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Abstract—Currently, there is a high demand for autonomous
industrial production systems. This paper outlines the develop-
ment of a cognitive system for autonomous robotic welding.
This system is based on dimensionality reduction techniques
and Support Vector Machines, allowing the system to learn to
separate between acceptable and unacceptable welding results
within one batch, and to transfer this ability to a batch with
different workpiece properties. It does not aim at a complete
and general relationship between all process variables and
result quantities, since it has been demonstrated that this is
not necessary to reduce significantl the costs of calibrating the
welding system. The main objective is to examine a cognitive
system that stabilizes robotic welding processes by learning how
to improve at least one process steering variable. In order to
evaluate and improve the cognitive system, an extensive experi-
mental setup is realized and described. The ability to learn and
autonomously adapt to changes in workpiece properties allows
the system to reduce the time an expert needs, and relaxes the
requirements with respect to workpiece tolerances.

I. INTRODUCTION

Robotic welding combines several similar welding tech-
niques, such as arc welding, laser-hybrid welding, or laser
beam welding. This paper focuses on laser beam welding
for demonstration purposes. However, the cognitive system
that is examined in this paper applies to many different
kinds of robotic welding processes that may be steered by
influencin at least one process parameter. In this application,
robotic welding and particularly welding with laser light
permit superior processing of workpieces compared to many
other tools by allowing a high production rate, fl xibility and
quality. The possibilities for precision in laser beam welding
are very high if the various parameters that are related to
system excitation and response can be accurately controlled.
Variations in the response of the workpiece during welding
are a dominant source of instability in the overall welding
process. Laser welding produces acoustic and optical emis-
sions. Detection of these emissions is one way in which
the welding conditions can be monitored. Learning about
and recognizing the components of these signals, which are
diagnostic of specifi fault conditions, offers the possibility
of control in order to optimize welding and eliminate weld
defects.
Modeling and monitoring the process, which includes

aspects such as multiple reflections absorption, heat con-
duction, melting, vaporization, melt pool movement and so-
lidification has been studied in numerous papers [1], [2], [3],
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[4], [5]. However, model understanding is not yet sufficien to
characterize process behavior reliably and explicitly, which
is currently described as chaotic. This paper therefore studies
the development of a cognitive approach for robotic welding
or laser beam welding in particular.
The quality of the weld can be described using result

quantities, such as welding depth, seam width, and the
existence of pores. Due to strong process emissions, it is
difficul to measure the stability of a weld seam reliably
without destroying the workpiece. Therefore, it is important
to learn from weld defects and to prevent them before they
occur. In addition to many other welding parameters, we
concentrate in this work on the most influentia variable in
laser beam welding - laser power - to create traceable results.
We consider the welding process as a black box, and try to
discover relationships between the result quantities and the
input values.
This work does not aim to achieve a complete and

general relationship between all process variables and result
quantities for two reasons. Firstly, we believe that it is
not possible to create a general model that describes all
of the different kinds of welding processes completely;
and secondly, it has been demonstrated that this is not
necessary to reduce the time and costs of calibrating the
welding system significantl . This is because an expert is
not only needed once for the initial setup of a completely
new system task. The workpieces are produced as batches
with similar properties. However, there may arise differences
among the properties within individual batches. These small
but noticeable changes can lead to an unacceptable increase
in the rejection rate, meaning that the system has to be
reconfigured This involves not only the labor costs of an
expert, but also downtime for the production line. It is thus
of great interest to reduce the recalibration time and allow
the system to adapt autonomously to small changes in the
properties of a workpiece.
The cognitive approach for an intelligent laser beam

welding system can be sub-divided into three main steps.
Chapter II describes the learning phase, in which the sys-
tem identifie the characteristics of the process that allow
differentiation between acceptable and unacceptable welds.
In the monitoring phase, outlined in chapter III, the system
uses the knowledge it has acquired for fault detection. This
allows the initialization of the adaption phase, described in
chapter IV, in which alterations in the process variables are
determined in order to adapt the system to slight changes in
the properties of the workpiece. Following this, there is a
chapter presenting the detailed experimental simulation and
evaluation of the approach.
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II. LEARNING PHASE
In order for the system to learn how it should deduce the

