
  

  

Abstract—The power management system for autonomous 
mobile robots is an important issue for keeping robots in their 
long-time functionality. Recharging is necessary before the 
power of the robot has exhausted. In this paper, we propose a 
multi-sensor fusing method using intensity and range data 
fusion with covariance intersection approach to locate the robot 
pose while performing the docking for recharging. An artificial 
landmark is employed as a visual cue on a docking station in 
order to recognize the location by using inverse perspective 
projection. At the same time, the range data acquired by laser 
range finder are modeled as multiple line segments which are 
the hypothetical walls in the environment. Then the geometrical 
relationship between the robot and the docking station is 
estimated much more precise by using covariance intersection 
approach. We have demonstrated the success of the proposed 
algorithms through experimental results. 

I. INTRODUCTION 
ith the increasingly research on mobile robot in 
recently decades, the role of the robot will be more 

important in the current and future world. Mobile robots are 
being designed to interact increasingly with human 
environment, working around humans on a daily basis. The 
robot systems will be widely employed in many applications, 
for example, factory automation, dangerous environments, 
office, hospitals, surgery, entertainment, space exploration, 
farmland, military, security system, and so on. In this paper, 
we describe our fully designed and developed mobile robot 
for indoor services [1]. With this purpose, the robot should be 
provided with multiple sensors for adapting the change of the 
environments in order to take the duty of services. Efficient 
communication between the robot and its outside world is 
also necessary. In addition, the robot must be capable of 
long-term autonomy. Energy power is of great concern, and 
without it the robot will become immobilized and useless. 
How to navigate the robot towards the recharging station and 
dock into the station are important issues for the long-term 
functionality of robot. 

The first work on robot recharging is made by Grey 
Walters [3]. They developed the first autonomous recharging 
mobile robots and employed light to find a hut, which 
contains a light beacon and a battery recharger. Roufas [4] 
used four IR LED emitters and one IR receiver to implement 
the docking. Their method can allow 6 degree of error. In [5], 
 

 

the robot approaches the recharging station using the map and 
makes contact with specially designed battery recharging 
system. Some systems are using vision-based method to 
implement docking [6~9]. The robot designed by Silverman 
[8] consists of an immobile docking station and the docking 
mechanism mounted on the robot. Vision and laser 
ranger-finder are used in two phase mode to find the docking 
station. The docking station is designed with 2 degree of 
freedom to tolerate the docking error.  

Intensity image acquired by camera is passive perceptual 
sensor data and always hard to obtain the pose of the robot 
with respective to the docking station. Although the laser 
range sensor is active perceptual and perfect in estimating the 
distance between robot and the object,  it is difficult to find 
the target in the environment. Our research aims to combine 
the two kinds of sensor by using covariance intersection to 
locate the docking station in the environment in order to 
locate the pose with respective to the docking station. This 
paper is organized as follows: In Section II, we introduce the 
system configuration of our service robot including the 
docking station and robot docking mechanism. We present 
the image and range data model in section III and IV 
respectively. Session V describes the fusion algorithm with 
covariance intersection. Section VI presents the experimental 
results. Section VII presents brief concluding remarks. 

II. ROBOT SYSTEM CONFIGURATION 

A. Robot Hardware Architecture 

 
Fig. 1. Hardware structure of service robot, 

developed in IRA Lab. at NTU. 

 
The mobile robot we developed for services is shown in 
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Fig. 2. The robot is designed for security patrol in office 
building, warehouses home services and developed by our 
laboratory. The robot is equipped with main controller 
(employed by Pentium-IV with 512M RAM), sensory circuits, 
single camera, laser range finder, power management system, 
and two 7 D.O.F. arms. The structure of the hardware is 
shown in Fig.1. 

B. Software Architecture 
The software architecture is shown in Fig. 2. Task 

behaviors are executed by the kernel which is the central part 
of control and intelligence. The kernel can communicate with 
all the sub-systems through the IPC (Inter-Process 
Communication). 

 
Fig. 2. Software architecture of service robot. 

