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Abstract— In the lion and man game, a lion tries to capture
a man who is as fast as the lion. We study a new version of
this game which takes place in a Euclidean environment with
a circular obstacle. We present a complete characterization of
the game: for each player, we derive necessary and sufficient
conditions for winning the game. Their (continuous time)
strategies are constructed using techniques from differential
games and arguments from geometry. Our main result is a
decision algorithm which takes arbitrary initial positions as
input, declares one of the players as the winner of the game
and outputs a winning strategy for that player. We extend our
approach to explicitly construct, in closed form, the decision
boundary that partitions the arena into win and lose regions.

I. OVERVIEW AND RELATED WORK

In a game of pursuit and evasion, one player (the pursuer)

tries to get close to, and possibly capture the other (the

evader). The evader, in turn, tries to avoid being captured.

Pursuit-evasion games are of fundamental importance to

researchers in the field of robotics. Consider the task of

surveillance, where a guard (pursuer) has to chase and

capture an intruder (evader). Another scenario is search-and-

rescue, where a rescue worker has to locate a lost hiker.

Since the actions of the hiker are not known a priori, worst-

case pursuit and evasion strategies guarantee that the hiker is

found no matter what he does. Problems arising from diverse

applications such as collision-avoidance [9], search-and-

rescue [6], [15], air-traffic control [3], and surveillance [9]

have been modeled as pursuit-evasion games.

A classical pursuit-evasion game is the Lion and Man

game. It was originally posed in 1925 by Rado as follows

A lion and a man in a closed arena have equal

maximum speeds. What tactics should the lion

employ to be sure of his meal?

The first solution was generally accepted by 1950: the lion

moves to the center of the arena and then remains on the

radius that passes through the man’s position. Since they

have the same speed, the lion can remain on the radius and

simultaneously move toward the man. Although this strategy

works in discrete-time, it was later shown by Besicovitch

that exact capture in continuous time takes infinitely long in

a bounded arena [14]. However, if the capture distance is

set to some c > 0, Alonso et al. [2] showed that the lion can

capture the man in time O
(

r
s

log r
c

)

, where r is the radius of

†Nikhil Karnad is with the Department of Computer Science and En-
gineering at the University of Minnesota, 200 Union St SE, Minneapolis,
Minnesota 55455, USA. karnad@cs.umn.edu

‡Volkan Isler is with the Department of Computer Science and Engi-
neering at the University of Minnesota, 200 Union St SE, Minneapolis,
Minnesota 55455, USA. isler@cs.umn.edu

This work was supported by the grants NSF CCF-0907658 and NSF
IIS-0917676.

the circular arena and s is the maximum speed of the players.

In [16], Sgall studied the discrete time, continuous space

variant in an unbounded environment: the positive quadrant.

He showed that the lion captures the man, if certain invariants

are satisfied initially.

Recently, researchers have studied variants of the lion and

man game played in environments more complex than a

circular disc or the real plane. Isler et al. showed that the lion

can capture the man in any simply-connected polygon [10].

Alexander et al. presented a sufficient condition for the

greedy strategy to succeed in arbitrary dimensions [1].

The lion and man game in the presence of obstacles

remains a challenge. In this paper, we take an important

step by fully characterizing the lion and man game in the

presence of a single circular obstacle. That is, we present a

decision algorithm which determines the winner of the game.

We also construct the winner’s strategy.

As in the original version of the game, we assume that

the players know exact locations of each other at all times

and have equal maximum speeds. An important line of

research is to study the effect of sensing limitations. Recent

progress in this direction includes the study of range-based

limitations [5] and bearing-based limitations [11]. Other

variants of pursuit-evasion games studied in the robotics

community are visibility based pursuit-evasion [8], [13], [7]

and maintaining the visibility of an adversarial target [4].

II. OUR CONTRIBUTION

We study the lion and man game played in a convex polyg-

onal environment, where both time and space are continuous.

There is a single circular obstacle in the environment. The

main question we study is: Given initial locations of the

players, which player wins the game?

In earlier work [10], researchers have shown that the

pursuer can capture the evader in any simply-connected

polygon. This intuitively suggests that the evader has to reach

the obstacle to win the game. Conversely, the pursuer wins

the game if he can separate the obstacle from the evader, and

simultaneously make progress toward capture.