weld quality from sensor measurements, an expert performs
an initial setup of the entire welding process, including all
of the process variables. The system then starts to weld a
workpiece with linearly increasing laser power, as shown
in Fig. 1. The optimal laser power, which is previously
determined by an expert, corresponds to the mean of the
power range. The system thus starts at a power value which is
too low for an acceptable welding result, passes through the
optimal power value and ends with a laser power that is too
high. The resulting workpiece therefore includes all possible
welding results that can be obtained by a change in the
laser power. At this point, the system has recorded all of the
welding results within the applied sensor array. Furthermore,
the expert has determined which results are acceptable and
which are not so that the system can differentiate between
these two classes.
The most simple approach for comparing welds is to com-

pute the Euclidean distance between the individual sensor
value vectors. This would compare not only the relevant
information, but also the noise and other irrelevant distur-
bances. Due to the non-linear properties of the welding
process, sensor value vectors close to each other in the mea-
surement space do not necessarily indicate similar welding
results. Additionally, the amount of data to be compared from
the extensive set of sensors would result in an extremely
time-consuming task. This can be avoided by extracting
features that are known in the analytical model of the welding
process.
There are a variety of algorithms that are capable of ana-

lyzing the data and measuring important physical properties
that are identified such as the size of the melt pool [5].
Unfortunately, these algorithms do not adapt to the data by
themselves and have to be reconfigure for each individual
welding process. This makes them very specialized and
can result in faulty measurements. In addition, most of
these algorithms are limited to a few clearly recognizable
features, and can only extract a fraction of the information
in the data. Many of these algorithms assume that predefine
measurements are sufficien for the classificatio of welding
results.

A. Dimensionality reduction
Statistic dimensionality reduction techniques can cope

with the requirements described. These algorithms can learn
the relevant information in the data, and can therefore
separate this from the redundancies, disturbances and noise.
Techniques for dimensionality reduction can be subdivided
into various groups. The main distinction is between linear
and nonlinear techniques. Linear techniques assume that the
data lies on or near a linear subspace of the high-dimensional
space.
1) Linear Dimensionality Reduction: Principal Compo-

nent Analysis (PCA) is an excellent linear dimension re-
duction technique [6]. In essence, PCA seeks to reduce
the dimensions of the data by identifying a few orthogonal

linear combinations, the Principal Components (PCs), of the
original variables with the largest variance. How to obtain
the PCs is discribed in [6]. The number of PCs that should
be retained can be determined by firs fixin a threshold λ 0,
and retaining only those eigenvectors whose corresponding
eigenvalues are greater than λ0.
2) Nonlinear Dimensionality Reduction: As already indi-

cated, the laser beam welding process is known to be highly
non-linear, and it is therefore reasonable to apply techniques
that are capable of non-linear dimensionality reduction. A
linear approach such as PCA is not capable of detecting
the true non-linear geometry behind the samples, projecting
points that are far away on the manifold to nearby points in
the computed feature space. The true relationships between
the points, and thus the observations, are not preserved, and
it is therefore not possible to classify the observations in this
feature space.
The need for algorithms that are capable of handling non-

linear data has led to the creation of several approaches, such
as Laplacian Eigenmaps [7], the Locally Linear Embedding
Algorithm (LLE) [8] and the Isomap Algorithm [9], to list
the most renowned. Nonlinear techniques for dimensionality
reduction can be split into two main categories: techniques
that attempt to preserve the global properties of the original
data in low-dimensional representation (Isomap); and tech-
niques that attempt to preserve the local properties (LLE,
Laplacian Eigenmaps). Due to limited space and its fina
application (chapter V), we will only describe the Isomap in
detail.
Isometric feature mapping, or Isomap, seeks to map from

D−dimensional observation space X to a low-dimensional
feature space Y . The core idea is to fin an efficien way of
computing the true geodesic distance between observations,
given only their Euclidean distances in the high-dimensional
observation space. The Isomap procedure consists of three
main steps. As a preparation for computing manifold dis-
tances, Isomap firs constructs a topology-preserving network
by determining which points are neighbors on the manifold
M, based on the Euclidean distances between pairs of points.
Two methods are used to connect each point to all points
within a f xed radius ε , or to all of the k nearest neighbors.
Given this network representation, the geodesic distance

