership criteria; for

example, in the Structure rule base the Scale input utilises

five trapezoidal functions to allow ranges of thickness to

fully satisfy the membership (note that thin lamination can

range from 2 − 3 mm), however the Curviness input also

utilises two trapezoidal membership functions, but has in

addition two Gaussian membership functions. The Gaussian

functions model an input that has one ‘fully’ satisfying value

and outside of that membership the degree of membership

degrades slowly (see Fig. 2). Mixed membership functions

(e.g. trapezoidal plus Gaussian) often proved to be a useful

way forward when attempting to represent the diversity of

domain expertise required here. Rules were developed in

a similar way, i.e. during collaboration a quantification of

the SV of certain geological features was produced (based

upon the ESA ExoMars science goals). The rule base was

developed through use of these data together with an appro-

priate mapping of crisp SV scores produced by the planetary

geologist so as to generate the requied Degree of Membership

(DOM) outputs.

Structure: Basic geometric forms are considered here.

The most obvious form is layering or stratification, a term

normally used in reference to sedimentary rocks but which
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Fig. 2. Diagram displaying the membership functions associated with the Curviness input within the Structure Rule-Base.

can also be applied to volcanic and metamorphic deposits

exhibiting layered structures. Where thickness is implied,

units display either bedding (> 1 cm) or lamination (<
1 cm). This applies to all scales in the same way. Four

membership functions were developed for this rule-base:

Scale, Stratification, Curviness, and Particularity. The Scale

value represents the perceived thickness of the layering or

stratification, with inputs ranging from very thin lamination

< 2mm to very thick bedding > 300mm. Stratification is

an indication of how continuous the structure is, whether it

forms a continuous pattern or a broken or disjoint bedding

structure. The Curviness of a feature is indicated by the

inputs: No Bedding, Planar, Wavy or Curved. The final input

is Particularity, in this case the input is whether the feature is

lenticular or not. The Structure Rule-Base contains 23 rules.

Texture: The textural properties of rocks are dependent

on particle grain size and distribution, grain morphology and

overall fabric (how grains are oriented and packed). Although

these properties can only be determined at relatively close

range, some generic aspects are applicable to remote ob-

servation of larger potential targets. The Texture Rule-Base

contains five membership functions: Surface, Sphericalness,

Roundness, Disk-likeness and Rod Type. The Surface input

has a range of 0 to 100 which identifies the surface of

the target as being Dull, Rough, Pitted, Polished or Bumpy.

Sphericalness, is used to indicate the presence of a spherical

or equant pattern on the surface of the target. Roundness

refers to the shape of the overall target, as does Disk Likeness

and Rod Type. The Texture Rule-Base contains 70 rules.

Composition: This is the geochemical and mineralogical

make up of rocks. It is perhaps the most demanding of

attributes to define as weathering and alteration processes can

subtly or radically change both the chemistry and/or mineral-

ogy of rocks and soils. This means that there has to be much

reliance on contextual data to assist in the interpretation of

analytical measurements. Initial clues regarding composition

however can be obtained from image data. The Composition

Rule-Base contains three membership functions: Hue, Albedo

and Whiteness. As previously stated, without analytical mea-

surements of the target it is not possible to know its exact

composition, but measurements like these implemented here

Fig. 3. Diagram of the KSTIS architecture (based upon [7]).

can give an indication as to the rock or soil make up. Colour

is the first attribute measured and it is represented by Hue,

as a single value, rather than the more common RGB triple.

Albedo and Whiteness are inherently very similar as the

higher the whiteness of the rock the more reflective it is.

The Composition Rule-Base contains 15 rules.

VI. 3D VISION AGENT

The current ASTIA stereo triangulation algorithm requires

a simplified epipolar geometry to be observed, and hence any

captured camera images have to be rectified. Rather than

implement ‘yet-another-disparity’ algorithm, we wished to

investigate the performance of a state-of-the-art approach

that showed good performance when compared to other

algorithms, and was able to deal with occlusion problems (a

situation that is quite probable in a Martian ‘rock garden’).

We based our disparity map generation upon the cooperative

algorithm for stereo matching and occlusion detection [12].
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We found that this algorithm performed well provided that

good (close to solution) minimum and maximum pixel

disparity values were known a priori. The major problem

with such an algorithm is the large computation time. Whilst

this may not be an issue for terrestrial applications, when

using disparity algorithms onboard an autonomous rover it

must be noted that processing memory and power are very

limited (of the order of 256 Mb memory, and 100 MHz

clock rate!). Once a disparity map had been generated, stereo

triangulation was performed using the obtained science target

left image x, y and right image x, y pixel coordinates and

the camera extrinsic parameters which were obtained during

camera calibration. This resulted in the 3D position of the

science target relative to the camera origin.

VII. ARM AGENT

A Helmert transformation1 was used to transform the

candidate science target locations from camera origin 3D

space to arm base 3D space. The required parameters for the

transformation were obtained from a calibration procedure

which imaged a marker at the end of the robotic arm in

various positions within the area of operation. Our Vicon

MX tracking system (see section VIII) was used to obtain

an accurate 3D position for the marker, corresponding to

each image. A fitting algorithm was applied to this data to

find the best parameters for the Helmert transformation.

