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Abstract— In mobile robotics applications, pattern and object
recognition are mainly achieved relying only on vision. Several
other perceptual modalities are also available such as, touch,
hearing or vestibular proprioception. They are rarely used
and can provide valuable additional information within the
recognition tasks. This article presents an analysis of several
methods of fusion of perceptual and auditory modalitites. It
relies on the use of a perspective camera and a microphone on
a moving object recognition problem. Experimental data are
also provided on a database of audio/visual objects including
cases of visual occlusions and audio corruptions.

I. INTRODUCTION

The integration of multiple sensory modalities has been
defined as a necessity to ease learning, simplify the calcu-
lation of various features, and to allow a robust perception
of the environment [9]. The complementarity of modalities
simplifies several reputated difficult tasks, and can be applied
to a wide variety of applications and domains : vision [21],
objects recognition [8], robot localization [15], etc. Exist-
ing work merging audio and video are mainly related to
applications within man-machine interactions [16], [19].
Existing systems usually combine audio and video with other
sensors such as lasers to detect faces [12], and use audio
to localize sound sources within scenes [6] sometimes also
using microphone arrays [4], [5].

From a theoretical point of view a large part of the
existing merging methods involve mutual information be-
tween modalities [13], [11] or are based on statistical tech-
niques [14], [7]. The aim of this paper is to focus on
the case of audio-vision fusion, and to inquire on what
should really be extracted from images and sounds to reach
an easy and efficient merging of both modalities. A new
method of extracting features from images using an entropic
sampling is used, it allows a better description of observed
scenes and a non constrained feature extraction. Practical
experiments will focus on the recognition of moving objects
each emitting sounds during motion. These experiments
provide a practical framework to study the interaction of
image and sound in tasks of objets recognition. The main
important points being the ability to understand the amount
of necessary correlations between both modalities and how
they are related to each other. Fusion results are presented in
cases of severe alterations of the objects’ database by adding
visual occlusions and audio corruptions.
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II. SYSTEM ARCHITECTURE
A. Visual system

In the last few years, the problem of extracting features
from images has received growing attention. The majority of
existing methods use derivatives approaches and rely on local
image patches as basic features [1]. Recently, bag-of-features
representations have become popular, they are geometry free,
based purely on characterizing the statistics of local patch
appearances [10]. The idea behind the method is to extract a
set of local image patches which are sampled and assigned a
metric description. The resulting quantified descriptors give
an implicit distribution description space that can be quanti-
fied using different methods. Most of the existing work differ
mainly according to the way patches are sampled and then
described. They are generally selected using keypoints SIFT
based approaches [3]. Codebooks are then produced using k-
means and agglomerative clustering [10]. Most of the cited
techniques consider partial information from scenes mainly
distributed around maximal gradient points, which limits the
robustness of visual loops. The used method is driven by the
idea that all the information contained in images is useful. It
is based on a dense multilayer decomposition of the image
driven by the quantiy and homogeneity of the information
contained within subpatches.

B. Entropic decomposition of images
An efficient decomposition must produce an optimal and

possibly a unique partitioning of images. In addition it would
be interesting to produce less patches, but of variable size
so that they can cover homogeneous texture zones. In order
to generate patches, a quadtree-like algorithm is set up.
Quadtree algorithms cut recursively images into subimages
and so on. Starting for the initial image, each subimage
is cut into four equal subimages. The idea is to use the
same principle, but at the contrary of the regular quad-
tree approach, the division of subimages will be driven by
an entropy measure. The idea is to cut a subimage at the
location were the difference of the quantity of information
between possible subimages is minimal. All scales will then
contain valuable information as the sampling is ensuring
that information is equally distributed in subimages. This
quantity of information is given for an image I by: H(I) =
−∑

c=255
c=0 Occ(I = c) logP(I = c) with Occ(I = c) the number

of times the pixel value c appears in I, P(c) is the probability
of appearance of the grey value c within I.

To estimate the optimal point minimizing the variance of
the distance between the information contained in the four
subimages of I, the principle of integral images introduced
in [2] is used.
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Fig. 1. Computation of QI(x,y) using QI(x−1,y−1), QI(x,y−1), QI(x−
1,y) and q(x,y). In (A) The computation of R(x,y−1) and in (B) and (C)
the final computation of QI(x,y).

