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Abstract— The speech enhancement architecture presented in
this paper is specifically developed for hands-free robot spoken
dialog systems. It is designed to take advantage of additional
sensors installed inside the robot to record the internal noises.
First a modified frequency domain blind signal separation (FD-
BSS) gives estimates of the noises generated outside and inside
of the robot. Then these noises are canceled from the acquired
speech by a multichannel Wiener post-filter. Some experimental
results show the recognition improvement for a dictation task in
presence of both diffuse background noise and internal noises.

I. INTRODUCTION

In a hands-free dialog system, the user’s voice is picked

at a distance with a microphone array resulting in a more

natural and convenient interface for humans. But an adverse

consequence is that speech recognition is more difficult

because the user’s speech is contaminated by noise (gener-

ated by surrounding sound sources) and reverberation. Thus

microphone array techniques are used to reduce the effect of

the noise and the reverberation before speech recognition

is performed [1], [2]. Some of these techniques [3], [4],

[5] are based on frequency domain blind signal separation

(FD-BSS). FD-BSS is an efficient approach for recovering

the speech by separating the unknown observed convolutive

mixture of speech and noise in its different components (see

review paper [6]).

For hands-free dialog systems mounted on a robot, the

situation is even more difficult as the robot itself has several

internal noise sources: fans, servo motors, actuators and sev-

eral mechanical parts. Moreover these internal noise sources

are relatively close to the microphone array and thus highly

contaminate the acquired user’s speech. But contrary to the

noise created by the sources that are outside of the robot

(referred to as external noise), it is possible to install some

sensors inside of the robot that collect additional information

on the noise from inside of the robot (referred to as internal

noise).

The speech enhancement architecture presented in this

paper is designed to enhance the user’s speech by canceling

both the external and the internal noises. For the internal

noise, in addition to the usual signals obtained by a micro-

phone array, this method exploits additional sensors installed

inside of the robot (see Fig. 1). These additional sensors

record an unknown convolutive mixture of the signals from

the internal noise sources. We assume that this mixture is

*Graduate school of information science Nara Institute of science and
technology, Ikoma, Nara, Japan even@is.naist.jp

**Toyota Motor Corporation, Toyota, Aichi, Japan.

Mixture at mic. array

Target speech 

+

Ext. noises

Int. noises

Internal noise reference

Fig. 1. Sensors and microphone array configuration.

unknown because the transfer between the internal noise

sources and the internal sensors changes when the robot

moves or when different internal noise sources are active.

Because the mixture is unknown, we propose to process both

the signals from the internal sensors and the signals from the

microphone array with a modified FD-BSS based approach.

In this sense the proposed method is an extension of the

method proposed in [3], [4]. But the method is different from

[7], [8], where an unfiltered version of a music signal or a

speech signal contaminating the user’s speech are known.

First a modified FD-BSS is applied to the signals from

the microphone array and the internal sensors. Since this

FD-BSS method incorporates the additional knowledge given

by the internal sensors, it is rather referred to as frequency

domain semi-blind signal separation (FD-SBSS) (see [9]

for SBSS of instantaneous mixtures, [10] for SBSS of

convolutive mixture in time and [11] for SBSS of convolutive

mixtures in frequency).

The FD-SBSS method gives good estimates of the internal

noise and the external noise but it cannot obtain a clean

speech estimate. From these estimates, we can obtain the

contribution of these noises in the microphone array signals.

Then these noises are canceled by a post processing filter

that suppresses the contribution of the noises from the signals

observed at the microphone array. Here, we use a Wiener

filter on each of the microphone array signals [4]. Finally

the output of these Wiener filters are merged together with

a delay and sum (DS) beamformer to obtain the enhanced

speech fed to the speech recognizer.

Some experimental results show the application of the

proposed method for improving the word accuracy in a

dictation task in presence of both diffuse background noise

and robot internal noise.

II. PRELEMINARIES

A. Frequency domain blind signal separation

For a hands-free speech interface, the propagation of the

sounds from their locations of emission to the microphone
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Fig. 2. Mixture matrix H(f) and separation matrix W (f) at the
f th frequency bin.

array is modeled by an unknown convolutive mixture. FD-

BSS aims at recovering the emitted signals by processing the

observed signals in the frequency domain. The frequency

domain processing is interesting because after applying a

F points short time Fourier transform (STFT) to the ob-

served signals, the convolutive mixture is equivalent to F

instantaneous mixtures. Then in each frequency bin, the blind

estimation of the emitted signal components is possible using

BSS [12].