between any two nodes in the network is computed using
Dijkstra’s shortest path algorithm. This provides a good
approximation, and results show that correlation to the true
manifold distances is very high with sufficien observations,
but tends to overestimate by a constant factor due to the
discretization introduced by the graph.
Finally, using these manifold distances, we are able to con-

struct a global, geometry-preserving map of the observations
in a low-dimensional Euclidean space using Multidimen-
sional Scaling (MDS). MDS maps the high-dimensional data
representation onto a low-dimensional representation while
retaining the pairwise distances between the data points as
far as possible. The quality of the mapping is expressed in
the stress function, which is a measure of the error between
the pairwise distances in the low-dimensional and high-
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Fig. 1: Learning phase

dimensional representations of the data. A simple example
of a stress function is the raw stress function

Φ(Y ) = ∑
i j

(||xi− x j||− ||yi− y j||)2, (1)

in which ||xi − x j|| is the distance between the high-
dimensional data points xi and x j, and ||yi − y j|| is the
distance between the low-dimensional data points yi and y j.
Minimization of the stress function can be achieved using
various methods, such as the eigenvalue decomposition of a
pairwise distance matrix.
However, Isomap is known to fail on manifolds with

“holes” and intrinsic curvature [10]. Furthermore, Isomap is
sensitive to an effect called “short-circuiting”. If neighbor-
hoods are define too widely, data points can be selected
that do not belong to it. Therefore, links are generated
in the neighborhood graph which allow shortcuts in the
computation of the geodesic paths. A single faulty shortcut
can lead to a significan error in the estimation of numerous
geodesic paths, and thus to incorrect mapping. Hence, the
neighborhood size has to be carefully determined.
3) Comparative view: In [10], an evaluation of Isomap

and LLE was performed using both artificia datasets and
real datasets representing a variety of application domains.
Experiments on the artificia data showed that non-linear
algorithms considerably outperform linear techniques such
as PCA. In all the artificia datasets, Isomap created more
exact mappings than both LLE and Laplacian Eigenmaps.
For the natural datasets, the results of various papers dif-
fer significantl . An experimental evaluation of the algo-
rithms for this specifi application was therefore necessary.
These approaches are combined with PCA to account for
prewhitening and to improve the performance of the algo-
rithms by linearly reducing the dimensions in advance. This
hierarchical structure should not only reduce computational
complexity, but also account for the different data relation-
ships among the sensors.
As described in [11], the Isomap algorithm has two

computational bottlenecks. The firs is calculating the N×N
shortest-paths distance matrix DN . Using Floyd’s algorithm,
this is O(N3); it can be improved to O(kN 2logN) by imple-
menting Dijkstra’s algorithm with Fibonacci heaps, where
k is the neighborhood size. The second bottleneck is the
MDS eigenvalue calculation, which involves a full N ×N
matrix and has a complexity of O(N 3). Random sampling

techniques provide a powerful alternative for approximate
spectral decomposition and only operate on a subset of the
matrix. Recently, the Nyström approximation [12] has been
shown to be most applicable for Isomap; for details, see [13].

B. Support Vector Machines
Comparison of the welds can now be performed by

computing the Euclidean distance in the feature space,
which can be compared with the techniques used at face
recognition. However, the use of a Support Vector Classifie
(SVC) [14] can facilitate a more reliable identificatio of
the weld quality. Because still, non-linear relations can be
expected in the feature space, a classifie should not base
the decision boundary on linear features alone. Rather, the
original attributes x shall be mapped onto non-linear features,
e.g. x, x2, x3. Since the algorithm can be written entirely
in terms of the inner products of input vectors, the so-
called ’kernel trick’ can be used to allow SVCs to learn
in the high dimensional feature space given by Φ(x) =[
x,x2,x3

]T without ever having to fin or represent vectors
Φ(x) explicitly. In our application, the well-known Gaussian
kernel, which corresponds to an infinit dimensional feature
mapping φ , will be used:

K(x1,x2) = exp

(
−‖x1− x2‖2

2σ 2

)
. (2)

Here, σ 2 corresponds to the variance of the Gaussian distri-
bution. This classifie is trained with the initially recorded
and labeled gradient data.