Let q(i, j) be the quantity of information of a pixel I(i, j)
with q(i, j) = log(P(I(i, j))). We set the integral information
of I(x,y) as:

QI(x,y) = ∑
i≤x, j≤y

q(i, j) (1)

This sum is computed in one iteration on the whole image or
subimage considered. We set R(x,y−1) the integral quantity
of information on the row x of height y−1. The principle of
computation is presented in Fig. 1(A).

R(x,y−1) = QI(x,y−1)−Q(x−1,y−1). (2)

Finally the integral quantity of information for a (x,y) (see
Fig. 1(B)(C)) is given by:

QI(x,y) = QI(x−1,y)+R(x,y−1)+q(i, j). (3)

Once QI is computed the variance value within each pixel
becomes implicit. It is important to compute the mean value
of the quantity of information contained within the four
subimages. In the case where I is of size m× n we have
for a cutting position (x = m/2,y = n/2): QIm = QI(m,n)/4.
As shown in Fig. 2, the quantity of information of each zone
is: 

QI11(x,y) = QI(x,y),
QI12(x,y) = QI(m,y)−QI(x,y),
QI21(x,y) = QI(x,n)−QI(x,y),
QI22(x,y) = QI(m,n)−QI21−QI12 +QI11.

(4)

Finally the optimal (x,y) position is the one minimizing the
following sum of differences:

∃(x,y)/minx,y(
a=2,b=2

∑
a=1,b=1

(QIm−QIab(x,y))2). (5)

To illustrate the stability of the decomposition, Fig. 2
(below) presents the selected patches for a simple object
translated between the two images. One may check the
stability of the method by noticing that in both cases patches
cover the same zones despite the important translation of
the considered object. This is an expected result, the amount
of information being the same between in both images, the
decomposition generates the same patches.

Fig. 2. Up: Computation of the quantity of information contained in
the four subimages of QI for a cutting position located at (x,y). Down:
Optimal generation of patches for a translated object. The object is covered
with the same patches, covering the same areas and providing an equal
decomposition of the image.

Fig. 3. Example of codification of a scene using the optimal method for
every layer of Fig. (A). Each patch contains its mean color in grey level.

C. Description of Patches and local decision

Let Fz(I) be the function allowing the decomposition of
the image using the entropic sampling I into several textured
patches :

Fz(I) = z0,z1, ...,zn with I =
n⋃

i=0

zi (6)

Extracted patches are described according to their texture
using a method as shown in [25]. Let T = hz0 ,hz1 , ...,hzn be
the set containing all texture descriptors of patches zi of I.
The idea is to sample T to reduce the number of descriptors
to m ≤ n, m being adjusted for all images to 20. We then
add to T a metric function expressed by dist(hzi ,hz j) and a
reference texture patch hre f . The reference patch is set to a
patch containing a single color, corresponding to a uniform
area. In a second stage all the representation of patches
contained in T are compared to hre f and sorted, from the
less to the more textured. The set Ts corresponding to the
ordered set T becomes :

Ts = hre f ,h′z0
,h′z1

, ...h′zn (7)
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with :
dist(hre f ,h′zi

)≤ dist(hre f ,h′z j
) if i < j (8)

The mahalanobis distance is used as a metric function.
At this point, Ts still contains too much information, it
is then sampled into m equal areas. For each area, only
the median patch is selected. Extracted patches are then
identified within a predefined codebook V . Codebooks are
generated by selecting within a database of images a wide
variety of subimages to ensure a wide coverage of possible
patches, in this paper it is set to 32 elementary patches. A
codified image Icodi is then a vector containing all codebook
indexes of its extracted patches. Comparing two codified
images Icodi and Icod j is then given by :

Comp(Icodi , Icod j) =
m

∑
i=1

(Icodi − Icod j)
2 (9)

Substracting images introduce a spatial dimension to the
comparison, as due to the optimal patch decomposition two
close images will theoretically have the same decomposition.

III. AUDIO SYSTEM

A. Predictive modelization of audio frames

Sounds are non-stationary and highly redundant signals
which require to be divided into successive short frames and
then encoded.