At the f th frequency bin, the observed signal X(f, t) =
[x1(f, t), . . . , xn(f, t)]T (size n × T ) is

X(f, t) = H(f)S(f, t),

where the n×n complex valued matrix H(f) represents the

instantaneous mixture received by the n microphone array

and S(f, t) = [s1(f, t), . . . , sn(f, t)]T is the emitted signal

at the f th frequency bin (size n×T ). f denotes the frequency

bin, t the frame index and T the number of frames.

A theorem [13] states that if the components of S(f, t) are

statistically independent (and at most one is Gaussian) then

it is possible to recover them up to scale and permutation

indeterminacy by finding the separation matrix W (f) such

that the components y1(f, t), . . . , yn(f, t) of

Y (f, t) = W (f)X(f, t)

are statistically independent (see Fig. 2). These scale and

permutation indeterminacy are represented by

Y (f, t) = P (f)Λ(f)S(f, t),

where P (f) is a n × n permutation matrix and Λ(f) is a

diagonal n × n matrix. Namely W (f) is such that

W (f)H(f) = P (f)Λ(f).

Consequently several FD-BSS methods adapt the matrices

W (f) in order to minimize a cost function measuring the

statistical independence of the components of Y (f, t) (see

[6]). Because of the permutation indeterminacy, in order

to achieve separation in the time domain , it is necessary

to match the components from the same signal in all the

frequency bin before transforming back the signals in time.

This is referred to as permutation resolution. After permu-

tation resolution, the estimated signals are still filtered by

an indeterminate filter because of the scaling indeterminacy

Λ(f). A solution is to project back the estimated signals to

the microphone array [14].

B. FD-BSS in presence of diffuse noise

For the cocktail party problem where the goal is to separate

several speech signals, the author in [15] showed that FD-

BSS achieves the separation of a source by placing direc-

tional nulls in the direction of the interfering sources. Thus

FD-BSS can be seen as a set of adaptive null beamformers.

At this point, it is important to notice that for a hands-free

robot spoken dialog system, the user is close to microphone

array and can be considered a point source. On the contrary,

the external noise sources are far from the array and create a

diffuse background noise. Because the user is a point source,

FD-BSS is able to obtain a good estimate of the background

noise by placing a directional null in the user’s direction.

But with a limited number of microphones, FD-BSS cannot

cancel the diffuse background noise. Thus FD-BSS does not

give a good estimate of the speech. In such situation, the

speech estimate given by the FD-BSS is equivalent to a delay

and sum (DS) beamformer set in the direction of the user

[16]. FD-BSS has to be combined with some nonlinear post-

filtering techniques in order to improve the quality of the

captured speech [3], [4], [5], [16]. An efficient approach uses

Wiener filtering to suppress the diffuse background noise

estimated by FD-BSS [4].

III. MAIN RESULTS

A. Additional sensors

Let us consider a hands-free robot spoken dialog system

that has a n microphone array and r internal sensors (see

Fig. 1). Moreover, let use assume that the signals observed

at these additional sensors are from an unknown convolu-

tive mixture of the signals from the internal noise sources

but contain no contribution of the external noise or user’s

speech (The type of these sensors and their positions are

instrumental in realizing this condition).

In such case, the mixing at the f th frequency bin has the

following block structure (see Fig. 3)
[

X(f, t)
R(f, t)

]
=

[
H1(f) H2(f)

0 H3(f)

] [
S(f, t)
N(f, t)

]
, (1)

where R(f, t) (r×T ) is the signal observed at the additional

sensors and N(f, t) (r × T ) represents the internal noise

sources. The signal R(f, t), that is only a function of N(f, t),
is referred to as reference in the remainder. This structure

corresponds to the situation described in Fig. 1, with n

external signals and r internal noises.

