
Decentralized Lattice Formation Control for Micro Robotic Swarms

Grigoris Lionis and Kostas J. Kyriakopoulos

Abstract— In this paper we discuss an algorithm for dis-
tributed formation of a lattice structures using a team of
mobile robots. Lattice structures can be used for solving task
allocation problems, as well as for utilizing cooperative swarm
like motion for the agents. We are specifically dealing with the
problem of constructing a lattice decentralized with the agents
having only a limited sensing radius and a possibly imperfect
communication channel that make ”agree and go” methods
unsuitable for solving the problem. The proposed algorithm
is based on reducing the 2D problem to an 1D problem, i.e.
moving on a curve that connects all the lattice points without
intersecting itself. The algorithm is decentralized and is exact
in the sense that all agents will converge to the lattice structure.

I. INTRODUCTION

The nature of micro robotic systems is directly responsible

for the new problems that we face with such systems,

compared to traditional large scale robotic systems. Micro

robots need special algorithms that use little power, little

computations, little communications etc, while, the motion

of most micro robots is even more constrained than the

motion of a traditional unicycle. Moreover, another set of

problems encountered when dealing with micro robots is the

large scale problems arising from the large numbers of micro

robot necessary, typically found in many envisioned micro

robot applications.

In the recent literature, a great deal of attention has been

given to the control of a large number of agents, with various

different ways of looking at the problem. To name a few

different approaches, in [4], [2] the authors study the stability

of robot formations, while in [9] the authors study the

controllability of leader-follower formations. The feasibility

of formations has been studied in a number of works, for

example [7]. Other issues related with the control of large

number of agents have also been examined in the literature.

For example in [1] the aggregation problem is studied, while

in [3] the dispersion problem is studied.

In this paper we focus on a slightly different problem,

on the problem of constructing a formation when the agents

do not know a priori their part in the formation. We will

focus on a lattice formation. The automated construction

of a formation is a challenging problem, as both an allo-

cation problem and a motion problem have to be solved.

This work is partially supported by the European Commission through
contract FP6 IST 2002 507006 ISWARM: Intelligent Small World Au-
tonomous Robots for Micro-Manipulation, and by the Greek State Scholar-
ship Foundation, IKY

Grigoris Lionis is a PhD Student in the School of Mechanical Engi-
neering, National Technical University of Athens, 15700 Zografou, Greece
glion@mail.ntua.gr

Kostas J. Kyriakopoulos is Faculty of School of Mechanical Engineer-
ing, National Technical University of Athens, 15700 Zografou, Greece
kkyria@mail.ntua.gr

What makes the problem more challenging is the limited

resources available to the micro robots. The agents do not

have the computational/communication capabilities for first

solving the allocation problem and then start moving, but

the problems have to be solved concurrently with minimal

computations. The choice of a rectangular lattice structure

is not a random one, but it is dictated by the applications,

as in a grid formation the topology is easily quantified and

a number of problems regarding communications etc can be

easily stated and solved. To summarize, we are presenting

a decentralized algorithm that converges the agents to a

rectangular grid structure. This work is heavily built on our

previous work [6], where the proposed algorithm of helical

target assignment was first presented. In our current work

we provide explicit bounds for the completion of the task as

well as a formalization of the algorithm.

Similar problems are also treated in the literature. In [10]

the authors study a generalized version of the problem we

are dealing with, but without considering collision avoidance

in their scheme, while in our algorithm collision avoidance

is included by construction. In [8] the authors study a

similar problem focusing mainly on complexity issues. Their

proposed solution to the concurrent solution of the task

assignment problem and to the motion problem resembles

closely to our own. We include collision avoidance to the

design of the controller, and we use a helical ordering of

the targets, as opposed to a circular ordering. We focus on

the design of control laws that meet by design the collision

avoidance principle. The addition of collision avoidance in an

existing control scheme is not always feasible, as, especially

in dense environments, collision avoidance maneuvers can

interfere with the higher level controller and break down the

controller. Finally, our controller is specifically constructed

with micro agents in mind, and as a result limited computa-

tional and memory requirements are necessary.