This encoding allows to generate a set of coefficients
representative of the short-term spectrum. The coding that we
use is based on the model of the cochlea of Patterson [20]. In
the model of Patterson, the bandwidth of each cochlear filter
is described by an equivalent rectangular bandwidth (ERB).
Each filter models the signal present at the output of a nerve
in the cochlea. For N ERB filters we obtain N signals. These
signals are segmented successively into frames of length L
on which we calculate the energy terms:

xk = [xk
1,x

k
2, . . .x

k
N ] with xk

i,i=1...N =
L

∑
q=1
|yk

i (q)|2

where xk
i represents the component of the code vector xk

calculated on the frame k and the yi(q)k represents the q =
1 . . . ,L samples of the output signal of the ith filter.

It would be of great interest to use frame duration of
40ms as it could allow an easy synchronization of audio
and video streams since the video sampling period is 40ms.
Unfortunatly, the auditory scenes are subject to spectral
stationarity constraints which lead us to use frames of 10ms
to 20ms duration. Given an audio sampling frequency of
48kHz we used overlapped frames of 480 samples to obtain
exactly 8 audio frames corresponding to one 40ms video
frame.

B. Local decision

The approach we propose for processing audio data
is based on a technique already used in applications of
speaker recognition: the neural predictive modeling of sound
sources [17]. This technique makes it possible to estimate
a distance between an unknown audio source and a set

of reference sources. For that it takes into account the
spectral components of the signal (in our case the coefficients
calculated on N filters) at the same time as their dynamic
evolution when the signal is not stationary.

Let xk = [xk
1,x

k
2, . . .x

k
N ] be the cochlear coding vector

corresponding to the kth audio frame where N is the number
of coefficients. For a M classes problem (M objects to
recognize), M neural networks are trained so as to associate
every two consecutive coding vectors xk−2, xk−1 to the
corresponding next vector xk. Once the learning of the M
networks is completed, they all are representative of the M
sound objects. During the recognition phase, an unknown
signal coming from the audio sensor is first segmented and
then coded by the cochlear model. Every sequences of two
coding vectors xk−2, xk−1 are then presented as input of
the M networks (see Fig. 4) so that M prediction errors are
computed between the real next frame xk and the predicted
next frame x̂k: εk = x̂k− xk. The local decision consists in
labeling the unknown frame with the class of the network
giving the minimal prediction error. The neural networks
used are multilayer perceptrons with one hidden layer.

prediction errors

xk!2

xk!1

xk

!k,N
a

Neural
Network 1

Neural Neural
Network 2 Network N

x̂ x̂ x̂k,1 k,2 k,N

!k! k,2,1
a a

Audio frames

Fig. 4. Predictive architecture with neural networks.

IV. FUSION AND DECISION STAGE

The recognition of sound objects follows two stages: a
stage of local decision made at the frame level followed by
a stage of overall decision. Two kind of local decisions are
made. First by fusing errors computed on the audio and on
the video frames, making then the local decision, and also by
merging decisions already made independently at the audio
level and the video level. The overall decision consists in
affecting a class to the whole sequence from all the local
assumptions.

A. Local decision

In what follows we note εa
k,i as the prediction error

computed from the outputs of the network representing the
sound class i, i ∈ {1, . . . ,M} of the audio frame k. This term
is therefore homogeneous to the inverse of the ith class-
membership likelihood of the frame k. We note εv

k,i the
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equivalent error term provided by the vision algorithm. We
compared 4 methods of fusion between audio and video data
for the local decision algorithm.

1) Decision without fusion (LD1): Both audible and vi-
sual modalities are treated separately.The overall decision is
made from all local decisions {ca

k ,c
v
k} estimated separately

on each audio and video frame by minimizing the error [24]:{
ca

k = argmini=1,M{εa
k,i},

cv
k = argmini=1,M{εv

k,i}.
(10)

2) Extended Decision without fusion (LD2): This fusion
algorithm works as the previously defined LD1 algorithm,
adding the second minimum prediction errors, i.e, errors
defined by :{

ca(2)
k = argmini=1,...,M,i6=ca

k
{εa

k,i},
cv(2)

k = argmini=1,...,M,i6=cv
k
{εv

k,i}.
(11)

that is from all local decision {ca
k ,c

a(2)
k ,cv

k,c
v(2)
k }.

