
Control of redundant robots using learned models:

an operational space control approach.

Camille Salaün, Vincent Padois and Olivier Sigaud

Abstract— We present an adaptive control approach com-
bining forward kinematics model learning methods with the
operational space control approach. This combination endows
the robot with the ability to realize hierarchically organised
learned tasks in parallel, using tasks null space projectors built
upon the learned models. We illustrate the proposed method on
a simulated 3 degrees of freedom planar robot. This system is
used as a benchmark to compare our method to an alternative
approach based on learning an extended Jacobian. We show
the better versatility of the retained approach with respect to
the latter.

I. INTRODUCTION

Real-world Robotics applications are evolving from the

industrial domain (simple tasks in structured environment) to

the service domain where it is much harder to model all the

aspects of the mission. Service Robotics induces complexity

both in terms of the tasks that have to be achieved and in

terms of the nature of the environment where robots are

supposed to evolve. Part of the answer to the problems raised

by this growing complexity lies in the increasing number of

sensors with which robots are now equipped as well as in

the increasing number of degrees of freedom of the robots

themselves e.g., Mobile manipulators such as the humanoid

robot iCub [1] or the wheeled assistant PR2 [2]).

As a matter of fact, the motion controllers developed for

such robots have to be either highly robust to uncertainties on

the knowledge of the model of the robot and its environment

or adaptive, i.e., able to build their own model on-line. The

former gets more and more difficult as the complexity of

the context grows whereas the latter is often achieved using

learning techniques. More specifically, a common approach

to learning consists in using model-based control techniques

in a context where the model of the robot is learned on-line

from experience, giving rise to immediate motor adaptation

capabilities.

In this context, learning the model of the robot is achieved

using specific representations such as Neural Networks or

Radial Basis Function Networks [3], Gaussian Processes [4],

Gaussian Mixture Models [5], Locally Weighted Projection

Camille Salaün (PhD candidate in Robotics), Vincent Padois (Assistant
professor in Computer Science and Robotics) and Olivier Sigaud (Professor
in Computer Science) are with:

Université Pierre et Marie Curie
Institut des Systèmes Intelligents et de Robotique - CNRS UMR 7222
Pyramide Tour 55 - Boite Courrier 173
4 Place Jussieu, 75252 Paris CEDEX 5, France

Contact: firstname.name@upmc.fr

Regression (LWPR) [6], [7], [8], but the control methods used

in the corresponding work do not always take advantage of

the state-of-the-art techniques developed in recent Robotics

research.

Among these techniques, operational space control is

a model-based approach which provides a mathematical

framework giving rise to an easy definition of the tasks and

constraints characterising a robotic mission in a hierarchical

manner (see [9], [10] and for more recent work [11]). In

order to take advantage of this framework, one must develop

learning methods and associated representations which fit the

needs of the corresponding control techniques.

Actuators of a robot generally act on joints, but the tasks or

constraints associated to a mission can rarely be described

in the joint space in a natural way. The operational space

(also called task space) provides an alternative, more natural

space, for such definition.

The robot being controlled at the level of joints, the

operational or task space control approach requires the

knowledge of the mapping between the joint space and the

task space. More specifically, it is the inverse mapping which

is often of interest: given a task, what actions have to be

taken in the joint space to achieve it. Considering minimum

representations for the joint and task spaces, it is important

to notice that when the dimension of the joint space is larger

than the one of the task space, there is an infinite number

of inverse mappings and the robot is said redundant with

respect to the task. That is the case we are focusing on in

this paper.

More precisely, we examine how one can combine learn-

ing techniques and operational space control in such a

way that we can hierarchically deal with several tasks and

constraints when the robot is redundant with respect to the

task. Our method learns a forward kinematics model using

LWPR, a state-of-the-art method already used in the context

of learning robot models [12]. We show how we can both

carefully derive the forward and inverse mappings at the

velocity level and the projectors which are necessary to

combine several tasks. We compare this approach to an

alternative approach presented in the literature where the

inversion problem that arises in the redundant case is solved

in a static manner [6].