II. PROBLEM FORMULATION

We are given a set of N mobile agents, randomly dispersed

over the workspace W . The workspace is assumed to be 2D

and the agents are considered to be rigid objects on the plane

W . The state of agent i is described by

qi = [xi yi θi]
T

where (xi,yi) are the coordinates of the center of the agent,

and θi is the orientation of the agent We denote with

pi = [xi yi]
T the position of agent i. The kinematics of a

microrobotic agent could vary considerably, but we will stick

to a model rich enough to allow us to solve the problem, but

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 3756

close enough to the kinematics of a micro robot. We assume

a micro robot that has 3 modes of motion,

• Mode 1: Move forward

• Mode 2: Rotate Right

• Mode 3: Rotate Left

This kinematic setup is a strict subset of the motion envelope

of a unicycle or an omnidirectional vehicle, and can also be

approximated with a -theoretically- arbitrary precision by the

kinematic structure of a class of micro robots that move on

discrete curvature sets [5].

We assume that the radius of the bounding circle of the

robots is known, and is equal to rb, where the bounding circle

is defined as the smallest circle that fully encircles the robot.

A collision between two robots is -for simplicity- perceived

to happen when the distance between the robots is less than

twice the bounding distance, i.e. robots i, j collide when

d(qi,q j) = (xi − x j)
2 +(yi − y j)

2 < 4 · r2
b

where d(qi,q j) is defined as the distance between agents i, j.

We can now state the problem: The initial position of the N

robots is random, within W , with no collisions. (Figure 1)

d(qinitial
i ,qinitial

j) ≥ 4 · r2
b

The goal is to position all the agents on a grid like structure

contained in W (Figure 2). The grid is defined as a set of

points in W as following

G = {(x,y) ∈ W |x = xc + i ·β ,y = yc + j ·β}, i, j ∈ Z

where β is the grid size, and (xc,yc) is the center of the

grid. The final position of the agents has to comply with the

following rules

• pi ∈ G,∀i, i.e. all the agents to be on the grid

• θi = θ j,∀i, j, i.e. all agents share the same orientation

• ∀i s.t. pi ∈ G ∃ j s.t. p j = q ∀q ∈ G s.t. d(q,qc) <
d(pi,qc) where pc = (xc,yc) is the center of the grid

and d denotes the Euclidean distance. If an agent is on

a grid point, the all grid points closer to the center of

the grid must also be occupied, i.e. the grid must be

completely filled. This is a crucial requirement, as the

grid structure will be used to transmit messages in the

swarm, and as a result a void in the grid undermines

the message propagation capabilities.

Moreover, the transition to the final positions has to obey the

kinematics of the agents and the non-collision requirements.

Obviously, the grid size has to be large enough to accom-

modate the agents without collisions. So, it must hold that

β ≥ 2 · rb

A. Communication and Sensing

The decentralized solution of this problem clearly necessi-

tates some sort of intra agent communication, either explicit

or implicit. We will assume that the agents are equipped with

both communications schemes, and more precisely , with

a communication system capable of transmitting messages

within a communication radius rm and with a sensing sub-

system capable of identifying other robots and their position

within a sensing radius rs. Moreover, to model aspects of the

reality, we will assume that the communication system is not

flawless, but rather, that there is a possibility of dropping a

message during a transition. On the other hand, the sensing

system is -in reality- much more robust, as it only has to

sense the other robots as well as their position. We shall

assume that rs > β , that is that grid to be formed is inside

the sensing radius of the robots.

Fig. 1. Initial Random Configura-
tion of a number of agents.

Fig. 2. Final Grid Structured Con-
figuration.

III. THINK AND GO APPROACH

An obvious approach to solving the aforemention prob-

lem decentralized would be the ”think and go” approach,

in which the robots first start exchanging messages as to

where to go and then, after the messages exchange has

been completed, the robots start moving in a decentralized

way to reach the goals that have been assigned to them

via cooperation. This approach, would use in essence, a

decentralized agrement protocol in which the position of the

agents would be agreed upon via messages exchanges. We

opted not to use this approach for two main reasons

• There is no guarantee that the swarm is fully connected.