3) Decision with simple fusion (LD3): For each frame k,
a local decision is made by choosing the class minimizing
the error, audio or video. Each frame is therefore labelized
according to the following rule:

ck = argmin{εa
k ,εv

k} with ε
{a,v}
k = mini=1,...,M{ε{a,v}

k,i } (12)

Note that this method needs to previously normalize the εa
k

and εv
k errors before making the final local decision :

ε
m
k ←−

1
σm

(
ε

m
k − εm

k

)
(13)

εm
k being the mean error value and σm the standard deviation,

all of them computed over all the video and audio frames
composing the audio-visual sequence.

4) Decision with weighted fusion (LD4): Among the
simpliest methods of merging, one is the fusion by weighted
decision between audio and video errors:

ck = argmin{αa
k ε

a
k ,αv

k ε
v
k} with ε

m
k = mini=1,...,M{εm

k,i} (14)

The weighting criterion is based on the ratio between the
minimum error noted ε

m(1)
k and the second minimum error

ε
m(2)
k of both audio and visual modalities, as defined previ-

ously:

α
m∈{a,v}
k =

ε
m(1)
k

ε
m(2)
k

. (15)

As underlined before, the ε
m(1)
k should be first normalized.

The αm are quality factors defined such as to emphasize the
modality which seems more suitable : the lowest the ratio
ε

m(1)
k /ε

m(2)
k is, the most likely the m modality decision is.

B. Global decision

In the previous section we presented 4 fusion methods
of local decision. We have thus a set of local decisions
ck,k=1,...,K where K represents the total number of frames.
We propose two ways to build a global decision. The
first algorithm (GD1) does not consider local decisions but

instead computes a global error by summation of all the
local minimum errors, making then a decision by global
error minimization. This algorithm will give us a baseline
recognition rate for comparing results obtained from fusion
algorithms. The second algorithm (GD2) makes a global
decision from all the local decisions.
• (GD1) decision (global error) or Global Decision 1:

c = arg min
i,i=1,...,M

{
K

∑
k=1

εk,i

}
(16)

• (GD2) decision (simple majority) or Global Decision 2:

c = argmax
i
{|Ui|} , (17)

where Ui is the set of all the frames of class i, i ∈
{1, . . . ,M} and |Ui| its cardinal.

Because of their simplicity of implementation, these two
types of decision algorithms are commonly used in problems
of sequence classification, at least when not using statistical
methods (such as hidden Markov models, for example).

V. EXPERIMENTS

The experiments presented have been conducted to test the
complementarity of audio and video information in a task of
moving objects recognition with visual occlusions and noise
disturbances.

A. Experimental conditions

We have built a database of audiovisual recordings of
28 toys moving in front of a uniform background. Each
object emits a particular noise due to its movement on the
ground and eventually issuing a characteristic sound. Fig. 5
presents a global view of these objects. One can distinguish
sub-classes within shape, colour and sounds emited. Objects
1-5 are spherical and emit very similar rolling sounds.
Objects 13-19 have wheels, similar shapes and dimensions
but different colors. Objects 26-28 have dissimilar shapes and
emit caracteristic sounds that are proper to them (artificial
sounds non related to displacement).

For the purposes of our experimentation, we made three
recordings for each of the objects, leading to the formation
of three databases as following:

1) B1: Learning database allowing to adapt audio and
video models of the objects;

2) B2: Test database without any occlusion. We test the
performances of models in normal conditions.

3) B3: Test database with visual occlusions during motion
(see Fig. 5).

4) B4: Test database with auditory occlusions. This
database is generated using B2 on which we added
a white gaussian noise artificially.

All objects go through the visual scene horizontally from left
to right for B1 and B3, and from right to left for the test base
B2 and B4. A small panel placed between the camera and the
object is used to introduce visual occlusions, the panel covers
approximately 30% of the visual scene (see Fig. 5 (below)).
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Fig. 5. Up: Global view of the objects composing the database. Down:
Images extracted from 4 sequences with visual occlusion.

The white gaussian noise added to B2 with a −10dB signal
to noise ratio in order to obtain B4 is present 50% of time.

Digital audio signals are provided by the camera’s micro-
phones at a rate of 48kHz. In order to precisely caracterize
spectral informations, we use 13 coefficients by frame, which
seems a good compromise between low-dimension vectors
and minimal information-loss. The multi-Layer Perceptrons
we use have 26 inputs and 13 outputs. Simulations have
shown that the best performance in learning were obtained
with predictive networks of 6 hidden cells. 5000 learning
iterations were enough to obtain the algorithm convergence
of the 28 models.