The paper is organised as follows. In Section II, we

give some background on operational space control and the

different levels of forward and inverse mappings which can

be used to relate the joint space to the task space and vice

versa. We also present different contexts in which several

tasks can be combined depending on their compatibility. In

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 878

Section III, we present LWPR and the way we use it to learn

the forward kinematics model of our system and derive the

inverse mapping and associated projectors at the velocity

level. In Section IV, we introduce our experimental apparatus

and protocol, as well as the series of simulated experiments

that we perform. The corresponding results are presented in

Section V. Finally, Section VI is dedicated to the discussion,

highlighting the properties of our approach before concluding

on the potential extensions that are unique to the perspectives

raised by our work.

II. BACKGROUND IN OPERATIONAL SPACE CONTROL

In this Section, we give some background information on

joint to task space mappings with a focus on the velocity

level. We recall the general expression of minimum norm

solutions in the redundant case and give an overview of

redundancy resolution schemes.

A. Joint space to task space mappings

The joint space is the space of the configuration parameters

q of size n, where n is the number of parameters chosen

to describe the robot configuration. In the holonomic, fully

actuated, minimum representation case, n is also the number

of degrees of freedom of the robot as well as the dimension

of the actuation torque vector Γ.

As stated in the introduction, the tasks or constraints

associated to a mission can rarely be described in the joint

space in a natural way. The task space is often associated

to the end-effector(s) of the robot but can actually be any

point of the robot and more generally any set of parameters

of interest which can be described as a function of the

robot configuration. This is the case for external collision

avoidance where the constraint point can evolve along the

robot body. Joint limits avoidance is also a particular case

of constraint where the task space is a subset of the joint

space itself. Independently from their physical meanings,

task spaces can be described by task space parameters ξ of

size m where m is, in the case of a minimum representation,

the number of degrees of freedom required to achieve the

task.

The joint space to task space mapping can be described

at three different levels. At the geometric level, the forward

kinematics model can be described as a non-linear function

f such as

ξ = f (q) . (1)

As stated before, if the robot is redundant, there is an infinite

number of possible inverses for f . However, there is no

simple method to span the set of possible solutions at the

geometric level and the mapping is often described at the

velocity level by the Jacobian matrix J (q) = ∂
∂qf (q) such

that

ξ̇ = J (q) q̇. (2)

J (q) is a m × n matrix and thus can be inverted using

linear algebra techniques. Once again, there is an infinity of

inverse mappings corresponding to the infinity of possible

generalised inverses of J (q) [13].

The last mapping of interest is the dynamic one. It relates

forces applied to the system, among which the control input

Γ, to the resulting acceleration q̈. It can be written

Γ = A (q) q̈ + b (q, q̇) + g (q) + ǫ (q, q̇) − Γext, (3)

where A (q), b (q, q̇), g (q), ǫ (q, q̇) and Γext are respec-

tively the n × n inertia matrix of the system, the vector of

Coriolis and centrifugal effects, the vector of gravity effects,

the vector of unmodeled effects and the torque resulting from

external forces applied to the system.

This is a joint space to joint space mapping with only one

solution. It is of course of interest to learn this mapping since

it captures a lot of properties of the system, but this is not the

scope of this work (interested readers can refer to [7] and

[14]). Thus the mapping to the dynamic level is supposed

to be known in the experiments presented here. We rather

focus on the velocity kinematics mapping which is sufficient

to capture and characterise the redundancy of the system1.

B. Model-based control at the velocity level

In the redundant and non singular case, i.e.,

rank (J (q)) = m and m < n, there is an infinite

number of generalised inverses of J (q). Among these

inverses, weighted pseudoinverses provide minimum norm

solutions [16] and can be written

J (q)
♯
= W−1

q J (q)
T

[J (q)W−1
q J (q)

T
]−1, (4)

where Wq is a symmetric and positive definite matrix of

dimension n × n.

Given a desired task velocity ξ̇
⋆
, the inverse mapping of

Equation (2) which minimises the Euclidean Wq-weighted

norm2 of the solution is given by

q̇ = J (q)
♯
ξ̇

⋆
. (5)

The Moore-Penrose inverse or pseudoinverse J (q)
+

of J (q)
corresponds to the case where Wq = In.