C. Docking Station and Robot Docking Mechanism 
Unlike the other approached [4~9], our robot equips a 

charger inside the robot. This makes the docking and 
recharging station be simple in its architecture and easily 
implemented. The docking and recharging station can be 
mounted everywhere in the working environment. When 
robot about to run out its battery power, it will decide to 
recharge and find the nearest station to dock and charge. 

The docking station and robot docking mechanism are 
shown in Fig. 3(a) and (b) respectively.  The system diagram 
is shown in the left side of Fig. 5. It consists of MPU 
(Microprocessor unit), IR and DPDT (Double pole double 
throw) replay. The MPU acts as the main controller and 
communicates to robot through infrared rays. Only under the 
successful docking and encrypted communication between 
robot and docking station, the controller turns on the AC 
power and begins the charging procedures. This encrypted 
communication confirms the safety of the charging system. 
The diagram of the communication is demonstrated in Fig, 5. 

 The robot docking mechanism is shown in Fig. 3(b). 
They are mounted in front of the robot. The recharging 
adapter is located inside the robot and extends out through 
servo control when docking is proceeding. A tolerable entry 
offset and angle are allowed when robot is in the docking 
process. 

       
Fig. 3. (a) Docking station. (b) The robot docking mechanism 

which is under servo control. 
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  Fig. 4. The motion of the robot docking mechanism. 
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Fig. 5. Recharge  system diagram for the docking station and 

robot. 

III. IMAGE MODEL 
Fig.6 illustrates the geometrical relationship of camera and 

ranger finder. The color camera is mounted on top of the 
ranger finder. An extra servo-controlled device is to perform 
the tilt function of the range finder. The plane of range data is 
produced by swinging the LRF (Laser range finder). Color 
image is captured by the camera. The information such as 
range data and image data are gathered and computed in the 
PC mounted on robot and the process of the data fusion with 
range and image is also running on the PC. 

A. Coordinate System 
There are two kinds of coordinates in our robot. One is the 

image coordinate system (ICS), and the other is the range 
coordinate system (RCS). Fig. 6 shows the geometric 
relationship of ICS and RCS. Vector T

v
 is the translation 

vector from RCS to ICS. The z-axis of ICS is parallel to the 
z-axis of RCS. Thus there is no rotation in the coordinate 
transformation from RCS to ICS. The parameters TTT z ,y,x  

of the translation vector T
v

 are constant and can be measured 
in advance. 
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Fig. 6.  The geometric relationship of ICS and RCS in 
the robot. 

We use the 44 ×  homogeneous matrix RCS
ICST  to transform 

RCS to ICS. The transformation matrix RCS
ICST  is defined as: 
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B. Camera Model 
Define the camera model is: 
AXI = , (3) 

where I is column vector Ttvu ),,(  and represents the 
homogeneous coordinates in the image plane. X is the column 
vector Tzyx )1,,,(  and represents the homogeneous 
coordinates in the world coordinate system (the same as ICS). 
The A is 43× matrix mapping three-dimensional world 
points to two-dimensional image points and is denoted as the 
parameters of camera calibration. The image coordinates 

TVU ),(  is thus obtained by 

t
uU = , 

t
vV = , (4) 

For any world point ),,( zyx , we can obtain the coordinates in 
the image plane by 

XAu 1= , XAv 2= , XAt 3= , (5) 
where 1A  is the row vector in A. Expand the inner products 
and rewrite 0=−Utu  and 0=−Vtv , 
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The overall scaling of A is irrelevant, due to the homogeneous 
formulation, 34A  may be arbitrarily set to 1. The afore 
mentioned equations can be written in matrix form: 
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We denote the above equation by PBY = , where: 
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 (9) 
To solve the equation for vector B, The Pseudo-Inverse 

Method [10] is adopted. The linear model is represented by 
EPBY += , (10) 

where X is an pn× formal independent variable matrix, B is 
a 1×p  parameter matrix whose values are to be determined 
and E represents the difference between the prediction and 
the actuality. E is an 1×n  error matrix. To minimize the error, 
the error term is: 

PBPBPBYYPBYYPBYPBYEE TTTTTTTT +−−=−−= )()(

         PBPBYPBYY TTTTT +−= 2  (11) 
Now differentiate, setting the derivative to 0 yields 

0=− YPPBP TT  (12) 
And thus 

YPPPYPB TT ))(( 1* −==  (13) 

Where *P  is called the pseudo-inverse of P 

IV. RANGE DATA MODEL 
We consider that the model of laser range finder is a sphere 

as shown in Fig. 7, where d , ,βα  are pan-angle, tilt-angle 
and range data. 
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Fig. 7. The model of laser range finder. 
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Fig. 8. An example of range image scanned in a line. 