Verifying these conditions from an arbitrary initial con-

figuration is difficult. For example, it is easy to see that the

evader wins the game if he is closer to the obstacle. However,

the condition is not necessary, as shown by the following

instance. Consider a circular obstacle O with center A and

radius 10 units. (see Fig. 1). The initial configuration is such

that the pursuer P and the evader E are separated by a relative

angle of π radians w.r.t. A. Further, |EF |= 10π = |
⌢
PF | i.e.

every point on the obstacle is closer to the pursuer than the

evader. If the evader takes path EF , the pursuer heads to F
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Fig. 1. A counterexample: The evader wins even though the pursuer is
closer to all points on the obstacle.

along the shortest path, captures the evader and wins. This

is true for any point F ∈ δO (boundary of O) if the evader

heads straight to F from E along the shortest path. However,

consider the following strategy: the evader heads toward F

for 2 units and switches direction toward the tangent point

that is farther from the pursuer, say T . It can be shown that

the evader reaches T faster than the pursuer. The evader then

avoids capture indefinitely by looping around O, and wins

the game.

In this paper, we present a complete characterization

to determine the outcome of the pursuit-evasion game for

any given initial condition. In Section III, we formulate a

differential game and proceed to derive optimal control laws

in Section IV-A. We discuss the geometry of the solution

in Section IV-B. In Section V, we derive necessary and

sufficient conditions for each player to win the game, which

leads to our main result. In Section VII, we present a

partitioning of the arena into a pursuer-win region and an

evader-win region, for a given initial evader location. We

conclude in Section VIII and suggest directions for future

research.

III. PROBLEM STATEMENT AND FORMULATION

An evader E and a pursuer P are playing a game of pursuit

and evasion inside a simply-connected convex polygon P ,

with a single circular obstacle O. We say that the pursuer

captures the evader if the geodesic distance between the

players goes to zero as time goes to infinity. On the other

hand, if the evader can guarantee a non-zero lower-bound on

the distance between the players, the outcome of the game

is an evader-win. The game is played in continuous time and

continuous space.

Let R be the radius of O (see Fig. 2). At any time t ∈ [0,∞[,
the state of the game is defined by three variables:

x(t) = [rP(t),rE(t),θ(t)]T

where θ(t) is angle between the players E and P, subtended

at the center of O. The radial distance of P from the center

of O is denoted as rP(t) and that of E is rE(t). We drop the

dependency on time from the notation and just use rP, rE

and θ where appropriate.

Both players are modeled as point objects with the same

maximum speed, v = 1. This is done by scaling all dis-

tances w.r.t. the value of v (normalization). The pursuer P

O

P

E

uP

uE

R

rP

rE

θ

Fig. 2. The pursuer P guarding the obstacle O from the evader E.

(respectively the evader E) can pick a direction relative to

his/her radius rP (respectively rE ) to move along. This is the

control input uP(t) (resp. uE(t)), where uP(t),uE(t) ∈ S1∀t
(S is the torus). We study a game of complete information:

both players know each others’ locations at all times. The

state transition equations are

ṙP(t) = cosuP(t)

ṙE(t) = cosuE(t)

θ̇(t) =
sinuE(t)

rE(t)
−

sinuP(t)

rP(t)
(1)

The players occupy the part of the polygon outside of the

obstacle O. Thus rP(t)≥R, ∀t and rE(t)≥R, ∀t. We restrict

the relative angle between the players as θ ∈ [−π,π]
In order to win, the evader must guarantee a lower-bound

on the distance between the players. This happens when the

evader reaches the boundary of the obstacle O without getting

captured. In fact, this is the only way the evader can win the

game as we will see in Section V-B. On the other hand,

if the pursuer can prevent the evader from reaching O and

simultaneously make the distance between them go to zero,

the pursuer will win the game. The pursuer can do so, if he

is able to make the relative angle θ go to zero before the

evader hits O (This statement is formalized and proven as

Theorem 1 of Section V-B.). We use these observations to

formulate an equivalent game with the following objective.

Suppose the evader E hits the boundary of O at time T ≥
0, i.e. rE(T ) = R. Then, the value of θ(T ) describes the

outcome of the game: if |θ(T )| 6= 0, we know that E reached

O before P and thus E wins the game. If not, we will show

that the pursuer can align himself with the evader before T

and proceed to win the game by playing the Lion’s strategy

(see Theorem 1). The objective, or value, of the game is thus

given by

J = |θ(T )|, where T = min{t : rE(t) = R}

We wish to solve the optimal control problem: what should

be u∗P(t) and u∗E(t) so that E maximizes J and P minimizes

it? It is worth noting that we study the game of kind, and

seek strategies that are optimal in terms of the outcome of

the game.