The system being redundant with respect to the task,

Equation (5) is not the unique solution to the inverse mapping

problem and other solutions of interest are those allowing

internal motions that do not induce any perturbation on the

task. This particular subset of solutions corresponds to the

nullspace of J (q) and the general form of the minimum

norm solutions to Equation (2) can be written

q̇ = J (q)
♯
ξ̇

⋆
+ PJ (q) q̇0, (6)

where PJ (q) is a projector on the nullspace of J (q) and q̇0

is any vector of dimension n. Equation (6) is the minimum

norm solution which minimises ||q̇ − q̇0||Wq

. A commonly

used expression for PJ (q) is

PJ (q) =
(

In − J (q)
♯
J (q)

)

. (7)

1A velocity kinematics and dynamic combined mapping known as the
Operational Space Formulation is proposed by Khatib in [15]. It is of interest
if one wants to learn the dynamic behaviour of a specific task.

2

q

q̇T
Wqq̇, also noted ||q̇||Wq

.

879

However, efficient computation of J (q)
♯

and PJ (q) can

be done using the SVD [17] of J (q). The SVD of J (q)
is given by J = UDV T where U and V are orthogonal

matrices with dimensions m×m and n× n respectively. D

is a m × n diagonal matrix with a diagonal composed of

the m singular values of J in decreasing order. Given this

decomposition, the pseudoinverse of J can be computed as

follows

J+ = V D+UT , (8)

where the computation of D+ is straightforward given its

diagonal nature. Regarding PJ (q), it can be computed using

the m + 1 to n columns of V which form a basis for the

nullspace of J (q)

PJ (q) = [vm+1 . . .vn]
[

vT
m+1 . . .vT

n

]T
, (9)

where vi is the ith column of V .

A weighted extension of the SVD can be used in the case

where Wq 6= In. Details about this extension can be found

in [13].

C. Redundancy resolution schemes

There are different possible redundancy resolution

schemes which can be applied depending on the compati-

bility of the tasks or constraints which have to be solved.

Two tasks with associated Jacobian matrices J1 and J2

are compatible if Jext =
[

JT
1 JT

2

]T
is full row rank. This

condition is equivalent to saying that the mext parameters

of the augmented task space are in minimum number and

rank (Jext) ≤ n.

Given this definition, one has to consider the under con-

strained (compatible, infinity of solutions), fully constrained

(compatible, one solution) and over constrained (incompat-

ible, no exact solution) cases. In these three cases, one can

write the solution to the inverse velocity kinematics problem

[18]

q̇ = J
♯
1ξ̇

⋆

1 + (J2PJ1
)
♯
(

ξ̇
⋆

2 − J2J
♯
1ξ̇

⋆

1

)

. (10)

In the compatible case, tasks 1 and 2 will be achieved

perfectly whereas in the incompatible case the error on the

achievement of task 2 will be minimised. This solution can

present singularities when tasks are highly incompatible, i.e.,

mext is much greater than n, but this can be compensated

for using a proper damped-least square regularisation [19].

This task projection scheme can be extended to several tasks,

interested readers can refer to [20].

Another method, originally proposed in [21], consists in

writing an extended Jacobian Jext in order to reach the

fully constrained case (mext = n and rank(Jext) = mext)

and thus to simplify the inversion problem to a square,

regular matrix inversion. In the fully constrained case, this

is automatically achieved. However, in the under constrained

case, this requires to artificially add tasks whereas in the over

constrained one, some projections have to be done in order to

ensure both a square Jacobian matrix and priorities between

tasks.

Similarly to what is shown in the non learning case

literature, we will show, in the remaining of the paper, that in

the case of complex missions where the tasks and constraints

constantly evolve, one cannot ensure compatibility at each

time and. In this regard, the solution provided by Equation

(10) should be preferred.

Finally, in the case of constraints such as joints limits,

a possibility consists in choosing q̇0 in Equation (6) as

the opposite of the gradient of a cost function Q (q). The

resulting solution leads to the local maximisation of the cost

function as long as this secondary constraint does not induce

any perturbation on the first task. The general form of this

solution is written

q̇ = J (q)
♯
ξ̇

⋆
− αPJ∇Q (q) , (11)

where α is a positive scalar used to tune the steepness

of the gradient descent. This method is often used in the

incompatible case, i.e., when it is known in advance that the

task will not be perfectly achieved, or when only a global

trend has to be followed: minimise the kinetic energy of the

system, avoid joint limits or collisions, etc.

III. LEARNING THE FORWARD VELOCITY KINEMATICS

MODEL

In this section, the LWPR algorithm is briefly introduced

and the advantages of learning forward (instead of inverse)

velocity kinematics mappings in redundant cases are ex-

posed. We also show how one can easily access the Jacobian

matrices representing these mappings from learned forward

kinematics models.