The range data d and pan angle Rα  is measured by LRF, 

and Rβ  is the tilt angle controlled by the extra 
servo-controlled device. In Fig. 7, R represents the range 
plane composed of range data. In Fig. 8, it shows the range 
image which is scanned in a wall line. The laser range model 
is composed of many spherical arcs and one of spherical arcs 
represents a range image scanned in a wall line.  

A. Cluster of Collinear Points 

A scan of range data is represented by },...,{ 0 npps = , 

where },{ jjj yxp =  represents the Cartesian coordinates 

and j is the acquired angle of the laser range finder. By the 
natural wall segment extraction, the first step is to apply an 
Iterative Endpoint Fit (IEPF) [10,11] on the measurements 
data set s . Fig. 9 shows that the IEPF will recursively split s  

into two subsets },...,{ 01 jpps =  and 

},...,{2 nj pps = until a validation criterion distance maxd  

is satisfied from point }{ jp  to the virtual line segment 

consisted of },{ 0 npp . Finally the IEPF function will return 

to all the end points },{ 0 jpp 、 },{ nj pp . 

 
Fig. 9.    The recursive split of IEPF. 

B. IEPF with Weighting[16] 
Fig. 10 (a) shows the IEPF results when the laser scans 

near a corner. Because the vertex of corner is beyond a 
distance measurement (3 meter), the IEPF will lead out three 
line segments. Obviously, the shortest line segment is not the 
true candidate. In this experiment, we modify the IEPF by 
adding a weighting sum. When the point number of a line 
segment is over than a threshold value (for example the 
threshold is 5), the line segment from IEPF is valid. 
Otherwise, the line segment is inactive. Fig. 10 (b) shows the 
IEPF with a weighting sum threshold. 

 
(a)                                                            (b) 

Fig. 10. (a) The IEPF result without weighting, (b) 
and with weighting. 

C. Uncertainty Estimation from Hough Transform  
The Hough Transform is one of the popular approached to 

extract lines as IEPF. However in this paper, we utilize the 
Hough Transformation for re-sampling the co-linear points 
which have been clustered into groups from the Weighting 
IEPF.  

 
Fig. 11. The Hough Transform.  

 
Fig. 11 shows the Hough Transform result [12, 13]. A 

maximum voting value indicates the most possible line 
feature in },{ maxmax φR .Nevertheless, surrounding region of 

},{ maxmax φR  also shows the uncertainty. For this reason, we 
can re-sample the Hough domain within the dark ellipse to 
estimation the mean, variance and covariance of the line 
feature. Fig. 12(a) shows two line segments from the 
weighting IEPF and Fig. 12(b) shows the line feature 
uncertainty within 2-deviation. 

 
(a)                                             (b) 

Fig. 12. The estimation of line feature uncertainty. 

V. SENSOR FUSION WITH COVARIANCE INTERSECTION 
In general, for the feature extraction from docking station, 

we can obtain reliable orientation information from vision 
system, but may get rough depth information. On the other 
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hand, LRF model process is in contrast with vision process, it 
is easy to measure the accurate distance of an extracted object, 
but it is hard detect and recognize the feature in the 
environment. 

In these proposed approach, we combine the vision feature 
with range model feature to reduce uncertainty of detecting 
and recognizing the landmark of the docking station. Sensor 
fusion improves the measurement performance when 
different sensor modalities are measuring the same target.   
Fig. 13 shows the complementary correlation. The ellipses 
represent the measuring uncertainties. 

 
Fig. 13. Shows the complementary correlation. 

