
  

  

Abstract— For robotic assisted minimally invasive surgery, 

recovering the 3D soft-tissue shape and morphology in vivo is 

important for providing image-guidance, motion compensation 

and applying dynamic active constraints. In this paper, we 

propose a practical method for calibrating the illumination 

source position in monocular and stereoscopic laparoscopes. 

The method relies on using the geometric constraints from 

specular reflections obtained during the laparoscope camera 

calibration process. By estimating the light source position, the 

method forgoes the common assumption of coincidence with 

the camera centre and can be used to obtain constraints on the 

normal of the surface geometry during surgery from 

specularities. We demonstrate the effectiveness of the proposed 

approach with numerical simulations and by qualitative 

analysis of real stereo-laparoscopic calibrations. 

I. INTRODUCTION 

he introduction of surgical robots in minimally invasive 

surgery (MIS) has enabled enhanced surgical dexterity 

through the use of articulated mechanical wrists controlled 

via microprocessors. By providing motion scaling and 

tremor cancellation, such systems can be used to perform 

micro-scale tasks that are not possible using traditional 

laparoscopic instruments [1]. However, there are still several 

significant challenges in robotic assisted MIS that arise due 

to the limited and distal access to the internal anatomy 

coupled with soft-tissue deformation. In these cases, 

integration of pre-operative and intra-operative data is a 

major difficulty [2]. For advanced surgical robotics, 

determining the 3D surface shape and motion of the soft-

tissue during surgery is important for providing the surgeon 

with intra-operative guidance, motion stabilization, and 

applying image-guided active constraints to enhance the 

surgeon’s capabilities in the dynamic and confined 

workspace [3]. 

Early work on recovering the 3D surface of the soft-

tissue in MIS is mainly focused on monocular techniques, 

particularly, the use of shape-from-shading (SfS) [4,5,6]. A 

common assumption used in SfS methods is that the 

illumination source is located at the camera centre [4] and 

while modern SfS techniques used in MIS have been 

extended to handle more complex projection models [7] the 
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illumination condition has remained. This simplifies the SfS 

equations and makes the problem more easily tractable. 

However, the coincidence of the camera centre and the light 

source is only an approximation and can vary considerably 

between different scopes. The diameter of devices used in 

MIS is around 11mm and the distance between the 

incoherent fibre bundle channeling light to the surgical site 

and the camera is inherently small. This is not insignificant, 

however, because the distance between the observed tissue’s 

geometry and the imaging device is also small, typically 

ranging between 40mm and 100mm. In addition, an 

increasing number of scopes include several illumination 

channels as shown in Fig 1 and this setup is common with 

stereo-laparoscopes as used in robotic surgery systems like 

the daVinci. There is also a recent trend for introducing 

multiple illumination sources for enhancing surgical 

guidance [8] and it is therefore desirable to devise an explicit 

technique for estimating illumination positions. 

In addition to SfS methods, with the introduction of 

stereo-laparoscopes notable progress has been made for 

recovering metric 3D measurements of the in vivo 

morphology and structure of soft-tissues [9,10,11]. In order 

to track tissue deformation over time, these methods assume 

a geometric surface model in the form of free-form bilinear 

grids or thin-plate splines [10,11]. The geometric model is 

recalculated at each time interval subject to optimizing an 

image similarity measurement, which can be adversely 

affected by view dependent specular reflections. In order to 

avoid errors caused by specularities the highlights are 

usually detected and subsequently removed or interpolated 

to ignore their interference [11,12,13]. While this approach 

is computationally efficient, it discards the valuable 

information specular reflections convey about the imaging 

geometry and the surface shape. 
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Fig. 1.  (a) Stereo-laparoscope of the daVinci surgical system showing two 

illumination sources and two cameras observing a silicone phantom 

model; (b) image from one camera of the scope in (a) illustrating the 

presence of specular highlights that can provide information about the 

observed surface shape. 
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In practice, specular reflections can be used to estimate 

surface shape and to constrain metric 3D reconstruction 

[14,15]. Given the rigidly fixed relationship between the 

camera and illumination source in MIS visualization 

devices, it is possible to use specular reflections to obtain 

important information regarding the soft-tissue surface 

normal. This can be utilized both for shading information 

and for improving stereo techniques. To determine the 

surface orientation and use this constraint in shape 

estimation for MIS it is important to know the illumination 

position. 