Given that the number of agents N is not known a

priori it is difficult to ensure that the final system will

be singly connected, and moreover, the algorithms that

accomplish this might result in redundant motion for

the robots.

• The inherit difficulties in communicating complex sig-

nals between the robots. As the communication is not

flawless, the transmission of a large number of messages

is not straightforward and it is difficult to bound the

probabilities of erroneous message propagation.

• Finally, the cost of transmitting messages is -sometimes-

large, and increases disproportionably with the number

of the agents.

Finally, the general problem of moving the agents inside

W has a complexity that sharply increases with the number

of the agents, especially when the agents move completely

independently, in the sense that the destinations of the agents,

and hence the trajectories, are completely independent. We

have a somewhat different problem to resolve, as we are

concurrently trying not only to move the agents, but also

to allocate them in appropriate positions. The additional

3757

requirement - allocate the robots to the final positions- can

be used as an advantage. In particular, we will solve the

allocation problem taking into account -with an implicit

but immediate way- the trajectories towards the targets, i.e.

we will solve both these problems concurrently and the

complexity issues raised above for the case of independent

motion of the agents, will no longer hold in our case.

IV. PROPOSED SOLUTION

The proposed solution is intuitively simple. We transform

the 2D problem into a 1D problem, by constructing a path on

the workspace connecting all the target points, in a way that

each point is crossed only once, and with the final point being

the center of the grid. Our proposed path is depicted in Figure

3. In a sense, we create a potential function on the workspace

that guides the robots to take over all the points possible,

respecting the constraints specifying that voids must be be

avoided, and avoiding all collisions and deadlocks between

the robots.

Point 0

Center

Point 1
Point 2

Point 3

Point 4 Point 5 Point 6

Point 7

Point 8

Point 9Point 10Point 11

Point 12

Point 13

Point 14

Point 15 Point 16 Point 17 Point 18 Point 19

Point 20

Point 21

Point 22

Point 23

Fig. 3. Grid Point Numbering. The red arrows correspond to the motion
of an agent while it goes to grid points of lower number.

A. Grid Point Hierarchy Construction

We shall examine in detail how to construct the numbering

scheme on the grid, a scheme that is more than a simple

numbering, as it defines a hierarchy of grid point, in the sense

which must be filled first. Moreover, the careful construction

of this hierarchy is essential for the correctness of the algo-

rithm. Finally, as we shall discuss in more detail, the same

technique can be extended to cover other shapes/collection

of points, but the automatic construction of the appropriate

grid point hierarchies is not straightforward in the general

case.

The numbering of the grid points is straightforward. We

introduce a matrix marking the grid points, matrix G, where

Gi j = 0 corresponds to the case where grid point (i, j) has

not been numbered, while otherwise Gi j = n corresponds to

the case where grid point (i, j) is the n-th grid point. We

allow the coordinates of G to attain negative values as well1

We start from the center of the grids, numbered 0. We move

1Obviously, a trivial remedy is available by defining G∗ s.t.G∗
i j = Gi+m, j+n

where m is the minimum (negative) value of i and n of j.

upwards, for one grid point and we number the point as point

1.We proceed left for one grid point, and label the grid point,

point 2. We start moving downwards for two grid points, and

we label the two grid points 3 and 4 respectively. A finite

state machine description of the algorithm is depicted in Fig.

The algorithm has 4 internal states :

• Up : Moving up the grid, and successively numbering

grid points, as long as the grid point on the left is already

numbered.

• Left : Moving left on the grid, and successively num-

bering grid points, as long as the grid point below is

already numbered.

• Down : Moving down on the grid and successively

numbering grid points, as long as the grid point right is

already numbered.

• Right : Moving right on the grid and numbering grid

points, as long as the grid point above is already

numbered.