III. MONITORING PHASE
In the subsequent welding processes, the system can now

continuously check whether or not the results are within the
acceptable range. This is achieved by embedding the current
sensor reading into the previously learned feature space via
an out-of-sample extension [13]. Since every welding process
differs from every other, the optimal or sufficien number of
dimensions for the feature space has to be discovered through
trials or the intelligent guesses of a welding expert. However,
section V will demonstrate that this number may remain
unchanged for several specifi welding processes, either
within one batch or between different batches. Subsequently,
the embedded feature data is passed to the SVC for an
indication of the weld quality based on the probability of
it belonging to a certain class. This allows a supervisor to
observe the process continuously, or even to insert a control
loop that can adjust the laser power to fine-tun the weld
results.
If there are multiple consecutive bad result detections, this

indicates that a batch change has occurred and the properties
in the batches have changed to an unacceptable degree. The
system then has to adapt to these changes.

IV. ADAPTION PHASE
When a new batch is detected, a fresh laser power gradient

is applied to the new workpiece, as shown in Fig. 2. Again,
all of the possible weld variations for this new batch, which
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result from a change in the laser power, can be recorded
by the sensor array, and a new feature space is constructed
with the aid of dimensionality reduction techniques. The
sensor values from the optimal welding result that was
initially determined are now compared to all of the possible
new results within this new feature space. This exploits the
assumption that minor changes in the workpiece properties
result in comparable welds. The system can therefore use
the relationships that are learned from certain workpiece
properties to make generalizations that can be adapted to
the new properties. Hence, it is possible to identify directly
the welding result that is most similar to the optimal one,
and also to determine the used laser power. Alternatively,
the fina comparison process can be carried out with the aid
of SVC. A comparison of both approaches is given in section
V-B.
The system can thus re-determine the power value that

leads to a weld which is most similar to the optimal value
within one trial. Furthermore, this complies with the desire
that the initial learning does not require a huge dataset by
concentrating on a local patch of the general laser welding
model.

V. EXPERIMENTS AND RESULTS

In order to evaluate and improve the approaches that
are described in chapters II to IV, an experimental setup
that includes a largely redesigned and extended process
monitoring system has been developed. In the following
experiments, the thickness of the workpiece (WP) is define
as the property that changes with the batches, since such
variation is very common and can be reproduced reliably.
The performance of the approaches has been evaluated using
six different WP sizes, although only the adaption process
from 0.8 mm to 1.0 mm and vice versa is described here.
This validates the capability of handling a change of 20%.

A. Experimental setup
The experimental setup includes a six-axis articulated

robot carrying a laser processing head as well as parts of
the sensor system. During the welding, the robot, mounted
at the table, moves the processing head linearly over the WP
at a constant speed. The monitoring system includes three
photo diode sensors integrated in the processing head, which
measure the electromagnetic radiation of the process at three
wavelengths. This allows the system to observe the metal
vapor radiation, the temperature and the degree of laser back
reflection representing state-of-the-art process monitoring.
The system is extended by directed and undirected micro-
phones, as well as two solid-borne acoustic sensors mounted
on the WP, which record the acoustic emissions resulting
from the vaporization process. These scalar recordings are
Fourier transformed so that a high-dimensional vector in the
frequency domain is generated for each individual acoustic
sensor at 1kHz. In addition, the welding is observed by a
video camera, which takes images at 1 kHz.

B. Experimental simulation
As described in the previous chapter, the central idea

behind this cognitive approach to welding is to ascertain
features in the measurement data that allow description of the
quality of the weld, and thus compare different weld results
with each other. This would allow us to calculate the laser
power that results in comparable weld results for workpieces
of different properties. These features are not necessarily
physical properties, but are determined by dimensionality
reduction techniques that best describe the variance with
respect to the weld quality, and therefore provide most
detailed information about the process.
The extraction of relevant features is performed on the

video data first In order to allow analysis, a data matrix
X of 25,600 rows and 7,000 columns is created. Despite
this, the enormous size of the data matrix would result in
an unfeasible eigenproblem, since the resulting covariance
matrix has dimensions of 25,600 x 25,600. This can be
avoided by computing X TX , rather than using the covari-
ance matrix XXT , due to the fact that the eigenvalues of
both products are identical. This reduces the size of the
eigenproblem to 7,000 by 7,000. The resulting eigenvectors
can be transformed to a matrix representation in order to
illustrate them as images. At eigenvectors corresponding to
lower eigenvalues, high frequency features can be observed,
including noise and disturbances. Hence, a dimensionality
of around 200 should be sufficien to represent the data.
Investigating the dimensionality reduced (embedded) data,
we can clearly identify strong but non-linear correlations
along the dimensions. Using the techniques presented in
section II-A.2, these redundancies can be further reduced.
Most importantly, by unfolding the nonlinear manifold onto
a linear plane, the true relationships among the data vectors
can be represented through Euclidean distances.
Because the manifold does not imply holes or intrinsic