B. Experimental results

1) Classification without fusion: After extracting and
learning both the audio-visual features from the 28 objects
of B1, we conducted a first test of recognition on B2, B3
and B4 without fusion: the objects were therefore recognized
separately by the audio and visual loops using criterion GD1
(Eq. 16). Table I shows the results, on B2, B3 and B4.

In the case of objects of B2 (free from any perturbations
the recognition score are respectively of 96,43% and 71,43%.
They tend to show that it is more difficult to try recognize the
objects using separate modalities. In fact many small objects
of the database emit similar sounds introducing legitimate
confusions. It seems that the visual extraction of features is
robust enough as it succesfully identified 27 objects with a
high recognition rate of 96,43%.

Visual occlusions introduced in B3 lower drastically the
recognition rate from 96,43% to 57,14%. The stability of
the algorithm is seriously affected on the while sequence,
the recognition is only possible on the non occulted frames

TABLE I
RECOGNITION TESTS ON B2, B3, B4 WITHOUT FUSION USING GD1

Databases Video Audio
B2 96,43% 71.43%
B3 57.14% 71.43%
B4 96,43% 10.71%

that do not succed in allowing a stable rate along acquisition.
The results are the same in the case of audio recognition
rates. The important pertubation of the audio signal drop the
results from 71,43% to 10,71%.

2) Classification with fusion: We will now compare the
fusion strategies in order to show the complementarity of
audio-visual features by testing fusion algorithms LD1, LD4
on databases B2, B3 and B4.

TABLE II
TESTS RECOGNITION ON B2, B3, B4 WITH GD1 GLOBAL DECISION AND

WITH LOCAL FUSION LD1 TO LD4 AND GD2 GLOBAL DECISION

Decision → GD1 GD2
Bases LD1 LD2 LD3 LD4

B2 89.29% 100% 96.43% 82.14% 100%
B3 75.00% 78.57% 75.00% 71.43% 78.57%
B4 14.29% 96.43% 60.71% 67.86% 96.43%

The first column of Table II can be directly compared
to the results of Table I. In both cases the global decision
algorithm is GD1. On B2 the fusion of modalities score is
adjusted as the median of both the 96.43% for vision and
71,43% for audio. At the contrary in the presence of visual
occlusion (B3), the recognition rate increases after fusion
to 75% from initial scores of 57.14% and 71.43%. This
illustrates the complementarity of the modalities when using
adpated fusion. In B4 the deterioration of the audio modalitiy
has a very low impact on the overall score due to the high
rates provided by vision.

The following columns present the results obtained using
the second global fusion algorith GD2 and the four local
decisions LD1− LD4. Without occlusions (B2), the fusion
allows to increase the recognition rates up to 100% in the
case of LD1 and LD4. In the case of visual occlusions, GD2
increases recognition rates at a level very similar to GD1.
Algorithms LD1 and LD4 always show the highest results.
Finally in the case of the audio occlusions, GD2 appears
to be highly more robust than GD1 as the rates increase
from 14.29% to 96.43%. These results show that a global
decision computed from local decisions GD2 is a much more
powerfull fusion strategy than a global decision relying on a
summation of local errors GD1.

VI. CONCLUSIONS AND FUTURE WORKS

We presented in this article a series of non-statistical
fusion algorithms showing the interest of the multimodal
approach in the tasks of perception in robotics, particularly
in connection with the recognition of objects in motion. We
proposed to adress two modalities: the visual and audio in
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the framework of recognition objects emitting sound while
moving. We have proposed a vision algorithm allowing the
recognition of objects from image sequences using a bag of
words technique. The audio data processing was carried out
by more conventional methods as used in speech recognition.
The experiments presented showed that it is possible to
get better scores for recognition by merging multimodal
information rather than adressing each modality separately.
In order to illustrate this, we realized a base of 28 dynamic
objects accessible online on our website (www.isir.fr). Our
longer term goal is to show that multisensory perception is
not the addition of modalities treated separately, while each
can in their own way solve specific problems in recognition.
The graal being the discovery of new common feature spaces
that will allow a more direct solving of fusion perceptual
modalities problems.
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