LEFTUP

RIGHT DOWN

LEFT

G
x,

y−
1
=

0

Gx,y−1 6= 0

UP
Gx−1,y = 0

Gx−1,y 6= 0

RIGHT

Gx,y−1 6= 0

G
x,

y−
1
=

0

DOWN
Gx+1,y = 0

Gx+1,y 6= 0

Fig. 4. Grid Point Numbering Algorithm. Starting from the zero grid point,
corresponding to the center of the grid, this algorithm successively numbers
ALL the grid points moving up, left, down, right and so on. The X and Y
correspond to the integer coordinates on the grid.

This algorithm will number ALL the grid points on the grid,

and will assign all the integers necessary to these grid points,

as the algorithm ”moves” continually on the boundary of the

part of the grid already numbered. No grid points are left in

the internal of the numbered points. Furthermore, after this

construction, one can easily establish the inverse function,

from the coordinates of the grid point, to the grid point

number.

B. Main Control Algorithm

After constructing the grid hierarchy, we are in position

to state the main algorithm, which is intuitively extremely

simple. Each agent hops from a grid point with index i

to the grid point with index i− 1, provided that this grid

3758

TABLE I

GRID NUMBERING ALGORITHM STATES

State Action

UP
y 7→ y+1

N 7→ N +1

Gxy 7→ N

DOWN
y 7→ y−1

N 7→ N +1

Gxy 7→ N

LEFT
x 7→ x−1

N 7→ N +1

Gxy 7→ N

RIGHT
x 7→ x+1

N 7→ N +1

Gxy 7→ N

point, with index i−1 is free. This extremely simply control

primitive results in a complete coverage of the grid, assuring

no collisions and no deadlocks and no livelocks.

• Complete coverage : It is easy to prove that this algo-

rithm has only one stable point, a point where the grid

points are covered, in the sense given above. Assuming

that the system has stopped. This means that for all

agents, the grid position with a lower number is taken

over by another agent. Therefore, all grid positions with

a number less than or equal to the maximal grid position

occupied are also occupied. So the grid is covered.

• No collisions: In all moves, the agents trajectories do

not intersect by construction, and therefore no collisions

are possible.

• No Livelocks : To show that no livelocks are possible, it

suffices to see that the sum of the numbers taken by the

agents cannot increase, but only decrease. Therefore, it

is not possible to return to a previous state of the system,

hence no livelocks are possible.

Algorithm 1 Descent Grid

T ⇐ 0

N ⇐ GetCurrentGridPoint

while N > 1 AND T ≤ N do

N ⇐ GetCurrentGridPoint

if N −1 is free then

MoveRobot(N−1)

T ⇐ 0

else

T ⇐ T + 1

Wait(Ttr)

end if

end while

EXIT

C. Algorithm Initialization

The algorithm described in the previous section is an

algorithm guiding the agents towards the requested config-

uration, given that the agents already are located on the

grid. It is therefore necessary to construct an initialization

step that can guide all agents onto arbitrary grid points. A

key idea to accomplish this task is to construct an one to

one correspondence between the position of the agents and

the grid points, i.e. to construct a decentralized grid point

allocation function that assigns to each grid point one and

only one agent. To do this Fig. it suffices for the agents to

have a minimum distance from each other greater than
√

2β .

If the agents have this minimum intra-agent distance, it is not

possible for two agents to have the same proximal grid point,

but rather, the agents will necessarily have different proximal

grid points.

√ 2β

β

Fig. 5. Part of the workspace nearest to a specific Grid Point. The diameter
of this area is

√
2β .

1) Agent Dispersion: Of course, as we stated in the

formulation of the problem, the initial configuration of the

agents is more or less random, and we cannot assume that the

condition of a minimal intra agent distance is automatically

satisfied. Rather than this, as a first step, we shall force the

agents to be repelled from one another as to ensure that their

intra agent distance becomes larger than ∆ =
√

2β + ε To

accomplish this subtask we employ the controller found in

[3]. This controller works completely decentralized, with the

sensing requirements to be limited only to a knowledge, for

each agent, of the surrounding agents and it can, therefore

be applied to our case. The controller stabilizes the agents

from any initial configuration to a configuration where the

intra-agent distance is bigger than a set distance. So, for

our case, it suffices to set the desired intra-agent distance

to ∆. Obviously, for this controller to work, the following

condition must be met ∆ ≤ rs that is the sensing distance

must be larger than the dispersion distance. This condition

trivially satisfies the condition of the grid size being less

than the sensing distance, a condition necessary for the grid

controller.