curvature (see section II-A.2), the Isomap algorithm seems
an appropriate choice from an analytical point of view.
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However, a detailed experimental evaluation of Isomap, LLE,
and Laplacian Eigenmaps revealed Isomap as superior to
the alternatives with respect to computational complexity,
especially for the out-of-sample extension, and with lower
residual variance at the same number of embedding dimen-
sions. Hence, only the results of the Isomap algorithm are
presented here.
Over 100 validation experiments showed that a neigh-

borhood size of 10 is optimal for the video data mapping,
as judged by welding experts. This neighborhood size can
prevent the problem of short-circuiting. The variance is
determined from the covariance matrix of the embedded data.
It was possible to reduce the dimensionality further, from 200
with PCA to approximately 20 using Isomap.
Regarding the air-borne acoustic data, it was unfortunately

difficul to identify any trend that correlated to the quality
of the weld [13]. However, this does not mean that the air-
borne acoustic data is of no use for the general comparison.
Rather, it is necessary for improving either the preprocessing
or for altering the experimental setup in order to increase the
signal-to-noise ratio.
The solid-borne acoustic data revealed a strong relation-

ship between the frequency distribution and the quality of
the weld. However, the PCA embedding was relatively noisy,
and the number of dimensions were reduced to a very limited
amount. On the other hand, Isomap was capable of under-
standing the nonlinear relations and reduced the dimensions
from 1,000 to 10. Unfortunately, the information that was
provided by the solid-borne acoustic data was ambiguous
because the magnitudes did not continuously increase with
the laser power, but decreased after a certain point.
The ambiguity can be dissolved by combining the data

from all information sources, including video and the three-
diode sensors. No further dimension reduction is applied to
the resulting 33-dimensions feature vector, since the sources
imply little redundancy and the required computational com-
plexity would not result in significan advantages. It is thus
possible to reduce the dimensionality of the input vector
from 26,603 dimensions to only 33 dimensions by splitting
the data based on sensor type, by performing prewhitening
to eliminate a huge portion of the noise, and by findin
nonlinear relations with the aid of Isomap. These 33 di-
mensional feature vectors represent the essential information
on the current state of the welding process, and should
allow differentiation between the welding results and thus
the welding quality.
Finally, the feature vectors of the workpiece are used to

learn the embedding, and the feature vectors of the out-
of-sample mapped workpiece are compared using a simple
Euclidean distance in the feature space. For each vector of
the WP 1 with 1.0 mm thickness, the corresponding welding
result on the WP 2 with 0.8 mm thickness is determined by
determining the vector with the smallest Euclidean distance.
This process corresponds to the nearest neighbor search for
the dimensionality reduction techniques.
As described above, the high dynamics in the welding

process necessitate comparison not only of the feature vector
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Fig. 3: Relation of similar welding results on workpieces
with different thickness vs. the applied laser power

of one time step with all others, but also the use of multiple
consecutive time steps. In order to allow fast recognition
of errors and to ensure reliable results, a frame of 40
feature vectors corresponding to 1.67 mm on the workpiece
is suggested. The resulting relationships are shown in Fig.
3. The convexity of the curve impressively illustrates the
nonlinear relationships between two workpieces of different
thickness. As described in chapter II, the position on the
workpieces corresponds linearly to the applied laser power.
An identical laser power gradient has been applied on both
workpieces.
Three characteristic points of WP 1 plotted, and the

identifie regions on WP 2 are shown. At the firs point, the
laser power is barely sufficien to achieve a full penetration
weld. This point is extremely difficul to determine because
even very small local properties in the workpiece can alter
the outcome significantl . For this reason, it is impressive that
the relationship is precise enough to fin this region on WP
2. The second characteristic point marks a region of optimal
weld quality on WP 1. This is characterized by concave seam
geometry, a smooth seam width, and an absence of pores or
splatters. The region identifie on WP 2 complies with all
these constraints, and is located in approximately the middle
of the comparable results. Hence, if an expert has determined
a region of optimal weld quality on WP 1, this figur proves
that the system is capable of findin an area of comparable
weld results, and can thus determine the necessary alteration
of laser power to achieve this optimal result on new batches
of workpieces. The third point characterizes the upper limit
of the acceptable weld results, as the firs small splatters can
be observed. Again, the corresponding region on WP 2 is
localized at a very similar welding result.
The physical interpretation of the relationship at the be-