This problem fits in the context of differential games.

Although the solution process is along the lines of the Lady
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in the Lake problem (see [3], Sec. 8.5, pp. 452–456), our

problem is significantly different: if both the lady and the

man had equal velocities, the lady would always win the

game by swimming along the line joining them, in the

direction away from the man. In contrast, the outcome of

our game depends on the initial conditions.

IV. OPTIMAL PLAYER STRATEGIES

In this section, we use optimal control theory, in the realm

of differential games, to derive the optimal strategies for

the pursuer and evader. Further, we present the geometric

interpretation of the strategies.

A. Optimal control solution

Let x(t) be the state vector, and u(t) the control input.

Optimizing an objective function of the form

J(u) = h(x(T ),T )+
∫ t f

t0

g(x(t),u(t), t)dt

with a terminal payoff h(·) and an integral payoff g(·) subject

to (1) is equivalent (Pontryagin’s Maximum Principle) to

optimizing the Hamiltonian H given by

H(x(t),u(t),p(t), t) = g(x(t),u(t), t)+pT (t)[a(x(t),u(t), t)]

where p(t) is a vector of Lagrange multipliers, also known

as the costate variables. a(t) is the vector of state transition

equations from (1).

In our problem, we only have a terminal payoff

h(x(T ),T ) = |θ(T )| and no integral payoff. Thus the Hamil-

tonian for our system is

H = pP(t)ṙP(t)+ pE(t)ṙE(t)+ pθ (t)θ̇(t)

The Isaacs equation is

min
uP

max
uE

H = 0 (2)

Necessary conditions for u∗P and u∗E to optimize the Hamil-

tonian are (see [12], 5.1-17b, pp. 187-188):

ẋ∗(t) =
∂H

∂p(t)
; ṗ∗(t) =−

∂H

∂x(t)
; 0 =

∂H

∂u
(3)

From the transversality condition, we get:

p∗θ (T ) =
∂ (|θ(T )|)

∂θ
= sgn(θ(T )) (4)

From (3) and (4) we have ∀t, p∗
θ
(t) = sgn(θ(T )). Solutions

for u∗P and u∗E that optimize H are parallel vectors.

(sinu∗P,cosu∗P) ‖

(

−p∗
θ

r∗P
, p∗P

)

and (sinu∗E ,cosu∗E) ‖

(

p∗
θ

r∗E
, p∗E

)

(5)

Solve for the constants of proportionality cP and cE using (2)

and (5):

cP =−cE and cE sinu∗E =
p∗

θ

r∗E

At t = T , the evader hits the boundary of the obstacle i.e.

rE(T ) = R. For t > T the evader moves along the boundary

of O away from the pursuer i.e. his velocity vector is tangent

O

P

E

T
uE

R

rE

θ

Fig. 3. E moves away from P along a tangent to O.

to O thereafter. We have uE(T ) = sgn(θ(T )) · π

2
, which gives

us the value of cE .

cE sgn(θ(T )) =
sgn(θ(T ))

R
⇒ cE = R−1

Finally, solve for the optimal controls, u∗P and u∗E , by substi-

tuting known values into (5).

rP(t)sinu∗P(t) =−rE(t)sinu∗E(t) = Rsgn(θ(T )) (6)

B. Geometric Interpretation

To understand the physical meaning of (6), consider the

evader: rE(t),uE(t). The argument holds for the pursuer

using rP(t),uP(t) instead.

sinu∗E(t) =−
R

rE(t)
sgn(θ(T ))

Let Q be the center of the obstacle O (see Fig. 3). Consider

triangle ∆QET , where T is the point on O where the tangent

from E touches it. Clearly, Equation (6) is satisfied, meaning

that the solution for the evader E is to always head toward O

along the direction of the tangent from E to O. Since there

are two possible tangents for any evader location, he picks

the one in accordance with the value of sgn(θ(T )). Since

θ ∈ [−π,π], we know that he will pick the tangent in such

a way that his direction of motion makes the value of the

relative angle θ greater. The pursuer P, being the minimizing

player, moves along the circle to reduce the relative angle

between the players.

V. DECIDING A WINNER

Given an initial condition for our game, and the optimal

strategies derived in Section IV, we characterize under which

conditions the game ends in a pursuer-win and an evader-win.