D. Complete Algorithm

We can now summarize the structure of the complete

controller, and it is graphically depicted in Fig. First the

dispersion controller is used, to ensure that the agents are

properly dispersed inside the working area. The second step

of the overall controller is for each agent to go to the nearest

grid point. Obviously, as the intra-agent distance is larger

3759

than the diameter of the basin of attraction of each grid point,

it is not possible for two agents to have the same grid point

as a target, nor it is possible for two agents to cross, as the

trajectories of the agents are straight lines between the initial

position and the nearest grid point, and these trajectories are

completely included inside the basin of attraction of each

grid point. Finally, the control law that forces the agents to

descent the grid is used, and this guarantees that the agents

will form a grid with the requested properties.

E. Time Bounds

An important question is the question of how much time

is necessary for the whole process to converge. First, it is

important to notice that as the overall control law is not

continuous, it can -in principle- have a finite convergence

time. Moreover, as the whole idea behind this controller is

to from a grid in order to do other more useful stuff, it is

necessary to bound the time necessary for the convergence

of the controller. We shall only give bounds to the two final

parts of the overall control strategy, as the first part is taken

out of the literature, and is guaranteed to work in finite time.

We shall denote as T2 the time necessary for the the agents

to complete the second part of the control scheme. This can

be broken down as following

T2 ≤ T max
2 =

π

ω
︸︷︷︸

Orientation

+

√
2/2β

u
︸ ︷︷ ︸

Motion

The first term corresponds to the time necessary for the

agents to reorient towards the goal, while the second term

corresponds to the time necessary for moving towards the

goal. The orientation time is bounded by the time necessary

for an agent to turn for half a circle, as by choosing the

best way of turning the agent needs less than π rotation to

reorient to any direction. The motion time is bounded by

the time necessary to move from the point of the basin of

attraction of the grid point farthest away from the grid point,

which is equal to half the diameter of the basin of attraction

of the grid point. So the time necessary for completing this

part of the controller is bounded. Obviously, this part of the

controller will remain active for at least T max
2 to ensure that

all agents have completed their rotation.

We denote as T3 the time necessary for all agents to

traverse through the grid, i.e. the time necessary for the

completion of the grid, or equivalently the time necessary

for the system to converge. We shall assume -for simplicity

in the derivation of these bounds- that all agents move syn-

chronously, i.e. that all agents have a global clock that allows

them to synchronize their motion. We have to note that this

assumption is only used to establish an appropriate bound

on the necessary time for the convergence and has nothing

to do with the convergence properties of the scheme. We

merely use the well known fact that synchronous systems are

significantly easier to analyze than asynchronous systems. So

we shall assume that if agent i is located in grid point k while

agent j is located in grid point k−1 while grid point k−2 is

free, then first agent j starts moving towards grid point k−2

while agent i remains still. While during the motion of agent

j agent i ”sees” that grid point k−1 is free, even though agent

j has not reached yet grid point k− 2, nevertheless agent i

does not move, as it waits for the next move window. If we

also assume that grid point k − 3 is also free, then agents

j and i will start moving concurrently towards grid points

k−3 and k−1 respectively.

As discussed above, all grid points are numbered. We

denote as function g : N+ → N+ the function that gives

the grid point associated with each agent, for a given time

step. Then, we can introduce quantity S with S = ∑i g(i)
that is S is the sum of the number of all grid points on

which there is an agent. This function will allow us to

bound the time necessary for completing step 3. Assume

that we have N agents and that the agents furthest away

from the center is on grid point M. Then we have that

Sinitial ≤ M + (M − 1)+ (M − 2)+ ...(M −N + 1) since the

maximum value that S can have corresponds to the case

where all agents are stack to the maximal values of the grid.