ginning and end of the workpiece confirm the results. At the
very low laser powers at the beginning of both workpieces,
the results must be roughly the same since only conduction
welding occurs and the surface of the material is processed,
which should be almost identical. At the very high laser
powers at the end of both workpieces, the results saturate
at a certain limit. Hence, the results become more and more
comparable, as the relationship in Fig. 3 shows. However,
the saturation limit of WP 2 is slightly lower than that for
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WP 1, which explains why the relationship does not end in
the upper right corner of the graph.
Although the results seem very satisfying, it is worth in-

vestigating a more sophisticated approach for comparing the
weld results than using the Euclidean distance in the feature
space. In the approach based on Support Vector Classificatio
(SVC), described in chapter II-B, the welding results that an
expert determines to be optimal are used to categorize all
welding results into three classes. The firs class includes all
welds that result from a laser power that is too low; class
two contains all optimal welds; and class three has all welds
with a laser power that is too high. The 33-dimensional
feature vectors of the initial workpiece are used to allow
the SVC to fin the hyperplane that maximizes the margin
between classes. Because the application of a continuous
laser power gradient results in continuously changing weld
results, there is little margin between the three classes, which
makes the classificatio task difficult In order to cope with
this problem,C-Support Vector Classificatio is applied. This
regularization approach is capable of dealing with outliers
so that the optimal hyperplanes can be found in continuous
transitions. For the kernel function, the Gaussian kernel (also
known as the radial basis function (RBF)) is applied. In order
to identify the optimal parameters for classification a grid-
search on the parameters is performed where the parameters
are set in an exponentially growing order.
Fig. 4 shows the probability of belonging to a certain class

against the position on the workpiece (WP). Here, a range
on WP 2 is labeled as belonging to class two, whereas the
other areas belong to classes one and three. The area on WP
1 that is identifie as having a probability higher than 70%
of belonging to class two is illustrated at the top of Fig. 4.
This area corresponds well with the region labeled as opti-

mal by an expert. However, for the described procedure, only
the position of maximum probability has to be determined
in order to calculate the necessary alteration of laser power
to achieve optimal welds on a new batch of workpieces.

In summary, this approach is capable of robustly iden-
tifying and learning both good and faulty weld results on
workpiece batches with unknown but similar properties to
the initial workpiece batch. The major advantage of the SVC
approach is that it does not require the use of multiple con-
secutive feature vectors to facilitate a reliable classification

VI. CONCLUSIONS AND FUTURE WORKS
In this paper, a cognitive system for autonomous robotic

welding is developed and verifie for laser beam welding.
This is capable of efficientl learning to separate between
acceptable and unacceptable welding results within one
batch of workpieces, and transferring this ability to a batch
of different workpiece properties. For this purpose, two
techniques - dimensionality reduction and Support Vector
Machines, and also their hybridization - have been applied.
In order to improve and verify the approach, an extensive
experimental setup has been realized and described, with the
details given in respect to the sensors used, the data that
is record, and the analysis and preprocessing of the data.
In contrast to previous efforts, this system is capable of
autonomously and reliably adapting the welding process to
changes in the workpiece properties. Hence, the intended
objective, which is to reduce significantl the time of the
expert in the recalibration process, has been achieved. Future
work will concentrate on extending the system further to
input additional variables to the laser power.

REFERENCES

[1] M. Jaeger and F. Hamprecht. Principal Component Imagery for the
Quality Monitoring of Dynamic Laser Welding Processes. IEEE
Transactions on Industrial Electronics, 56:1307–1313, 2009.

[2] M. Zhou, W. Liu, and L. Wan. Multi-information Fusion and
Identificatio System for Laser Welding. ISNN, LNCS 5551:986–992,
2009.

[3] M. Kogel-Hollacher. Sensorik und Datenauswertung zur industriellen
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