
Spatiotemporal state lattices for fast trajectory planning in dynamic

on-road driving scenarios

Julius Ziegler and Christoph Stiller

Department of Measurement and Control (MRT)

University of Karlsruhe

76131 Karlsruhe, Germany

{ziegler|stiller}@mrt.uka.de

Abstract— We present a method for motion planning in the
presence of moving obstacles that is aimed at dynamic on-road
driving scenarios. Planning is performed within a geometric
graph that is established by sampling deterministically from
a manifold that is obtained by combining configuration space
and time. We show that these graphs are acyclic and shortest
path algorithms with linear runtime can be employed. By
reparametrising the configuration space to match the course of
the road, it can be sampled very economically with few vertices,
and this reduces absolute runtime further. The trajectories gen-
erated are quintic splines. They are second order continuous,
obey nonholonomic constraints and are optimised for minimum
square of jerk. Planning time remains below 20 ms on general
purpose hardware.

I. INTRODUCTION

Autonomous cars are useful, since they offer the potential

to improve traffic safety by preventing accidents caused by

human failure. Of prime importance in their development

are motion planning algorithms that are capable of dealing

with other road users and outside traffic participants, like

pedestrians.

While motion planning is a difficult task in general, its

application to intelligent vehicles moving in traffic imposes

requirements that make it even more challenging: Road

going vehicles obey nonholonomic motion laws that must be

accounted for during planning. Moreover, they often operate

at speeds that make a consideration of vehicle dynamics

essential, and bounds on acceleration and jerk are required

to maintain controllability and driving comfort. Finally, the

presence of other traffic participants requires to consider

the environment as dynamic, and consequently, a motion

planner should not only generate purely geometrical paths

but time parametrised trajectories. This is an indispensable

requirement even for everyday driving scenarios like merging

into moving traffic or overtaking.

Our approach refines the concept of the state lattice

that has been introduced in [1]. A space-time manifold is

constructed by combining configuration space and time axis.

From this manifold, we sample a spatiotemporal state lattice.

This new type of state lattice falls into the category of acyclic

graphs, for which linear time shortest path solvers exist.

Adding the time dimension to the sampling space increases

the number of graph vertices required to express vehicle

motion considerably, an effect we counter by reparametrising

the workspace in a way that aligns the lattice to the course

of the road. While this sacrifices some generality of motions

realisable by the planner, it yields a drastic reduction in the

number of configuration space samples required to describe

vehicle dynamics. This allows us to meet the requirements

defined above within a real time planner.

The rest of this article is structured as follows. In sec-

tion II, we will give a short overview of seminal contributions

in the field of trajectory planning, directing the focus on

methods that have been applied in the automotive domain.

In section III, we will develop the main concept of this

work, namely the application of the state lattice principle to

space time planning. Section IV complements this idea by

proposing means of increasing performance of this method

that can be applied when planning in on-road scenarios.

We demonstrate motion planning results for two challenging

scenarios in section V, and close with a summary of findings

and a discussion of the methodology in section VI.

II. RELATED WORK

In the last decade, practical motion planning research

has focused on sampling based methods. Two main fields

have emerged, random sampling based methods and methods

sampling the configuration space deterministically.

The most influential random sampling based method

has been the technique of rapidly exploring random trees

(RRT) [2]. The RRT algorithm uses a simple stochastic

scheme to construct a geometric tree that explores the free

space quickly. The method generalises very easily in terms

of configuration space dimensionality and dynamic model

selection, since only a forward dynamic model is required.

It has been applied successfully not only to path planning,

but also for generation of time-parametrised trajectories [3],

and was employed on board an intelligent vehicle [4].

However, with regard to the scenario we are considering,

some difficulties remain: To be efficient, the method relies

heavily on nearest neighbour (NN) searching, and efficient

methods for NN searching impose constraints on the choice

of metric. Typically, the Euclidean metric is employed, and

weak generalisations are feasible [5]. RRT is highly sensitive

to the choice of NN-metric [6], and gives good results only

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 1879

if the metric is a proper approximation of the real travel

cost. The problem with this is twofold: If the free space has

narrow passages, the chosen metric may poorly approximate

the real travel cost, since the robot must go a loop way. Then,

search may take a long time to complete. In some scenarios,

the cost function that is desired to be minimised may even

be completely different from a practical NN-metric. This is

the case for highly dynamic driving scenarios, where travel

cost is based on energy type functions (square of jerk, square

of curvature). For these reasons, the otherwise well-proven

RRT algorithm cannot fulfil our requirements.