A. Locally Weighted Projection Regression

Locally Weighted Projection Regression (LWPR) is a func-

tion approximator which provides accurate approximation

in very large spaces in O(k), where k is the number of

data used to perform this estimation. Here, we use LWPR

to learn the forward kinematics model of our robot. LWPR

uses a combination of linear models that are valid on a zone

of the input spaces. This space, delimited by a gaussian,

may change during the training to match the trained data.

Each model is called a receptive field. The prediction of an

entire LWPR model on an input vector is the weighed sum

of the results of all the active surrounding receptive fields.

Receptive fields are created or pruned in order to keep an

optimal repartition.

Each receptive field first projects the input vector on the

most relevant dimensions to estimate the output vector. This

is done by using the covariance matrix of the input/output

vectors. At each modification, the projector is updated and

the algorithm checks if increasing the complexity, by adding

another dimension to the input projection, significantly im-

proves the receptive field results and modifies the projector

accordingly. The projected vector is then used in the m

dimension linear model (m being the output dimension) to

give the output of the receptive field. During prediction,

only the significant receptive fields are activated. The latest

version of the algorithm [22] also computes the gradient of

the output with respect to the input.

880

B. Learning the forward kinematics model with LWPR

Learning forward models for a redundant robot does not

raise particular problems. By contrast, as explained in Sec-

tion II, there exists an infinity of possible inverse mappings,

thus, unless one always wants to use the same inverse

mapping, it does not really make sense to directly learn

kinematics or velocity kinematics inverse mappings since this

leads to a loss of information regarding the redundant nature

of the system. Instead, one can learn the forward mappings

and invert them with the methods described in Section II-B.

Using the extended Jacobian approach, D’Souza et al. in

[6] propose to directly learn the inverse velocity kinematics

model supplying LWPR with the input
(

q, ξ̇
)

and the output

(q̇)

model = LWPRlearn

([

q, ξ̇
]

, q̇
)

.

Doing so, no inversion is involved and singularity problems

are avoided.

Taking into account these considerations and in order to

compare the two approaches, in this paper we propose to

learn the forward kinematics model in Equation (1) of a 3

degrees of freedom robot, giving as input the joint parameters

q adjusted in [0, 2π[and the task space parameters ξ as

output

model = LWPRlearn (q, ξ) .

LWPR does not return directly the global model, but only

the predicted output for a particular input. However, the

Jacobian matrix is the first order derivative of the forward

kinematics model relatively to joint space parameters q, thus

this matrix is provided “for free” while learning the forward

kinematics model. This calculation is made easier by the fact

that the learned model is a simple sum of multiple linear

functions which are easily differentiated [23].

IV. SIMULATIONS

In this section, we present simulation based experiments

designed to compare the under, fully and over constrained

cases using both the projection and the extended Jacobian

approaches. When using the latter, we do not learn the

inverse mapping as in [6] but rather the forward one which

we inverse.

A. Protocol

We have chosen to evaluate the compared approaches on

a 3 degrees of freedom planar system, shown in Figure 1.

Sticks lengths are 0.50m, 0.40m and 0.20m. To simulate

this system, we use Arboris, a dynamic simulator based

on Newton-Euler equations which is implemented in matlab

[24]. The integration step time of the simulator is chosen to

be 10 milliseconds.

Our control scheme uses the resolved motion rate control

principle, i.e., the desired task space velocity is computed

using the task space parameters error

ξ̇
⋆

= Kp (ξ⋆ − ξ) , (12)

Fig. 1. Schematic view of our simulated system

when ξ⋆ denotes the desired value of the task space pa-

rameters and Kp is a symmetric positive definite matrix.

The actual task space parameters are obtained from the

simulator model and, in the case of a real robot, they would

be measured from exteroceptive sensors. One could think

about using LWPR forward kinematics prediction however

this would lead to a drift with respect to the real target since

no external reference would then be used to close the control

loop.

Regarding the projection method, the inverse velocity

kinematics is done using solution of Equation (10) and the

estimated Jacobian matrices and projector which can be

written

q̇ = Ĵ+

1 ξ̇
⋆

1 +
(

Ĵ2PĴ1

)+ (

ξ̇
⋆

2 − Ĵ2Ĵ
+

1 ξ̇
⋆

1

)

. (13)

For the sake of simplicity in this paper, we keep the

weighting matrix Wq equal to identity.