Two pieces of information, vμ  and lμ , are to be fused 

together to yield an output oμ , where vμ  and lμ are 
estimation from vision and laser range finder system model, 
and vvP  , llP  and oP  are their covariance. The Covariance 
Intersection Algorithm (CI) [14] is used to fuse these. The 
intersection is characterized by the convex combination of the 
covariance, and the Covariance Intersection algorithm is: 

111 )1( −−− −+= llvvo PPP ωω              (14) 

lllvvvoo PPP μωμωμ 111 )1( −−− −+=              (15) 
where ∈ω [1, 0], and ω  modifies the relative weights 

assigned to 1−
vvP  and 1−

llP . Different choices of ω  can be 
used to optimize the covariance estimate with respect to 
different performance criteria such as minimizing the 
determinant of 1−

oP . The fact that this update is conservative 
for every ω  and it can be shown using a proof by [15] which 
demonstrating the matrix 

]~~[ T
ooo EP μμ−              (16) 

is positive semidefinite for any cross covariance vlP  
between the two prior estimates:  

The error )~)1(~(~ 11
llvvoo PPP μωμωμ −− −+= , where 

vμ~  and lμ~  are the errors in vμ  and lμ .  
In other words, the Covariance Intersection method 

provides an estimate and a covariance matrix whose 
covariance ellipsoid encloses the intersection region. The 
estimate is consistent irrespective of any value of  vlP . 

If there are more than one line feature in a laser scan, 

camera has to search the docking station landmark in the 
region of each line feature. When the vision feature has been 
detected in the region of corresponding line feature, the 
Covariance Intersection Algorithm (CI) is used to fuse these 
to estimate an accurate docking position. The key algorithm 
procedure is shown as follows: 

 
Complementary Fusion Algorithm 

Data: all line features ( i
lμ , i

llP ) in a local scan 
Result: To estimate of the docking position information, and 
update them when they are identical. 
Initialize: landmark detection = False 
For all line features from each scan do 
       • Calculate the region angle iθ  
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       • Trigger vision feature detection at iθ  

       •Compute the vision feature i
vμ and covariance matrix 

i
vvP  

        If vision feature has been detected then 
               •Fuse line feature and vision feature with CI 
     [ ] 111 )1( −−− −+= llvvo PPP ωω  

lllovvvoo PPPP μωμωμ 11 )1( −− −+=  
•landmark detection = True 
•Break the for loop 

      Else 
 • Jump to the line feature next i 

End 
•landmark detection = False 

End 

VI. EXPERIMENTAL RESULT 
The proposed data fusion algorithm using covariance 

intersection approach is implemented in our robot. Fig. 14 
shows the docking scenario that our robot using combined 
intensity and range data to locate the docking station by 
covariance intersection. The result of fusing intensity and 
range data using covariance intersection is shown in Fig. 16. 
Range data can be extracted several line features which 
representing walls. Since the docking station is located 
against wall, there exists five line features in this range data. 
Thus, image data has to be processed for finding the landmark 
in the corresponding parts of the acquired image. When the 
landmark is extracted and the pose of docking station is 
estimated by inverse perspective projection, the covariance 
intersection algorithm (CI) fuses these to estimate an accurate 
docking pose. Fig. 17 shows that CI can reduce the 
uncertainty of the pose of docking station. The trajectory of 
robot and environment map acquired by laser ranger finder is 
shown in Fig. 15.  
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Fig. 14. An image acquired in our test trial. 
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Fig. 15. The result of successive trail is shown. The 
blue points represent the trajectory of robot and red 

ones are partial environment map nearby the docking 
station. 
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Fig. 16. The result of intensity and range data fusing 

with covariance intersection. 
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Fig. 17. The covariance intersection estimation for 

locating the docking station. 

VII. CONCLUSION 
Using the docking station and robot docking mechanism 

developed in our laboratory, the proposed data fusion with 
covariance intersection is implemented in our service robot. 
An artificial landmark is employed as a visual cue on a 

docking station in order to recognize the location by using 
inverse perspective projection. At the same time, the range 
data acquired by laser range finder are modeled as multiple 
line segments which are the hypothetical walls in the 
environment. Then the geometrical relationship between the 
robot and the docking station is estimated much more 
precisely by using covariance intersection approach. Our 
approach is superior in reducing the uncertainty than the 
approach which individually uses image and range data in 
two phase mode to achieve docking. 
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