In this study, we have developed a method for estimating 

the light source position in MIS by using the specular 

reflections caused by the light source during preoperative 

camera calibration. The method only requires the customary 

planar calibration object used for laparoscope calibration to 

be reflective. Specular highlights detected in the image are 

then used to triangulate the illumination position with 

respect to the camera. The method is efficient and practical 

to implement and can be seamlessly deployed in practical 

MIS. 

II. BACKGROUND 

A. Camera Geometry 

We express the relationship between image and world 

coordinates using the pinhole camera model [16]. This uses 

the internal parameters of the camera and its orientation in 

the scene to project 3D points onto the image plane. The 

projection can be effectively described by matrix 

multiplication using homogeneous notation and the mapping 

between a world point [ 1]X Y Z=M T and an image 

point [ 1]x y=m T  can be represented by the following 

equation: 

 |µ  = = m K R t M PM  (1) 

where µ  is a scale factor and P   is the projection matrix, 

combining the intrinsic parameter matrix K  and the 

extrinsic orientation parameters R  and t . For stereo-

laparoscopes each camera is modeled independently but one 

is selected as the reference world coordinate system. 

Imaging systems in MIS typically require non-linear lens 

distortion modeling and compensation and in this study we 

assume the distortion parameters are determined during 

calibration and images are warped for radial and tangential 

distortion correction. 

For a calibrated laparoscope camera, a ray ( )q m  

defining the line of sight for an image point m  can be 

derived by using the camera matrix and the optical centre of 

the camera as: 

 ( ) †λ= +q m c P m  (2) 

where c  denotes the optical centre and †
P  the Moore-

Penrose pseudo inverse of the projection matrix. The 

parameter λ  represents the depth along the direction of 

( )q m  and we assume that all line of sight rays are 

normalized such that ( ) 1=q m . In the case of stereo 

imaging, when the calibration parameters are known, the 3D 

position of a landmark visible from both stereo-laparoscope 

views can be computed by finding the intersection of the 

rays back-projected from each camera. 

B. Specular Reflection Geometry 

The condition for specular reflection is that the surface 

normal n  at the 3D point S  where the specularity occurs, 

bisects the direction of incident light l  and the viewing 

direction defined by the light of sight. This means that for 

any given specular point s  in the image, the corresponding 

line of sight ray ( )q s and the surface normal provide a 

constraint on the direction of the light source. This 

relationship is shown in Fig 2 and can be expressed as the 

following constraint: 

 
( )

( )

−
=

−

l q s
n

l q s
 (3) 

In the general case of a calibrated camera, only the 

direction ray ( )q s  may be calculated from a detected 

specularity. The surface normal and illumination directions 

are unknown and it should also be noted that the depth of the 

point S  along ( )q s  where the reflection occurs is also 

unknown. 

III. CALIBRATION PROCEDURE 

For calibrating the surgical camera, it is typical to use an 

offline procedure before the imaging device is inserted into 

the patient. The calibration method based on homographies 

[13] is usually adapted for this task using a planar calibration 

target. During this process the external orientation of the 

calibration target is computed for each discrete observation 

used in the parameter computation. In additional to the 

traditional approach, we assume that the calibration target is 

 
Fig. 2.  The specular reflection geometry showing the soft-tissue surface 

normal bisecting the angle between the viewing direction and the 

illumination direction. 
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made of a reflective material, which is not diffuse and 

exhibits specular reflection. By detecting the specularities at 

each target orientation we build up constraint in order to 

estimate the illumination position. In the following, sections 

we describe the process for monocular and stereoscopic 

devices. 

A. Monocular Case 

The orientation of the calibration plane is known at each 

viewpoint from the calibration information. Hence, we can 

calculate the equation of the plane in the form 

aX bY cZ d+ + =  where the normal of the plane is 

[ ]a b c=n T and it is normalized such that 1=n . 