Ĵ1 and Ĵ2 are respectively obtained from LWPR predictions

[

ξ̂1, Ĵ1

]

= LWPRpredict (q, model1)

and
[

ξ̂2, Ĵ2

]

= LWPRpredict (q, model2) .

The extended Jacobian method leads to a solution that can

be written

q̇ =

[

Ĵ1

Ĵ2

]

−1
[

ξ̇
⋆

1

ξ̇
⋆

2

]

. (14)

PĴ1

and pseudoinverses of Ĵ1 and Ĵ2PJ1
are obtained using

their SVD as presented in Section II-B.

q̇ obtained from Equations (13) or (14) is then differen-

tiated and the resulting joints acceleration vector is used to

compute the actuation torque based on the dynamics model

described by Equation (3) which we suppose to know and is

obtained from Arboris (see above).

881

B. Choice of parameters for the LWPR algorithm

Before performing our experiments, we start with an

initial exploration phase that can be seen as motor babbling,

to initialise the model, as suggested in [25]. We generate

random configurations taking qi ∈ [0, 2π[. Depending on the

corresponding configurations, we measure task parameters

and feed the LWPR model with the corresponding (q, ξ)
pairs.

Then LWPR comes with some parameters that need to

be initialised. We initialise LWPR as Klanke et al. propose

to do in [25]. The initD coefficient corresponds to the

initial size of all receptive field. It is important because it

significantly affects the convergence time of LWPR. initD
is tuned experimentally from comparing the performance

of a set of motor babbling phases to find the best value

corresponding to the minimal prediction error.

Two important parameters for our simulations are wgen

and penalty. The first one is a threshold responsible for

the creation of a new local model if no model responds high

enough. The penalty coefficient is critical to the evolution of

the size of receptive fields. A small penalty term increases

precision but decreases the smoothness of the model. We

have chosen wgen = 0.5 and penalty = 1e−6 to have the

best precision while avoiding ”overlearning”. Finally, from

our experiments, updating D is not so important once the

initialisation is well done but we still keep this option. We

set initα to 10000 and activate meta learning (see [25]).

C. Experiments

1) Under constrained case: The first studied task is a

reaching task. From an initial end-effector position ξi
1 =

[0.10 1.00]
T

m, the end-effector (E1) of the robot has to

reach a target ξ⋆
1 = [0.20 0.50]

T
m with a specified precision

of 0.01 meters. Once the task is achieved, the end-effector is

sent back to its initial position with the same controller and

the same required precision. This point to point movement

is repeated until the end of the simulation.

For this simple reaching task, the task space dimension is

2, thus the Jacobian is redundant and there is an infinity of

ways to reach the goal. We compare the projection approach

presented in Section II-C without any secondary task to the

extended Jacobian approach, where the extension is realised

by adding a one dimension constraint on point (E2):
ξ⋆
2x = 0.40 m.

2) Fully constrained case: The second experiment con-

sists in reaching ξ⋆
1 = [0.20 0.50]

T
m and keeping the end

effector in this position while realising a second task. This

second task alternatively requires the parameter ξ2x to reach

the values 0.10 m and 0.30 m which are accessible. The first

task is a two dimensional task whereas the second one is a

one dimensional task. The system is thus fully constrained.

For these two tasks, the same redundancy resolution

schemes are tested. In the case of the projection method,

the second task is projected in the nullspace of the first one

accordingly to Equation (13). In the case of the extended Ja-

cobian method, Jext is chosen as in the previous experiment.

3) Over constrained case: The last experiment is very

similar to the previous one. The first task is identical whereas

the second one is a two dimensional task for point (E2)
which has to reach ξ⋆

2 = [0.45 0.25]
T

m. This second task

is not compatible with the first one. The system is over

constrained.

Regarding this experiment, the projection method is the

only one to be tested since the extended Jacobian method

would require the same projection in order to obtain a square

Jacobian Jext.

V. RESULTS

In this section, results from the babbling phase and the

experiments described in Section IV-C are presented and

analysed. Except for the babbling phase where the presented

results are an average over 40 trials, the results which are

presented correspond to representative trials.