The ARM Agent contains an inverse kinematics model of

the arm, mapping 3D science target positions relative to the

rover into arm joint angle values. Should a target rock DEM

also be available from the 3D Vision Agent, then the Arm

Agent can additionally process this data and determine the

‘best’ instrument placement sites on the target rock (e.g. rock

planar regions where instrument-head/rock collisions can be

avoided).

The arm used for the field trials was a 3 DoF demon-

stration device of limited accuracy constructed using radio

control model servos, with no joint feedback information.

In the absence of a full deflection model for this arm, an

empirical calibration of the joint angle offsets was made

over the work area of interest. This calibration technique was

used previously with the Beagle 2 arm, and is described in

[13]. The arm joint angle adjustment given by the calibration

procedure was incorporated into the Arm Agent.

VIII. EXPERIMENTAL SETUP

A new Planetary Analogue Terrain Laboratory (PATLab)

has been created at AU. The aim of the PATLab is to allow

comprehensive mission operations emulation experiments to

be performed. Such trials and experiments are essential when

learning how to deploy and use a robot science instrument

for a given mission, and hence maximise the return of

high-quality data. The PATLab includes a 50m2 landscaped

terrain region composed of Mars Soil Simulant-D (from

DLR, Germany). The terrain includes an area for sub-surface

1Helmert Transformation, named after Friedrich Robert Helmert, 1843-
1917, is a method often used in geodesy to produce distortion free
transformations in 3D space from one datum to another.

Fig. 4. The AU half-scale ExoMars-based rover chassis with 3 DoF arm
and PanCam instrument. The grey spheres are passive markers used by our
Vicon system to obtain arm placement metrics during ASTIA trials.

sampling and a collection of ‘science target’ rocks that have

been fully characterised. The PATLab is heavily instrumented

and its data and control facilities are available remotely via

high-speed network links.

The PATLab supports a half-size rover chassis which is

based upon the ESA ExoMars rover Concept-E mechanics

[1], (Fig. 4). The rover has 6-wheel drive, 6-wheel steering,

and a 6-wheel walking capability (thus 3 DoF per wheel).

The rover supports a panoramic camera instrument and a

3 DoF robot arm, in addition to onboard computing and

communication facilities.

Using COTS cameras we have built a panoramic cam-

era instrument which emulates the proposed ExoMars Pan-

Cam [14]. Our PanCam supports two Wide Angle Cameras

(WACs) with a baseline separation of 500mm, and a High

Resolution Camera (HRC) mounted centrally. Image capture

and machine vision processing algorithms have been imple-

mented and these can run using the rover on-board computer

or remotely. A P&T mechanism attached to a mast structure

on our rover chassis allows control over camera direction.

During PATLab experiments the position and orientation

of the rover chassis, robot arm and PanCam P&T mechanism

can be measured using our Vicon MX motion capture system.

Using twelve specialised infra-red cameras, the Cartesian

position of reflective markers placed anywhere within the

PATLab terrain region can be tracked in real-time (typically

120Hz) with sub-millimetre accuracy.

In the current design the ASTIA Executive co-ordinates

the autonomous operation and decision-making of the AS-

TIA system in an integrated fashion. Since ASTIA is under

development and currently spans several different computer

systems, only some parts of the Executive are implemented

at present. Others are simulated by a combination of scripts
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and some manual intervention. A basic resource calculation

has been implemented. Based upon a priori information

regarding motor speeds and power consumption for the rover

chassis motors and the arm joint servo-mechanisms, science

activity cost values can be calculated in terms of the time

and power required to execute a traverse to a science target

and/or an arm placement.

The rover PanCam, Arm and P&T unit were calibrated

prior to conducting the ASTIA trials. The current P&T unit

is constructed using radio control model servos and has a

limited pointing accuracy of about ±0.41◦ in pan and ±0.84◦

in tilt (±1sd) due to both the intrinsic servo resolution and

mechanical play in the joints. To partially compensate for

these errors, the Vicon system was used to measure the pan

and tilt values more accurately after moving the P&T unit

each time, and the measured rather than commanded values

were passed to the rest of the ASTIA system.

IX. RESULTS AND DISCUSSION

Experiments were performed to assess our current ASTIA

implementation. These included Pan/Tilt Camera Agent, 3D

Vision Agent and Arm Agent tests to measure the accuracy

of arm placement from stereo imagery, together with RIA

and KSTIS experiments. An ‘end-to-end’ integrated test was

performed whereby a science target site was selected by

KSTIS and the arm end-point moved to this target using

the other ASTIA software agents.