First, we use a direct observation to eliminate one case:

when the evader is initially closer to the obstacle than

the pursuer. If rE(0) < rP(0), the evader E reaches the

boundary of the obstacle before the pursuer P simply by

heading directly to the point on the obstacle closest to E.

Thereafter, the evader loops around the obstacle and avoids

being captured indefinitely, leading to an evader-win.

Next, consider the case when rE(0)≥ rP(0). Let the initial

relative angle be θ(0) = θ0, say. If θ0 =±π , the pursuer can

pick either direction to go around O. If not, he picks the

smaller of the angles. Once he picks a direction, the pursuer
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Fig. 4. An illustration of the Lion’s move used by the pursuer P to stay
on the evader’s radial line w.r.t. Q.

will not switch. This is because by switching directions,

the pursuer allows the relative angle θ to increase while

the evader is decreasing his distance to the obstacle. The

evader would then be in a better configuration i.e. same

angular separation as before, but with a lesser distance to

the obstacle.

A. Time to termination

The time at which the evader hits the obstacle (Thit) is the

length of the tangent w.r.t. his initial location. Thus Thit =
√

rE(0)2−R2. The pursuer wins the game if he can align

his radial ray AP with that of the evader, AE. Define the

time at which this happens as Talign where θ(Talign) = 0.

If Thit < Talign, the evader reaches the obstacle before the

pursuer prevents him, and thus the evader wins the game.

If not, the pursuer can align himself with the evader, after

which the pursuer can execute the Lion’s strategy and win the

game. The Lion’s strategy guarantees capture for the pursuer

when he stays on the radius of a growing circle, between a

fixed center point and the evader’s location (see Fig. 4). A

description of this pursuit strategy can be found in [14], [16].

There are two ways to compute Talign. First, we can

integrate the relative angle between the players (Equation (1))

from θ(0) to 0 as time goes from 0 to Talign. This method

is excluded from our paper in the interest of space1. In this

paper, we present arguments from geometry and worst-case

player strategies instead.

Let the evader’s tangent to O be EF . Let the time taken

by the pursuer to reach F along the shortest path, call it

PGF (see Fig. 5), be Tintercept . Instead of defining Talign as

the time when θ(t) goes to 0, it is more convenient for our

geometric arguments to use the value of Tintercept instead.

In the following section, we show that no matter what

the evader does, the game is decided just by comparing the

time both players take to reach the point F . Our overloaded

notation of Talign as Tintercept is therefore justified.

B. Pursuer-win condition

In general, the evader may choose not to play the optimal

strategy, which affects two aspects of the game: (i) the point

on the boundary of the obstacle O at which the evader hits O,

1A detailed version is available at the authors’ website:
http://rsn.cs.umn.edu/images/f/f4/Iros2009circleGuardTechReport.pdf

EE

PP

FF

G
G

OO

H

H
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(a) (b)

Fig. 5. Different cases for when the evader hits the obstacle at H: (a) H

is on
⌢
GF , and, (b) EH intersects PG at S.

and, (ii) the time at which an alignment possibly occurs. In

this section, we show that whenever Talign ≤ Thit , the pursuer

wins the game irrespective of what the evader does with (i)

and (ii). For the rest of our discussion, we adopt the following

notation (see Figure 5). Let P be the pursuer’s initial location

and E that of the evader. Let F be the point of tangency of

E w.r.t. O in the direction he heads away from P to increase

the relative angle between the players. Let G be the point

of tangency, w.r.t. O, of the pursuer along the direction he

heads to decrease the relative angle between the players.

As derived earlier, Thit is the length of line segment EF .

Further, Talign is given by PG+
⌢
GF .

Lemma 1: The following two statements S1 and S2 are

equivalent.

S1: Talign ≤ Thit

S2: The pursuer can align with the evader in finite time i.e.

the relative angle between the players goes to zero in

finite time, irrespective of the evader’s actual trajectory.

Proof: S2 ⇒ S1: Let the relative angle between the

players go to zero in finite time. The evader cannot be on the

boundary of the obstacle unless the pursuer is coincident with

him. If not, the evader can always maintain angular separa-

tion from the pursuer by looping around the obstacle along

the boundary of O, maintaining a non-zero lower-bound on

the relative angle between the players – a contradiction. Thus

the pursuer aligns himself with the evader before, or exactly

at, the time the evader hits the obstacle. When the evader hits

the obstacle at the point F , we have Talign≤ Thit by definition.