Another method of motion planning that has already

been brought to great success in a practical automotive

application [1], [7] works by sampling from the state space

in a deterministic fashion. This is typically done in a periodic

form (state lattice). Each sample becomes a vertex in a graph,

and edges are generated that connect each vertex to a finite

number of neighbours. The result is a geometric graph that

has a state space sample attached to every vertex, and each

edge has a geometric representation of a path connecting its

adjacent vertices. Each edge can be assigned an arbitrary

cost. This cost does not have to be related to a metric within

the work space, and cost functions motivated by path energy

or safety requirements are feasible. The shortest path is found

within the graph with standard graph searching methods that

draw on the dynamic programming paradigm.

With this work, we improve upon the original planning

strategies [8] employed on board the autonomous car AN-

NIEWAY [9] during the DARPA Urban Challenge of 2007, a

competition that was arranged for autonomous vehicles and

set in an urban scenario.

III. MOTION PLANNING USING SPATIOTEMPORAL STATE

LATTICES

In section III-A, we will review the concept of con-

ventional state lattices, and explain briefly how they can

be employed for motion planning in static environments.

After generalising the concept to spatiotemporal state lattices

in section III-B, we will point out properties that can be

exploited when using them for planning in the presence of

moving obstacles (section III-C).

A. Nontemporal state lattices

In state lattice planning [1], [7], the continuous config-

uration space is reduced to a geometric graph by sampling

from a Cartesian grid. Each discrete sample becomes a vertex

and a graph is obtained by connecting each vertex to a

finite number of neighbours. If the motion model employed

is nonholonomic, creating a geometric representation of an

edge requires for solving a boundary value problem. This

problem is sometimes called local planning, and several

approaches to its solution have been proposed, like com-

binations of straights with arcs [10], clothoids [11] and

polynomial clothoids [12]. Many local planners require for

iterative solutions, and clever schemes must be employed to

ensure fast operation [13].

(a) (b)

Fig. 1: (a): A nontemporal state lattice on a 2D workspace.

Part of the canonical control set is displayed in black. (b):

The right hand side shows part of a possible control set at

finer discretisation, where the configuration space includes

curvature.

The order of the boundary conditions depends on require-

ments imposed by the motion model underlying the planning.

A car modelled as purely kinematic requires for continuous

orientation along the solution path, and hence, edges must

meet boundary conditions for position and orientation. If

a car is modelled as a dynamic system, one will typically

require trajectories to be second order continuous, since

this prevents discontinuous steering input. Solving boundary

value problems is, in general, a difficult task, but due to

the periodic nature of the state lattice, it only has to be

done for a small, canonical set of edges (control set, see

figure 1) and can be preponed to an offline phase. This tells

the method apart from probabilistic road maps (PRM) [14],

[15], where a graph is obtained by picking random samples

from the configuration space. The rationale for both methods

is the same, namely the reduction of motion planning to

the shortest path problem on graphs, for which fast methods

exist. Their efficiency is owed to the dynamic programming

(DP) paradigm [16], i.e. search algorithms keep track of

intermediate vertices that a shortest path has already been

found to.

Figure 1 illustrates state lattices. Note that in figure 1(a),

the configuration space contains orientation, and that eight

distinctive vertices, one for each discrete orientation, reside

at each grid point. The control set in figure 1(b) was designed

for a configuration space that contains curvature [17].

B. Spatiotemporal state lattices

Spatiotemporal state lattices are the result of combining

configuration space and time into a single manifold, and then

applying discretisation analogously to the preceding section.

To illustrate this concept, we will first consider the simplistic

case of a one dimensional configuration space.

Consider a vehicle travelling with varying velocity in R.

Its state is described by its distance from the origin, l.