Because we can calculate the intersection of the plane with a 

specular ray ( )q s
 
computed from the image we can obtain 

the 3D position of the specular point S  on the calibration 

target. From (3), at this position, the direction of the light 

source must satisfy the following equation: 

 ( ) 2( ( ))= − ⋅l q s n q s n  (4) 

At each orientation of the calibration target the 

observation of specular highlights provides a constraint on 

the position of the light source L . By obtaining more than 

one view of the calibration plane is possible to triangulate 

the light source position by finding the intersection of 

collected illumination directions 
i
l . This concept is 

illustrated in Fig 3 where the calibration object has been 

moved to obtain different views. One should not that moving 

the scope and keeping the calibration target fixed results in 

the same constraints. 

In practice, the estimated directions of the light source 
i
l  

will not intersect at the same single point. This is the result 

of noise and imprecision in the image measurements of 

specular reflections, as well as, errors in the camera 

parameters and planarity of the calibration target. A solution 

for the intersection can be obtained to minimize the squared 

distance between the computed position of the light source 

and each of the estimated light direction vectors [14]. This 

can be posed in matrix form as 1−=L A b  where the matrix 

A  and vector b  are defined as: 

2
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 (5) 

The solution for L  provides the optimal estimate for the 

illumination position in the least-squares sense and can be 

computed using the Singular Value Decomposition (SVD) of 

A . We do not consider robust estimation in this study but 

note that a random sampling approach or a robust error 

function can be optimized to eliminate outlier directions 

[16]. 

B. Stereo-laparoscope 

The above principle can be extended to the stereo-
laparoscope case where two observing cameras are used to 
estimate L . The extrinsic rotation and translation between 
the two cameras is known from the calibration procedure and 
therefore for each observation of the target we may obtain 
two constraint on L , one arising from (4) and the second 
from the complementary light source direction ray:   

 ( ) 2( ( ))′ ′ ′ ′ ′= − ⋅l q s n q s n  (6) 

where ′s represents the specular point equivalent to s in the 

stereo pair image. It should be noted that s and ′s are not 

projections of the same 3D point. The reflections are view-

dependent at therefore the points S  are not coincident. The 

collected constraints from all observations can be combined 

and used to triangulate L  as in the previous section. For 

scopes with more than one light source, as shown in Fig 1, 

the specular reflection arising from each light channel needs 

to be dealt with explicitly. This is not difficult to achieve in 

practice as the reflections maintain a steady relative 

orientation in the images. 

IV. EXPERIMENTS AND RESULTS 

To evaluate the numerical performance of the proposed 
algorithm against noise and measurement errors, we created a 
simulation environment where the illumination position and 
camera parameters are known. Sample calibration objects are 
randomly generated within the environment inducing 
specular reflections at variable locations in the image. These 
synthetic specularities are then used to estimate the 
illumination position. To generate a synthetic dataset we 
initially select a random location in the image and compute 

 
Fig. 3.  The overall arrangement of triangulation for the light source 

position using specular reflections. The different observations of the 

calibration object provide constraints on the position of the light with 

respect to the camera coordinate system. 
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the line of sight ray. A calibration object of known 
orientation is then generated at a random depth in front of the 
camera and the normal of the object is set to satisfy the 
camera and light source configuration. All parameters in the 
environment are known and hence extensive numerical 
evaluation can be performed. 

A.   Simulations for Image Noise 

In our first step of the simulations, we tested against 

different levels of noise in the measured image coordinates of 

the specular reflection. To estimate the position of the 

illumination, we corrupted each specular image point by 

additive Gaussian noise with 0 mean and standard deviation 

varying between 0 and 2 pixels. For each noise level, 100 

trials were conducted and we measured the mean and 

standard deviation of the error. To validate the dependence of 

the algorithm against the number of calibration target 

orientations required for a solution, we performed each trial 

for between 0 and 20 views selected at a distance ranging 

from 50mm to 150mm in front of the camera. The orientation 

of each target was selected to induce a specularity in the 

image, after the target’s depth was randomly chosen. 