B. Frequency domain semi-blind signal separation

The FD-SBSS is a modification of the FD-BSS that takes

advantage of the block structure of the mixing process by

using a demixer that has a block structure of compatible

dimensions with the matrices H1(f), H2(f) and H3(f).
In the f th frequency bin the demixing process is

[
Y (f, t)
Q(f, t)

]
=

[
W1(f) W2(f)

0 W3(f)

] [
X(f, t)
R(f, t)

]
.

The components of Q(f, t) (size r×T ) are only function of

the internal noises.

Using the results in [13] presented in Sect. II-A, the

components of Y (f, t) and Q(f, t) are all statistically in-

dependent if and only if the matrices W1(f), W2(f) and
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Fig. 3. Block structure of mixing and demixing at the f th frequency
bin.

W3(f) are such that
[

W1(f) W2(f)
0 W3(f)

] [
H1(f) H2(f)

0 H3(f)

]
=

[
P1(f)Λ1(f) 0

0 P2(f)Λ2(f)

]
,

where P1(f)(n × n) and P2(f) (r × r) are permutation

matrices and Λ1(f)(n × n) and Λ2(f) (r × r) are diagonal

matrices.

Consequently, at the f th frequency bin, it is possible

to perform the semi-blind separation by updating W1(f),
W2(f) and W3(f) until the components of Y (f, t) and

Q(f, t) are all statistically independent. The semi-blind

separation method uses the mutual information of Y (f, t)
and Q(f, t) to measure the statistical independence of their

components. The criterion is optimized by an iterative gra-

dient descent on the matrices W1(f), W2(f) and W3(f). At

iteration k, we have the following unmixing system

[
Y (k)(f, t)
Q(k)(f, t)

]
=

[
W

(k)
1 (f) W

(k)
2 (f)

0 W
(k)
3 (f)

] [
X(f, t)
R(f, t)

]
.

The update rules for the matrices have the following form

[11], [17]

W
(k+1)
j (f) = W

(k)
j (f) − µ∆W

(k)
j (f),

where (dropping the frequency and frame indexes for Y (f, t)
and Q(f, t))

∆W
(k)
1 (f) =

(
I− < Φ(Y (k))Y (k)H >t

)
W

(k)
1 (f),

∆W
(k)
2 (f) =

(
I− < Φ(Y (k))Y (k)H >t

)
W

(k)
2 (f)

−
(
< Φ(Y (k))Q(k)H >t

)
W

(k)
3 (f),

∆W
(k)
3 (f) =

(
I− < Φ(Q(k))Q(k)H >t

)
W

(k)
3 (f).

The nonlinear functions Φ(·) are estimated from the data

using a kernel based estimate of the score function of the

components of Y (f, t) and Q(f, t) [18] these estimates

assume circularity [19].

C. Permutation resolution

A problem that arises when separating speech and diffuse

background noise is the permutation resolution. The methods

developed for the speech/speech separation are often not

efficient for the case of speech in diffuse background noise

[20].

Because of the block structure (1), the estimated speech

is one of the components of Y (f, t). The other components

of Y (f, t) are related to the external noise only (assuming

separation is good) and the components of Q(f, t) to the

internal noise only.

Here, in order to find the speech component in each of the

frequency bin, we rely on the fact that the speech distribution

is spikier than that of the diffuse background noise. To

measure the ‘spikedness’ of the distribution, we determine

the scale parameter αi(f) of the Laplacian distribution

that fits the distribution of the modulus of yi(f, t). The

maximum likelihood estimate of this parameter is αi(f) =
(E {|yi(f, t)|})

−1
. The component with the largest parameter

is selected as the target speech (for details see [20]). After

this first step of permutation resolution, we assume that the

components are permuted such that y1(f, t) is the speech

component in the f th bin.

An advantage of the FD-SBSS approach is that, if well

separated, the internal noises does not interfere with the

permutation resolution. This is of particular interest as some

of the robot internal noises have spiky distributions. Thus

if these components appear in the permutation resolution,

finding the speech components in each frequency bin is more

difficult and it would force us to significantly modify the

permutation resolution based on Laplacian distribution.

D. Noise estimation

After finding the speech component in each of the fre-

quency bins, we can obtain the estimates of both the external

and the internal noises.

The projection back of the external noise is a n component

signal defined by

XE(f, t) = W1(f)−1DY (f, t), (2)

where D is a n×n diagonal matrix with ones on its diagonal

except for the first entry that is null.