In the spirit of the state lattice approach, we constrain

the state space to a discrete subset of R by sampling it

at equidistant positions, with a sampling resolution of ∆l.

Assuming that obstacles are moving within the state space,

we also have to discretise in the time dimension, t. This is

1880

Fig. 2: A spatiotemporal state lattice over a one dimensional

workspace. In the lower left shaded area, a possible control

set for paths in C0 is depicted, the upper right one depicts

part of one designed for higher order continuity, consisting

of quintic polynomials.

necessary, since, in a dynamically changing workspace, DP

graph search algorithms will not only require to keep track

of what positions are reachable, but also in what time they

can be reached.

Figure 2 depicts a spatiotemporal state lattice over the

described one dimensional workspace. Let us first assume

that the vehicle can move at piecewise constant, positive ve-

locities. Figure 2 makes plausible that these velocities should

be multiples of integral fractions and ∆l

∆t
, with ∆t being the

resolution of time discretisation, in the example v0 = 2∆l

∆t
,

v1 = 1∆l

∆t
, v2 = 1

2

∆l

∆t
. Since only a local connectedness

of the graph is desired, one can constrain the maximum

difference in l and t that can occur on a single edge transition.

For later reference, we will call these constraints ∆lmax and

∆tmax (see figure 2). The required degree of continuity and,

consequently, the required boundary conditions for the edges,

can be chosen arbitrarily, to allow for smooth transitions

between different velocities or accelerations.

For our experiments, we chose quintic polynomials to

geometrically represent edges, which leads to paths in C2

and boundary conditions for position, velocity, acceleration

and time. Quintic polynomials are attractive for planning

dynamic driving manoeuvres, because, on top of being in

a suitable continuity class, they have been proven to be

optimal control trajectories with respect to minimum squared

jerk [18]. Given the boundary conditions, coefficients can

be computed very quickly. Closed form expressions exist to

describe the integral of squared jerk and for maximum speed,

acceleration and speed along the trajectory [19]. Quintic

splines have been used for automotive motion planning

before [20], albeit only to describe kinematic paths without

time parametrisation.

C. Motion planning using spatiotemporal state lattices

For planning in the presence of moving obstacles, it is

necessary to predict their positions into the future. Obstacles

can then be transferred to the space time manifold, as figure 3

illustrates for the one dimensional case. The shaded area is

Fig. 3: Planning with a moving obstacle in the space time

manifold established for a one dimensional workspace. The

shaded area is covered by a moving object. A trajectory

is shown that is composed of elements of the control set.

Shortest paths can be found by relaxing vertices from left to

right.

occupied by a small object that moves left at roughly the

speed of 1

2

∆l

∆t
. A trajectory is found within the spatiotemporal

lattice that does not collide with the obstacle.

To deal with obstacles efficiently, we create a mapping

between a discrete space-time obstacle map and the set of

all edges in the graph. This can be done in the offline graph

generation phase. Then, edges blocked by obstacles can be

invalidated quickly by a single run over the obstacle map.

Note that this method scales well, so that increasing the

number of obstacles has little impact on overall processing

time.

Edge weights are derived from the integral of squared jerk

of their geometric representations, as opposed to arc length.

This improves safety, controllability and driving comfort. As

we will discuss in section VI, this kind of edge weighting

is hard to implement with many other search based planning

methods.

Graph based motion planning algorithms usually employ

shortest path algorithms that maintain vertices visited in

a partially ordered data structure. Algorithms belonging to

this class include Dijkstra’s algorithm and A* search, as

well as algorithms derived from these two, like Stentz’ D*

[21] and focused D* [22]. Keeping visited vertices ordered

during search is not required for spatiotemporal lattices. They

belong to the class of directed acyclic graphs (DAG), since

transitions that go backward in time (and would create a

cycle) do not exist. Hence, sorting vertices by time yields

a topological ordering in advance, and vertices can be just

processed in this order. In figure 3, this means that vertices

can be relaxed from left to right. The resulting algorithm is

linear in the number of vertices n, as opposed to Dijkstra’s

general scheme which is in O(n log n). Since maintaining

vertices in a partially ordered set is the most time consuming

part of Dijkstra’s algorithm, runtime drops drastically in

absolute figures as well, if the faster algorithm is used.