S1⇒ S2: Suppose Talign ≤ Thit . By definition, we have

PG+
⌢
GF≤ EF (7)

We have two possible cases: either the evader hits the

obstacle in finite time, or, he does not hit the obstacle ever.

In the second case, the pursuer has a higher angular velocity

than the evader about the center O and since the evader does

not hit the obstacle, the relative angle between them goes to

zero (players are aligned) in finite time.

We now focus on the first case: the evader hits the obstacle

at some point, call it H. We show that the pursuer is closer

to H no matter where H lies on the boundary of O. Note that

we consider that the evader takes the shortest possible path

to reach H, but our argument holds for any evader strategy
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that takes him to H because the shortest path to H is a lower

bound.

Case 1. H lies on
⌢
GF (see Fig. 5 (a)). Expand (7)

PG+
⌢
GF≤ EF ⇒ PG+

⌢
GH +

⌢
HF≤ EF

Use triangle inequality in ∆EFH, where FH is a chord of

the obstacle O i.e. HF <
⌢
HF to get PG+

⌢
GH≤ EH. Thus

the pursuer will reach H before E and align himself with the

evader.

Case 2. H lies on the boundary of O such that EH intersects

PG. Call the point of intersection as S (see Fig. 5 (b)).

Expand (7): PS +SG+
⌢
GF≤ EF . Use triangle inequality in

∆SGF , where S lies outside the circle O such that FS is a

secant of O i.e. SF < SG+
⌢
GF to get PS≤ EF−SF . Finally,

triangle inequality in ∆EFS gives us

PS≤ ES

The pursuer will reach S (and H) before E and thus can align

himself with the evader.

Case 3. H lies on the part of the boundary of O beyond F .

The shortest path from E to H wraps around F : it is EF ·
⌢
FH.

The shortest path from P to H wraps around G and is given

by PG·
⌢
GF ·

⌢
FH. Since PG+

⌢
GF≤ EF , adding

⌢
FH gives us

the required result: P is closer to H than E and thus reaches

H before E. Since E hits O at H, we have that the players

are aligned.

In all of the cases, we observe that the pursuer is closer to

all points on the obstacle than the evader when the condition

Talign ≤ Thit is true. Consequently, he can align himself with

the evader in finite time.

Lemma 1 results in a configuration of the game where

the pursuer and evader are radially aligned w.r.t. O such that

the pursuer is closer to the center of O than the evader. We

show that from this point on, the pursuer wins the game by

following the Lion’s strategy, adapted to a simply-connected

polygon (as explained in [10]). We summarize this result in

the following lemma by proving that the initial conditions

for the existence of a winning pursuer strategy are satisfied

at the time of alignment.

Lemma 2: When the players are aligned radially w.r.t. O,

with the pursuer closer to O than the evader, the pursuer wins

the game by following the Lion’s strategy.

Proof: First, we show that there exists a circle that

separates the pursuer from the evader, constructed as follows

(see Fig. 6). Suppose the pursuer is at P and the evader at

E. Let the center of the obstacle O be A. Let l be the line

passing through E, P and A. Pick a point Q on l such that

a circle CQ centered at Q passes through P and completely

contains O. For example, if Q coincides with P, then O is the

same as CQ. We can pick any other point Q on l farther away

from P than A and that will work as well. The other extreme

is when Q is at infinity on l, at which point CQ degenerates

to the tangent to O at P. Therefore, such a circle always

exists when the players are aligned.

E

P

A

O

Q
l

CQ

Fig. 6. Existence of a separating circle when the players are aligned.

The pursuer follows the Lion’s strategy (see [14], [10] for

details), depicted in Fig. 4: he always remains on the radius

CE ′ for an evader move from E to E ′ (say). This sandwiches

the evader between the boundary of the polygonal arena P

and a growing circle CQ with a fixed center Q.

We combine Lemma 1 and Lemma 2 to state our main

result.

Theorem 1: When Talign ≤ Thit , the pursuer wins the game

by first aligning himself with the evader, then executing the

Lion’s strategy. If not i.e. if Thit < Talign, the evader reaches

the obstacle and wins the game thereafter by looping around

its boundary and avoiding capture indefinitely.

VI. DECISION ALGORITHM

Let the initial configuration of the game be G(0) =
(rP(0),rE(0),θ(0),P,O), where rP(0) is the initial radial

distance of the pursuer from the center of the obstacle O

and rE(0) that of the evader. θ(0) is the initial relative

angle between the players. P is a description of the simply-

connected polygonal arena that contains the obstacle O and

the players in its interior.