In Fig 4 we show the resulting error surface plot of the 

light source position estimate with respect to increasing 

levels of noise and the number of views used for the 

estimation. The algorithm can achieve accuracy below 

0.5mm despite noisy measurement provided that a sufficient 

number of observations are made. Performance is more 

severely affected when the number of views is small. 

However, in practice it is common and easily manageable to 

acquire more than 10 observation of the calibration target. 

B. Simulations for Normal Estimation Errors 

To evaluate performance against errors made for the 

position and orientation of the calibration object during 

calibration, we used the simulation framework to corrupt the 

known plane normal additive Gaussian noise. After setting 

up the virtual calibration target as described above, the 

known normal used for estimating L  was induced with noise 

by from a Gaussian distribution with mean 0 and standard 

deviation varying between 0 and 0.2 radians.  The perturbed 

normal was then used to estimate the illumination position 

and we measured the Eucledian error between the known 

ground truth and the estimate. As before simulations were 

executed 100 times for each noise and number of views 

pairing.  

In Fig 5 we show the results of our simulations against 

extrinsic parameter noise. It is evident that the algorithm is 

sensitive to this measurement error. As with image noise, 

performance is most severely affected when the number of 

target observations is small. 

 
 
Fig. 4.  Surface plots of the mean and standard deviation of the position 

estimation error with respect to the noise in image measurements and the 

number of calibration views used. 

 
 

Fig. 5.  Surface plots of the mean and standard deviation of the position 

estimation error with respect to deviation of the normal of the extrinsic 

object surface. 
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C.  Simulations for Stereo-laparoscopes 

To evaluate the illumination position estimation 

performance when dealing with a stereo-laparoscope the 

experiments in the two previous sections were performed 

with a stereo configuration. To generate consistent synthetic 

data for both views we used the monocular strategy 

previously described for the reference camera (left). Data for 

the stereo pair was then generated by determining the image 

point that satisfies (4). Noise was then added to each 

camera’s measurements independently and the experimental 

trials were conducted for different numbers of observations 

and variable levels of noise. Trials were conducted 100 times 

at each noise level and number of observations pairing and 

the mean and standard deviations of the error were recorded. 
The surface plots in Fig 6 show that the error for noise in 

the image coordinates, and in the extrinsic geometry of the 

calibration plane for the stereo-laparoscope case is 

significantly lower. The main reason for this is that the 

number of views used is double and hence quickly stabilizes 

the estimation’s sensitivity to noise by carving away the 

illumination’s position. Another advantage of having the 

stereo estimation is that a wider set of angles is produced for 

the triangulation, which inherently improves localization. 

D. Experiments with a Point Light Source 

To evaluate the proposed algorithm an experiment 

involving a point laser light source as shown in Fig 7 was 

performed. Laser light (532 nm, 50 mW, doubled Nd:YAG, 

Spectra Physics) was focused into a 600 micron step index 

fused silica optical fibre for delivery to the experiment.  The 

bare output of the fibre formed a 'point' light source with an 

emitting area of diameter 600 microns and a numerical 

aperture of 0.22, equivalent to an output cone angle of 0.22 

radians. Compared to normal laparoscopes, the laser source 

reduces the diameter of the illumination and allows more 

precise evaluation of the position estimation. The stereo-

laparoscope of the da Vinci® (Intuitive Surgical® Inc.) 

surgical system was used to collect images of the calibration 

target while an optical tracking system (Optotrak, Northern 

Digital Inc.) was used to obtain ground truth measurements 

within the setup. Hand-eye calibration between the optical 

system and the camera was obtained using Tsai’s algorithm 

[17] and a rigid probe was used to measure the position of the 

laser fibre in the world coordinate system. 

We collected calibration images using a specularly 

reflective planar calibration grid (no explicit tests for 

planarity were conducted) as shown in Fig. 7. The intrinsic 

camera parameters were computed using the implementation 

of [18] in our publicly available software. In a future release, 

this will include an implementation of the method proposed 

in this study (http://www.doc.ic.ac.uk/~dvs/calib/main.html). 

Specular points were detected by thresholding the intensity 

image and taking the centre of mass for specular pixels. 