A. Babbling phase

To evaluate the effectiveness of the forward velocity

kinematics model prediction, we use the Normalised Mean

Square Error (NMSE) computed as

NMSE =
1

σ2

1

N

N
∑

i

(yi − ŷi)
2

where N is the number of points used to compute this

error. yi is the ith value of the data obtained by the real

model of the robot, ŷi is the ith predicted value by the

learned model and σ2 is the sample variance of y: σ2 =
1

N

∑N
k=1

(yk − yk)
2
.

To actually compute this error, we fixed the velocity of

each joint to 1.00 rad.s−1. As can be seen on Figure 2,

the NMSE of the predicted velocity decreases during motor

babbling. A babbling phase with 5000 samples is, in this

case, sufficient for LWPR to cover roughly the joint space,

having an output, even bad, in each configurations, and to

predict an accurate enough Jacobian matrix. The physical

time for this babbling phase is about three minutes which

is rather short given the fact that babbling is only necessary

once.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

N
M

S
E

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

N
u
m

b
e
r

o
f

R
e
c
e
p
ti
v
e
 F

ie
ld

s

Number of training samples

Fig. 2. Evolution of the Normalised Mean Square Error of the LWPR task
space velocity prediction (blue, scale left) and of the number of receptive
fields for one output (red, scale right) for a 50000 samples babbling phase
(average over 40 trials).

882

883

884

the nullspace of a given mapping at the velocity level

would require a complex learning process and thus it sounds

more appropriate to compute them from the learned forward

velocity kinematics mapping.

VII. CONCLUSION

In the work presented in this paper, we have used a state-

of-the-art function approximation technique, LWPR, to learn

the forward kinematics and, by extension, forward velocity

kinematics models of a simple robotic system. We have

shown that this model learning process could be combined

with state-of-the-art operational space control techniques to

control a robot. In particular, we demonstrated that we can

benefit from the hierarchical combination capabilities of

the operational space control framework to achieve several

learned tasks in parallel even when those tasks are not fully

compatible. This is made possible by learning the unique

forward mapping for each task and then inverse it instead

of directly learning an inverse mapping. Two methods were

tested: the extended Jacobian approach and the projection

method. The latter is shown to be more versatile than the

former.

There are several possible extensions to this work. The

most immediate one will be to extend this work to the case

of trajectory tracking instead of reaching tasks using resolved

motion rate control. This may induce more on-line learning

during the control phase and we will try to demonstrate that

redundancy usage and tasks combination are possible in that

more complex case too.

A second extension will be to study the behaviour of

our approach under perturbations to validate its on-line

adaptation capabilities. We will also verify that this approach

demonstrates good performances in a wider variety of tasks

and combination (joint limits avoidance, external collision

avoidance) as well as in the case of using different types of

inversion.

Long term perspectives include an extension of our frame-

work to systems with a larger number of degrees of freedom

as well as a sensivity analysis of the scaling effects on the

required length of the babbling phase (see [26] for studies

regarding that matter). Even though our example is complex

enough to present our approach to learning for the control of

redundant systems, model learning is of interest for complex

systems. Increasing the number of dimensions leads to more

complex learning problems which can be handled using

LWPR.

REFERENCES

[1] G. Metta, G. Sandini, D. Vernon, L. Natale, and F. Nori, “The iCub
humanoid robot: an open platform for research in embodied cognition,”
in PerMIS: Performance Metrics for Intelligent Systems Workshop,
Washington DC, USA, Aug. 2008.

[2] Willow Garage, “Overview of the PR2 robot,”
http://www.willowgarage.com/pages/robots/pr2-overview.

[3] G. Sun and B. Scassellati, “Reaching through learned forward models,”
in Proceedings of the IEEE-RAS/RSJ International Conference on

Humanoid Robots (Humanoids), Los Angeles, USA, Nov. 2004.
[4] A. Shon, K. Grochow, and R. Rao, “Robotic imitation from human

motion capture using gaussian processes,” in Proceedings of the IEEE-

RAS/RSJ International Conference on Humanoid Robots (Humanoids),
2005.

[5] S. Calinon, F. Guenter, and A. Billard, “On Learning, Representing
and Generalizing a Task in a Humanoid Robot,” IEEE Transactions

on Systems, Man and Cybernetics, Part B, vol. 37, no. 2, pp. 286–298,
2007.