The radius of the circular obstacle O is R, a given constant.

Let the center of O, denoted by A, be the origin of our

coordinate frame. We further set the positive X-axis along

the evader’s radius, which makes the relative angle θ(t) the

angle subtended by the pursuer’s radius w.r.t. evader’s radius

for all time t.

We assume that a feasible description is provided i.e. un-

expected conditions, such as the players starting from inside

the obstacle, are not checked for. Our decision algorithm

is listed as Algorithm 1. The subroutines are used in our

algorithm are: (i) CARTESIAN - Convert polar coordinates to

Cartesian coordinates, and, (ii) TANGENTS - Computes the

points of intersection of the tangents from E and P to the

circular obstacle O, taking into account the value of sgn(θ)
to decide which of the two possible tangents to use.

VII. DECISION BOUNDARY

The winning condition derived in Section V is a compar-

ison of the length of the evader’s tangent to the length of

the pursuer’s path to the evader’s point of tangency. We can

use this result to answer a more general question: given the

evader’s initial location E, a description of the polygon P ,

and the obstacle O, what is the boundary of the region within

which the pursuer starts and wins the game, and outside of

which the pursuer is unable to capture the evader?
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Algorithm 1 DECIDEWINNER(rP(0),rE(0),θ(0),P,O)

1: if rE(0) < rP(0) then ⊲ E is closer to O than P

2: OUTPUT “EVADER WINS”

3: return

4: end if

5: A← CENTER(O)
6: E,P← CARTESIAN(rE(0),0,rP(0),θ(0))
7: F,G← TANGENTS(O,E,P)
8: Thit ← |EF |=

√

rE(0)2−R2 ⊲ Evader’s tangent

9: θalign = ∠GAF

10: Talign = |PG|+ |
⌢
GF |=

√

rP(0)2−R2 +Rθalign

11: if Talign ≤ Thit then ⊲ Theorem 1

12: OUTPUT “PURSUER WINS”

13: else

14: OUTPUT “EVADER WINS”

15: end if

Fig. 7. For each evader location Ei (moved along positive X away from
O), the shaded regions are pursuer-win regions. The evader’s tangents to O

are also shown.

Given an initial evader location E, the points of tangency

from E to O, call them T and S as before, are fixed and can

be computed directly (see Fig. 7). Let cosα = R
r
. Let w be

the length of the evader’s tangent to O. The equation for the

boundary of the pursuer-win region in polar form is

r(θ) =
{

R2 +(w−R(θ −α))
}

1
2

Fig. 7 was obtained by varying θ in discrete steps and

computing the corresponding r(θ). The resulting region was

plotted in Java and the snapshot produced. It can be seen

that the polar coordinate equation is of the form

aθ +br2 + ccos−1 R

r
+d = 0

where a, b, c, and d are known constants. By substituting the

initial radius and angle of the pursuer into the equation, we

can check on which side of the boundary the pursuer lies.

In that sense, we call this equation the decision boundary.

In comparison, our solution approach in Section V uses

lengths of geometric paths and an analysis of worst-case

strategies to derive a simpler decision formula.

VIII. CONCLUSIONS AND FUTURE WORK

We presented a decision algorithm for a pursuit-evasion

game played in a convex polygonal arena with a circular

obstacle: given a description of the environment, and the

initial location of a pursuer and an evader, our algorithm

determines which player wins the game. We extended the

necessary and sufficient condition for winning the game to

compute a partition of the arena into a pursuer-win region

and an evader-win region. To the best of our knowledge,

this is the first work in which a pursuit-evasion game has

been completely characterized in the presence of a non-trivial

obstacle.

Although both of our solution approaches (Section V and

Section VII) are equivalent, the best solution depends on

the application. For example, if we have control over where

to deploy a guard (pursuer) to prevent an intruder (evader)

from reaching his goal (obstacle), we might compute the

decision boundary and pick the most suitable location from

the interior of the pursuer-win region depending on other

criteria. However, if the initial conditions have already been

decided, the condition from Algorithm 1 can be checked for

the possibility of capture.

As part of immediate future work, we plan to extend our

result to non-convex environments, with circular obstacles

and polygonal obstacles. In this paper, we studied a game

with complete information, i.e. the players had access to the

entire state of the system at all times. It would be interesting

to incorporate sensing limitations into our game model.
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