Note that all feasible graphs embedded into the space time

manifold are acyclic, and hence, the faster algorithm can be

employed to search these. A detailed description of the DAG

1881

Fig. 4: Reparametrisation of the Cartesian plane. The dotted

line indicates the original run of the road, (X, Y). The

grey structure illustrates the result of discretising the new

parameters, l and r.

shortest path algorithm appears in [23].

IV. A LANE ADAPTED REPARAMETRISATION OF THE

WORKSPACE

The principle of spatiotemporal state lattices developed

in the preceding sections generalises naturally to two di-

mensions. Doing this naïvely, however, bears dimensionality

problems due to the required dense sampling of the state

space. Note that, in comparison with [7] the dimensionality

of the sampling space for the state lattice rises from 3

(2D position and orientation, in [1], curvature is consider

additionally) to 7 (2D position, 2D velocity, 2D acceleration

and time), due to moving from a kinematic to a higher order

dynamic model and the incorporation of time. With dimen-

sionality rising, it becomes ever harder to cover a continuous

space with a small number of samples. In this section, we

present an efficient way of sampling the configuration space

that is adapted to the special case of navigating on a road

whose run is known a prioi, e.g. from digital map data.

Given a continuous, two times piecewise differentiable,

arc length s parametrised representation (X(s), Y (s)) of the

course of the road, we define the following reparametrisa-

tion (l, r) of the 2D workspace, where (x, y) are standard

Cartesian coordinates, l(t) is the distance travelled along the

road, and r(t) is the lateral offset towards the road centre:

x(t) = X(l)− rY ′(l) (1)

y(t) = Y (l) + rX ′(l). (2)

This is a base change towards a local orthogonal coordinate

system that has its abcissa aligned with the road for any l. It

defines a two dimensional manifold as depicted in figure 4.

As described earlier, differential boundary conditions of up to

second order are required for edge generation. We therefore

need to transform them through equations (1) and (2): Given

l̇, ṙ, l̈ and r̈, by application of the chain rule we obtain

ẋ = l̇X ′(l) − ṙY (l) − rl̇Y ′(l) (3)

ẏ = l̇Y ′(l) + ṙX(l) + rl̇X ′(l) (4)

and

ẍ = l̈X ′ + l̈2X ′′
− r̈Y − (2ṙl̇ + rl̈)Y ′

− ṙl̇2Y ′′ (5)

ÿ = l̈Y ′ + l̈2Y ′′
− r̈X − (2ṙl̇ + rl̈)X ′

− ṙl̇2X ′′. (6)

Fig. 5: State transitions on the transformed grid. The succes-

sors of one vertex are shown in black.

We now restrict parameters l, r, l̇, ṙ, l̈ and r̈ to a discrete,

grid like set (the vertices of the search graph) and transform

them through equations (1) - (6). The resulting x, y, ẋ, ẏ, ẍ

and ÿ, together with discrete values for time t, are used as

boundary values to calculate quintic polynomial trajectories

as described in section III-B. To assert dynamic and kine-

matic feasibility, a respective edge is only added to the graph,

if velocity, acceleration and jerk stay within bounds defined

in advance. In the effort to further reduce the number of

vertices, some ad hoc reductions can be applied to the sets

of discrete parameters: r is constrained to an interval so as

to restrict all vertices of the lattice to be within the bounds

of the road. We set ṙ = 0 and constrain l̇ to be positive,

since we wish the vehicle to make progress along the road,

while crosswise motion is to be avoided. Second derivatives

l̈ and r̈ of the untransformed coordinates are set to zero at

the grid points.

Figure 5 gives an impression of the graph we used for our

experiments by displaying successor edges of a single vertex.

The outdegree of vertices is approximately 200. Note that

the procedure proposed in this section compromises, in part,

the ability to reduce edge geometries to a small canonical

control set (as discussed in section III-A). However, edge

geometries can still be reused among edges only differing

by a time offset.

V. EXPERIMENTS

We demonstrate planning in two scenarios that have been

setup in a simulation environment. In both scenarios, the

road is approximately 130 metres long and 6 metres wide.