If we assume perfect separation then, after permutation

resolution, y1(f, t) is the speech estimate and we have

W1(f)H1(f) =

[
1 0
0 P (f)

]
Λ1(f),

where P (f) is a (n − 1) × (n − 1) permutation matrix.

Let us define P̂ (f) =

[
1 0
0 P (f)

]
.

Then we have W1(f) = P̂ (f)Λ1(f)H1(f)−1

and W1(f)−1 = H1(f)Λ1(f)−1P̂ (f)−1.

Rewriting (2) (dropping frequency index) we have

XE(t) = W−1
1 D

[
W1 W2

] [
H1 H2

0 H3

] [
S(t)
N(t)

]

= W−1
1 DW1H1S(t)

= H1Λ
−1
1 P̂−1DP̂Λ1S(t)

= H1DS(t).
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Fig. 4. Overview of the proposed method.

Because D cancels the first component of S(f, t) that is the

speech, XE(f, t) is equal to the contribution of the external

noise at the microphone array.

The internal noise projection back is also a n component

signal defined by

XI(f, t) = −W1(f)−1W2(f)W3(f)−1Q(f, t). (3)

If the separation is perfect we have

W2(f) = −W1(f)H2(f)H3(f)−1,

W3(f)−1 = H3(f)Λ2(f)−1P2(f)−1.

We can rewrite (3) (dropping frequency index) as

XI(t) = H2Λ
−1
2 P−1

2

[
0 W3

] [
H1 H2

0 H3

] [
S(t)
N(t)

]

= H2Λ
−1
2 P−1

2 W3H3N(t)

= H2N(t).

Consequently XI(f, t) is the contribution of the internal

noises to the microphone array.

These noise estimates are good because FD-SBSS can

efficiently cancel the contribution of the user’s speech at

the microphone array by steering a directional null in the

direction of the user.

E. Wiener post-filter

The noise cancellation is performed by applying a Wiener

filter on each of the microphone array signals. The noise

estimates used in the Wiener filter are obtained by adding

the contributions of both internal and external noises at the

microphone

XN (f, t) = XE(f, t) + XI(f, t).

The Wiener filter gain for the ith component is

G(i)(f, t) =
|X̂(i)(f, t)|2

|X̂(i)(f, t)|2 + γ|X̂
(i)
N (f, t)|2

,

where the subscript (i) denotes the ith component and γ

is a parameter controlling the noise reduction. If we have

additional information concerning what movement the robot

is doing at a given time, we can set γ to a specific value that

is well adapted for a given condition of the robot otherwise a

fixed parameter γ is used. The ith component of the filtered

target speech is

Ŝ(i)(f, t) =

√
G(i)(f, t)|X̂(i)(f, t)|2

X̂(i)(f, t)

|X̂(i)(f, t)|
.

Finally the n components of the Wiener filtered speech

estimates are merged into one by applying a delay and sum

(DS) beamformer in the direction θtarget of the target speech

Ŝ(f, t) =

n∑

i=1

G
(i)
DSθ(f, t)Ŝ(i)(f, t),

where G
(i)
DSθ(f, t) the gain of the DS beamformer at the

ith microphone. The target DOA is estimated during the

permutation resolution step after the speech components are

found with a method similar to the one in [19].

A block diagram of the processing done in each frequency

bin is given in Fig. 4 (the plain arrows are signals and the

dashed arrows are parameters).

IV. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed method,

a database of robot internal noises was created. Three addi-

tional sensors were installed inside of a robot equipped with

a four microphone array. Then for different actions of the

robot, the contributions of the internal noises at the additional

sensors and at the microphone array were recorded. We also

recorded the contributions of an external diffuse background

noise at the microphone array and at the additional sensors

(which are insignificant compared to the previous ones). The

impulse response from one meter in front of the microphone

array was also estimated (it also include the impulse response

at the additional sensors).

Since our goal is to perform speech recognition, a 20K-

word Japanese dictation task from JNAS [21] is used as

performance measure. The recognizer is JULIUS [22] using

Phonetically Tied Mixture (PTM) model [23]. The open test

set is composed of 100 utterances (female speakers). The

conditions used in recognition are given in Table II. The

acoustic model is a clean model with super-imposed noise

(office noise 25dB SNR).