Arm Agent: The accuracy of arm end-point placement

from stereo imaging was tested by using Vicon markers

as substitute science targets. Thirteen different marker po-

sitions within the arm’s working envelope were imaged

using both WACs and the resulting 3D position transformed

from camera to arm coordinates. The Arm Agent was then

used to produce joint angles which were applied to the

arm. The resulting arm end-point positions were measured

and compared to the target positions. Ten target positions

were used to adjust the camera-to-arm Helmert transform

parameters, resulting in a mean Euclidean position error

of 12.695mm ± 5.793 (±1sd). The three remaining target

positions had measured position errors of 13.814, 13.155
and 15.961mm respectively. Previous work has shown the

calibrated placement accuracy of the demonstration arm to be

3.58mm ±1.79 (±1sd). The residual error of approximately

9mm in mean position is largely attributable to mechanical

play in the PanCam P&T unit and uncertainties in the 3D

position reconstruction and coordinate transformations.

Rock Identification Agent: The RIA was used on a

distant or ‘standoff’ image captured by the left WAC. The

image output by the process can be seen in Fig. 5. Of the

potential 16 rock targets 13 were successfully identified.

Three rocks were missed; this was due to a combination

of their small size in the image and a relatively low contrast

between them and the soil background.

KSTIS: The output image from the rock identification

process (Fig. 5) was analysed by KSTIS. The 13 identified

rock targets were assessed and each target given a Science

Value. The values assigned were as follows: Rock 1 = 56.75;

Fig. 5. Distant image, taken from a standoff distance of about 4 m, with
13 potential targets automatically identified and labeled. The centroid (‘+’)
of each target has been identified for rover traverse purposes.

TABLE I

EXAMPLE OF THREE TARGET ASSESSMENTS FOR FIG. 5

Property Name Rock 8 Rock 10 Rock 11

Surface 5 35 35
Sphericalness 100 100 10
Roundness 100 50 20
Disk Likeness 100 10 10
Stratification 5 10 10
Lenticularity 0 0 0
Rod Type 100 89 89
Whiteness 0.183 0.21 0.18
Scale 0 1.5 3
Curviness 0 0.4 0.1
Albedo 46.55 81.43 53.2
Hue 0.1 0.35 0.105

Science Value (SV) 45.77 129.6 109.6

Rock 2 = 51.5; Rock 3 = 44.86; Rock 4 = 64.36; Rock 5 =
62.33; Rock 6 = 66.85; Rock 7 = 93.06; Rock 8 = 45.77;

Rock 9 = 98.78; Rock 10 = 129.6; Rock 11 = 109.6;

Rock 12 = 51.27, and Rock 13 = 51.04. The values

produced a rank order so the most valuable science target

could be identified. Table I shows the detailed results of 3

example rock assessments. The most interesting rock was

artificially enhanced by the addition of green (‘chlorophyll’)

colouring. This helped to properly exercise the KSTIS rule-

base and provide an expected high SV target. The results

obtained were verified by our Domain Expert.

End-to-End Trial: The rover was moved to within arm

working distance of the target rock identified by KSTIS

(Rock 10, Fig. 5). A second, ‘near’ image of the target rock

was captured and processed by the RIA to yield an updated

centroid (Fig. 6. Note that Rock 10 in Fig. 5 is labelled here

as Rock 7). The 2D centroid position was converted into a

3D target position by the 3D Vision Agent, and finally to

a set of arm joint angles using the Arm Agent. Note that

a 15mm stand-off from the target point was introduced to

the commanded arm position to avoid an arm end-point/rock

collision. Fig. 7 shows the achieved final arm end-point

position. Although accurate distance measurements were not

available for this trial (there was no Vicon marker on the
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Fig. 6. Near image (cropped), taken from arm placement range (< 1.5 m).
The image was passed through the RIA to find the centroid of the target to
be sampled. Rock 7 is the target rock here, which corresponds to Rock 10
of the original assessment. The centroid (‘+’) is used as the science target
point for instrument placement.

Fig. 7. Final arm end-point (science instrument) position during end-to-end
trial of ASTIA. Inset is a close-up from a different angle.

calculated rock centroid), the arm end-point was estimated

to be < 2 cm from the selected science target point, i.e.

commensurate with the previous Arm Agent results and the

introduced 15mm stand-off value.

X. CONCLUSIONS AND FUTURE WORKS

An autonomous planetary exploration software architec-

ture has been designed for the purpose of autonomous

science target identification and surface sample acquisition.

Whilst the architecture implementation is work in progress,

we have performed a number of trials with our current

ASTIA software, and laboratory hardware. ASTIA com-

bines both autonomous science target identification and

autonomous arm placement, and this has been demonstrated.

The results obtained have shown the integrity of our KSTIS

knowledge-base, and support our decision to adopt a fuzzy-

rule set approach to represent a human geologist’s domain

expertise. Future KSTIS work will focus upon completing the

automatic extraction of the required fuzzy linguistic inputs

from captured camera data.

Our arm placement accuracy results are commensurate

with our previous arm trials, but there is room for improve-

ment. Planned future work includes replacing our current

P&T unit with a more accurate and precise COTS unit,

with the aim of improving our overall ASTIA end-to-end

accuracy. Similarly, we plan to eventually replace the 3 DoF

demonstration arm with a 5 DoF precision model. Addition-

ally we are working with the 5 DoF Beagle 2 development

model (DM) arm [13] which we plan to integrate into our

ASTIA setup.
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