The first scenario demonstrates overtaking with oncoming

traffic, see figure 6(a). Initially, the vehicle was travelling

slow, and it had to arrive at the end of the road going at the

same, moderate speed of approximately 4 m

s
. In the second

scenario (figure 6(b)), the vehicle approaches a junction at

10 m

s
and merges into traffic travelling at 4 m

s
. The figures

show the fastest trajectory found, respectively. The dots on

the trajectories have the same temporal distance of 0.25 s.

The set of parameters used to generate the search graph is

summarised in table I. Graph statistics are shown in the same

table for the overtaking scenario. The offline creation of the

1882

∆l · m 8

∆t · s 2.5

∆r · m 1.2

∆lmax · m 60

∆tmax · s 30

l̇ ·

∆l

∆t

4

3
, 3

2
, 3, 7

2
, 4, 5, 6

l̈ 0

ṙ 0

r̈ 0

#vertices 2976

#edges 171379

average out degree ~200

TABLE I: Parameters and statistics of the search graph.

graph took about 4.5 s, runtime for the actual search was

below 20 ms for both scenarios. The experiment was timed

on a 2 GHz laptop computer.

VI. SUMMARY AND DISCUSSION

We have presented an algorithm for motion planning that

is capable of planning in dynamic on-road scenarios. The

trajectories generated are time parametrised and meet the

kinematic and dynamic requirements of road going passenger

vehicles. Main contributions are the generalisation of state

lattices to space time planning, and the transfer of the lattice

concept to a a lane adapted workspace parametrisation. We

believe that, from a practical standpoint, only by applying

the latter method the first one becomes feasible.

The performance - in terms of runtime - of our method

is mostly owed to the problem adapted sampling of the

state space, and the resulting reduction in the number of

vertices and edges required to express feasible motions of

the vehicle. The graph is searched exhaustively on each

query. This is in contrast to other lattice based approaches

[7] that gain their speed by relying on proper heuristic cost

functions to guide the search into promising parts of the

graph. We believe the independence from cost functions to

be advantageous, since their design (i.e., finding a good lower

bound on the actual cost to go) is a difficult task. It is

especially difficult to give a good lower bound on path cost

if paths are penalised by energy type functionals, like the

square of jerk. Note that a good cost function should take

the position of obstacles into account. To our knowledge,

there is no search based, heuristically accelerated motion

planning method using path cost other than arc length to

date. Energy type cost functionals are feasible though, when

doing an exhaustive search, as has been demonstrated by this

work.

There are several directions for future work. An important

property of the state lattice is the fidelity of the control

set. Fidelity can be improved by either increasing sampling

density, and hence, the number of vertices, or by increasing

the number of edges by allowing for “long” transitions

between vertices that are far apart in the state space. How to

find the right balance between these two options is an open

question that we will address in the future.

As described earlier, by setting up the graph in a way that

allows for exhaustive searching, we have gained flexibility

in choice of the edge weights (and hence, the optimality

criterion for complete trajectories) not found in other meth-

ods. We believe that this can be exploited to imprint useful

properties upon the solution paths by incorporating prior

knowledge into the edge weights. Part of this knowledge

will be provided from higher level perception- and decision

processes in the intelligent vehicles system architecture. We

are confident to obtain a situation adapted trajectory that

meets safety and comfort requirements.

VII. ACKNOWLEDGEMENTS

We gratefully acknowledge support of this work by the

German Research Foundation (DFG) within the transregional

collaborative research centre 28 “Cognitive Automobiles”.

REFERENCES

[1] M. Pitvoraiko and A. Kelly, “Efficient constrained path planning via
search in state lattices,” in International Symposium on Artificial

Intelligence, Robotics, and Automation in Space, 2005.
[2] M. LaValle, “Rapidly-exploring random trees: A new tool for path

planning,” tech. rep., Computer Science Dept., Iowa State University,
1998.

[3] M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
in International Conference on Robotics and Automation, 1999.

[4] Y. Kuwata, G. A. Fiore, J. Teo, E. Frazzoli, and J. P. How, “Motion
planning for urban driving using RRT,” in International Conference

on Intelligent Robots and Systems, 2008.