To obtain the test set, the speech signals from the database

are first convolved to the estimated impulse response giving

the speech contribution at the microphone array. These sig-

nals are mixed with the recorded diffuse background noise at

different SNR values. Then these mixtures are mixed with the

contributions of the internal noises at the microphone array.

In the remainder, the SNR between the speech and the diffuse

background noise is referred to as external SNR whereas the

SNR of the second mixture is referred to as internal SNR. All

SNR values are computed at the microphone array when the

speech is active. The corresponding mixtures at the additional

sensors are also obtained during this process.
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TABLE I

Recorded gestures.

gesture number SNR {γS , γNS}
0 20dB {5, 5}
1 16.66dB {5, 5}
2 4.54dB {5, 25}
3 0.39dB {5, 10}
4 5.37dB {5, 100}

For the frequency domain processing, the short time

Fourier transform uses a 512 point hamming window with

50% overlap. The semi-blind signal separation is performed

by 300 iterations of the SBSS method with adaptation step

of 0.1 divided by two every 100 iterations (the method uses

adaptive nonlinear functions adapted from [18]). With the

notations of Fig. 4, X(f, t) is obtained from the microphone

array whereas R(f, t) comes from the internal sensors.

The robot internal noises were recorded in five situations

(see Table I): gesture 0 while the robot is not moving and

the noise is created by fans and servo motors, gestures 1 to 4
while performing different movements that create additional

mechanical and motor noises for short periods. The gestures

1 to 4 are highly non stationary, when the robot is moving

the internal SNR is changing from the value for gesture 0 to

the values in Table I.

The coefficient γ of the Wiener post-filter is fixed to

γ = 5 or changed according to the noise type while the

robot is moving. The values for stationary (γS) and non

stationary (γNS) parts are given in Table I. For each noise,

γNS was determined by taking the value from the set

{5, 7, 9, 10, 12, 15, 20, 25, 30, 50, 100} that results in the best

word accuracy .

The word accuracy for the 20k-word dictation task are

given in Fig. 5. The results for the proposed method (SBSS-

post) are compared with the ones without processing using

only second microphone (OBS), a delay and sum beam-

former in the direction of the user (DS) and the semi-blind

signal separation without post-processing (SBSS).

First we can see that for the gestures 0 and 1, that do

not present severe non stationarity, the word accuracy scores

are significantly higher. The strong adverse effect of internal

noise is especially present for the gestures 2 to 4 that are

highly non stationary. The proposed method performs better

except for the gestures 2 and 3 when the external SNR is

the lowest where the semi-blind signal separation without

post-processing is slightly better (0.38% for gesture 2 and

2.98% for gesture 3). We can also note that the improvement

between the unprocessed signals (OBS) and the delay and

sum beamformer (DS) is very small meaning that the internal

noise effect prevents the delay and sum beamformer to

perform well. The semi-blind signal separation without post-

processing also performs poorly because in presence of

diffuse background noise the speech estimate given by the

blind signal separation approach is close to a delay and sum

beamformer. As a consequence, for the suppression of both

the external and the internal noises, it is necessary to replace

the linear speech estimation by a nonlinear approach like the

TABLE II

System specifications.

Sampling frequency 16 kHz

Frame length 25 ms

Frame period 10 ms

Pre-emphasis 1 − 0.97z
−1

Feature vectors 12-order MFCC,
12-order ∆MFCCs
1-order ∆E

HMM PTM , 2000 states

Training data Adult and Senior (JNAS)

Test data Adult and Senior female (JNAS)

one proposed here.

The results obtained while using the noise type and time

information to change the coefficient γ are compared to the

fixed γ case in Fig. 6.

V. CONCLUSIONS

This paper proposes a speech enhancement architecture

developed for hands-free robot spoken dialog system. The

specificity of this architecture is the addition of sensors

inside the robot that measure the internal noises and the use

of semi-blind signal separation (SBSS) with multi-channel

Wiener post-filter. Experiments were conducted to show

the improvement of word accuracy for a dictation task.

The proposed architecture outperformed other approaches

demonstrating the usefulness of the additional sensors and

the effectiveness of the proposed SBSS based processing.

The future research aims at taking into account the non

stationarity of the internal noises by using an adaptive SBSS

method.
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