[6] A. D’Souza, S. Vijayakumar, and S. Schaal, “Learning inverse kine-
matics,” in Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), vol. 1, 2001, pp. 298–303.
[7] J. Peters and S. Schaal, “Learning to control in operational space,”

The International Journal of Robotics Research, vol. 27, no. 2, pp.
197–212, 2008.

[8] L. Natale, F. Nori, G. Metta, and G. Sandini, “Learning precise 3d
reaching in a humanoid robot,” in Proceedings of the IEEE Interna-

tional Conference of Development and Learning (ICML), London, UK,
July 2007.

[9] A. Liégeois, “Automatic supervisory control of the configuration and
behavior of multibody mechanisms,” Systems, Man and Cybernetics,

IEEE Transactions on, vol. 7, no. 12, pp. 868–871, Dec. 1977.
[10] Y. Nakamura, Advanced Robotics: redundancy and optimization. Ad-

dison Wesley, 1991, ISBN 0-201-15198-7.
[11] L. Sentis and O. Khatib, “Synthesis of whole-body behaviors through

hierarchical control of behavioral primitives,” The International Jour-

nal of Humanoid Robotics, vol. 2, no. 4, pp. 505–518, Dec. 2005.
[12] S. Vijayakumar, A. DSouza, and S. Schaal, “LWPR: A Scalable

Method for Incremental Online Learning in High Dimensions,” Ed-

inburgh University Press, 2005.
[13] A. Ben Israel and T. Greville, Generalized Inverses : Theory and

Applications, 2nd ed. Springer, 2003, ISBN 0-387-00293-6.
[14] D. Nguyen-Tuong, J. Peters, M. Seeger, and B. Schoelkopf, “Learning

inverse dynamics: a comparison,” in Proceedings of the European

Symposium on Artificial Neural Networks (ESANN), 2008.
[15] O. Khatib, “A unified approach to motion and force control of robot

manipulators: The operational space formulation,” IEEE Journal on

Robotics and Automation, vol. 3, no. 1, pp. 43–53, Feb. 1987.
[16] K. Doty, C. Melchiorri, and C. Bonivento, “A theory of generalized

inverses applied to Robotics,” The International Journal of Robotics

Research, vol. 12, no. 1, pp. 1–19, Feb. 1993.
[17] G. Golub and C. Van Loan, Matrix computations, 3rd ed. The John

Hopkins University Press, 1996, ISBN 0-8018-5414-8.
[18] A. Maciejewski and C. Klein, “Obstacle avoidance for kinematically

redundant manipulators in dynamically varying environments,” The

International Journal of Robotics Research, vol. 4, no. 3, pp. 109–
117, 1985.

[19] S. Chiaverini, “Singularity-robust task-priority redundancy resolution
for real-time kinematic control of robot manipulators,” IEEE Transac-

tions on Robotics and Automation, vol. 13, no. 3, pp. 398–410, June
1997.

[20] N. Mansard and F. Chaumette, “Task sequencing for sensor-based
control,” IEEE Transactions on Robotics, vol. 23, no. 1, pp. 60–72,
Feb. 2007.

[21] J. Baillieul, “Kinematic programming alternatives for redundant
manipulators,” in Proceedings of the International Conference on

Robotics and Automation (ICRA), vol. 2, Mar. 1985, pp. 722–728.
[22] Statistical Machine Learning and Motor Control Group, “Locally

Weighted Projection Regression,”
http://www.ipab.informatics.ed.ac.uk/slmc/software/lwpr.

[23] F. Larsson, E. Jonsson, and M. Felsberg, “Visual servoing for floppy
robots using LWPR,” Workshop on Robotics and Mathematics (RoBo-
Mat), Coimbra, Portugal, Sept. 2007.

[24] S. Barthelemy and P. Bidaud, “Stability measure of postural dynamic
equilibrium based on residual radius,” in Proceedings of the 17th

CISM-IFToMM Symposium on Robot Design, Dynamics and Control

(RoManSy), Tokyo, Japan, July 2008.
[25] S. Klanke, S. Vijayakumar, and S. Schaal, “A library for locally

weighted projection regression,” Journal of Machine Learning Re-

search, vol. 9, pp. 623–626, Apr. 2008.
[26] D. Mitrovic, S. Klanke, and S. Vijayakumar, “Learned system dy-

namics for adaptive optimal feedback control,” Neural Information
Processing Conference (NIPS) : Workshop on Robotics Challenges
for Machine Learning, Dec. 2007.

885