[5] A. Atramentov and S. LaValle, “Efficient nearest neighbor searching
for motion planning,” in International Conference on Robotics and

Automatisation, 2002.
[6] P. Cheng and S. LaValle, “Reducing metric sensitivity in randomized

trajectory design,” in Intelligent Robots and Systems, 2001.
[7] M. Likhachev and D. Ferguson, “Planning long dynamically-feasible

maneuvers for autonomous vehicles,” in Proceedings of Robotics:

Science and Systems IV, 2008.
[8] J. Ziegler, M. Werling, and J. Schröder, “Navigating car-like vehicles

in unstructured environment,” in Proceedings of the IEEE Intelligent

Vehicles Symposium, 2008.

[9] S. Kammel, J. Ziegler, B. Pitzer, M. Werling, T. Gindele, D. Jagzent,
J. Schröder, M. Thuy, M. Goebl, F. v. Hundelshausen, O. Pink,
C. Frese, and C. Stiller, “Team AnnieWAY’s autonomous system,”
International Journal of Field Robotics Research, 2008.

[10] J. Reeds and R. Shepp, “Optimal paths for a car that goes both
forward and backward,” Pacific Journal of Mathematics, vol. 145,
no. 2, pp. 144–154, 1991.

[11] T. Fraichard and A. Scheuer, “From Reeds and Shepp’s to continuous-
curvature paths,” IEEE Transactions on Robotics and Automation,
vol. 20(6), 2004.

[12] H. Delingette, M. Hebert, and K. Ikeuchi, “Trajectory generation with
curvature constraint based on energy minimization,” in International

Conference on Intelligent Robots and Systems, 1991.
[13] T. Howard and A. Kelly, “Optimal rough terrain trajectory genera-

tion for wheeled mobile robots,” International Journal of Robotics

Research, vol. 26, pp. 141–166, 2007.
[14] L. E. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic

roadmaps for path planning in high dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, pp. 566–580,
1996.

[15] I. Sucan, J. Kruse, M. Yim, and L. Kavraki, “Kinodynamic motion
planning with hardware demonstrations,” in International Conference

on Intelligent Robots and Systems, 2008.
[16] R. Bellman, Dynamic Programming. Princeton University Press, 1957.
[17] C. Stiller, S.Kammel, I. Lulcheva, and J.Ziegler, “Probabilistic meth-

ods for environment perception of cognitive automobiles,” at - Au-

tomation, vol. 11, pp. 568–574, 2008.

1883

t = 0s

t = 2s

t = 4s

t = 6s

t = 8s

t = 10s

t = 12s

t = 14s

t = 16s

(a)

t = 0s

t = 2s

t = 4s

t = 6s

t = 8s

t = 10s

t = 12s

(b)

Fig. 6: Sequences demonstrating overtaking with oncoming traffic (a) and merging into slower traffic (b). The shortest time

trajectory found is shown in black. Small dots on the trajectory are 0.25 s apart. The large dot is the vehicle executing the

trajectory. Moving obstacles are displayed in red.

[18] A. Takahashi, T. Hongo, Y. Ninomiya, and G. Sugimoto, “Local path
planning and motion control for AGV in positioning,” in International

Workshop on Intelligent Robots and Systems, 1989.

[19] R. Andersson, “Aggressive trajectory generator for a robot ping-pong
player,” Control Systems Magazine, vol. 9, pp. 15–21, 1989.

[20] A. Piazzi, C. Lo Bianco, M. Bertozzi, A. Fascioli, and A. Broggi,
“Quintic G2-splines for the iterative steering of vision-based au-
tonomous vehicles,” Transactions on Intelligent Transportation Sys-

tems, vol. 3, pp. 27–36, 2002.

[21] A. Stentz, “Optimal and efficient path planning for partially-known
environments,” in International Conference on Robotics and Automa-

tion, 1994.
[22] A. Stentz, “The focussed D* algorithm for real-time replanning,” in

International Joint Conference on Artificial Intelligence, 1995.
[23] U. Manber, Introduction to Algorithms. Addison-Wesley, 1989.

1884