While not very robust, this approach performed well in 

practice as the illumination intensity can be controlled at the 

Xenon source to attenuate speculaties. The rays defined by 

the calibration grid’s orientation and the specular surface 

point were then used to estimate the laser fibre’s position as 

shown in the 3D rendition in Fig 7. The error of the estimate 

compared to the ground truth position determined using the 

optical probe was measured at 2.12mm. It is important to 

note that this error includes the error of the optical tracking 

system, which was estimated to be in the range of 1.5mm. 

 
Fig. 6.  Surface plots of the error for running simulations against noise in the image space (a-b) and in the extrinsic orientation (c-d) with a virtual stereo-

laparoscope. The performance of the algorithm mimics the monocular version, however, errors are considerably smaller as a result of the larger number of 

constrains obtained by the stereo rig. 

 
Fig. 7.  The experimental setup with a robotic stereo-laparoscope and laser light source (a) illustrates the setup with the optical tracking system used for 

ground truth validation; (b) close up view of the calibration target, stereo-laparoscope and the laser source; (c) calibration target as observed in the image 

space with the detected grid points and a clearly visible green speckle from the laser; (d) rendering of the 3D space computed in the camera coordinate 

system, where the blue rays intersect to localize the illumination source. 
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E. Experiments with a Stereo-laparoscope 

In order to illustrate the performance of the calibration 

algorithm in a practical scenario, we provide qualitative 

analysis of estimating the illumination sources’ position for 

the da Vinci® system’s stereo-laparoscope. We collect 

calibration images as previously described and for each 

image detect the specular highlights caused by the incoherent 

fibre bundle illumination sources at the scope’s tip. The 

results of applying the monocular and stereoscopic version of 

the proposed method are shown in Table 1. For each dataset 

we used variable numbers of images to obtain the light source 

position and qualitatively we see that the estimated 3D points 

are consistent. Furthermore, we should note that the diameter 

of each light source at the exit point of the scope is 

approximately 2mm. Therefore the estimation is likely to be 

subject to some error as the position can fall anywhere within 

this region. 

In addition to measuring the estimated position, we tested 

estimating the normal of the calibration plane at the specular 

point. This was performed for images not used in the 

calibration dataset itself and hence not influenced by the 

estimation. From the results in Table 1 it is evident that the 

proposed method can compute the normal of the surface at 

specular points with a good degree of accuracy. 

V. CONCLUSION 

In this paper, we have developed a practical strategy for 
determining the light source position with respect to the 
camera for laparoscope and stereo-laparoscope devices. Our 
technique uses constraints obtained from specular reflections 
on a traditional calibration plane used in determining the 
optical parameters of the cameras. Experiments with 
simulations and a practical setup have illustrated the potential 
of the proposed method. This is an important step towards 
more accurate techniques for optically based 3D 
reconstruction and soft-tissue morphology estimation in vivo. 
In future work, we will demonstrate the effect of illumination 
position on surface shape estimation techniques and we will 
determine the illumination source’s irradiance function with 
respect to the distance of the calibration object. 
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TABLE I 

RESULTS FOR EXPERIMENTS ON REAL DATA 

Calibration Plane 

Dimensions (size) 

Calibration 

Views 

Calibration 

Reprojection 

Error (pixels) 

Illumination 

Estimation Views 

Illumination 

Position Estimate 

Normal 

Testing 

Views 

Normal Estimation Error 

(deg) 

11x15 (5.5mm) 15 [0.134, 0.126] 10 [5.58,-4.23,0.59] 5 3.13±1.52 

11x15 (5.5mm) 15 [0.109, 0.099] 10 [5.48,4.76,0.43] 5 2.81±.2.01 

11x15 (5.5mm) 15 [0.119, 0.113] 10 [5.13,4.18,0.45] 5 2.33±.1.78 

11x15 (3.4mm) 10 [0.092, 0.096] 7 [4.37,-3.95,0.13] 3 1.97±1.25 

11x15 (3.4mm) 10 [0.105, 0.107] 7 [3.98,3.96,0.73] 3 2.19±2.21 

11x15 (3.4mm) 10 [0.112, 0.115] 7 [4.12,3.63,-0.21] 3 2.79±2.10 
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