We also have that S f inal = 0 + 1 + 2 + ... + (N − 1) which

corresponds to the case where all agents are in their final

positions, and therefore all grid positions from 0 to N − 1

are taken. So we have that

∆S ≤ N ·M− (1 + 2 + ...+(N−1)
︸ ︷︷ ︸

Sinitial
max

−(1 + 2 + ...+(N−1)
︸ ︷︷ ︸

S f inal

= N ·M−N · (N + 1) = N · (M−N −1)

Given that in each time step the system reduces S for at least

one -at least one agent moves from one position to another-

we have that the maximal number of time steps possible is

equal to ∆S. The time necessary for each time step is given,

using the same line of reasoning used for establishing T2 as

δ t = π
ω + β

u
and the time necessary for completing the third

step of the control scheme is equal to

T3 ≤ ∆S ·δ t = N · (M−N −1) ·δ t

thus proving that this algorithm is ′(MN). This is an upper

bound, based on the simplifying assumption that at every

time instant only a single agent moves. In reality, even in

the extreme case where the agents start moving stacked

on the grid points with higher index, the agents will move

concurrently and the actual running time will be less. It is

a subject of current research to quantify more precisely the

complexity of the scheme. M is trivially bounded by the

size of W , although the exact connection between them is

not trivial.

V. SIMULATIONS

In order to depict the overall controller behavior, as well

as to verify via simulations that the controller is accurate and

correct we present a simulated run of the controller, resulting

in the automatic, decentralized construction of a grid. The

simulation concerns a flock of 30 robots, that converge to

a structure grid around the origin. As this simulation is

concerned with the inner workings of the controller, we use

circular agents, to focus on the switching controller and not

3760

on the details of how the agents move. The simulated run

is depicted in figures 6 to 13. In Figure 6, the beginning

of the simulation is shown. The agents are dispersed in the

work area and the controller starts working, while Figure

13 represents the final structured grid. The intermediate

figures (7,8,9,10,11,12) depict various instances of a semi

constructed grid, with the agents still moving.

VI. CONCLUSION

We have presented a grid formation control scheme for

a swarm of robots. Grids, and in general structured forma-

tions, are of major importance in swarm robotics, as several

issues regarding coordination, communication etc can be

solved much easier on grids. In this paper we focus on the

”preproblem” of how to construct a grid using a decentralized

controller with minimal communication between the agents

-in a sense only implicit communication is exchanged- This

problem is basic when some properties have to be ensured

in a formation. Moreover, this problem is a special case of

a wider class of problems where a set of positions has to be

covered by a set of agents. The presented algorithm can be

used to fulfil these tasks. The algorithm has a simple structure

as it has been designed for use in microrobots with minimal

resources. Finally, the presented algorithm is guaranteed to

work in bounded time.

The proposed scheme is completely decentralized apart

from the initial knowledge of where to form a grid of specific

size (i.e. the center point of the grid and the grid size), and

for this paradigm to work, the agents have to be fully aware

of their position (i.e. equipped with a GPS-like system) An

interesting extension would be the drop of these two working

assumptions (i.e. knowledge of where to form and knowledge

of what to form) possibly using some kind of communication

scheme for agreeing on these data decentralized.

Further more, we would like to extend this work towards

different directions. First, an important problem with this

algorithm lies within its cooperative nature : All agents are

assumed to work flawlessly, and in this case the robustness of

the algorithm is fulfilled. What would happen in a different

case. Another important question would be to address a

possibly heterogeneous swarm of robots. How would such an

assignment algorithm work in that case? Finally we would

like to extend this algorithm to cover more general structures,

and to possibly find some criteria of what structures can be

dealt with, using the proposed setup.

REFERENCES

[1] Dimos Dimarogonas and Kostas Kyriakopoulos. Connectedness pre-
serving distributed swarm aggregation for multiple kinematic robots.
IEEE Transactions on Robotics, 24(5):1213–1223, 2008.

[2] Dimos V. Dimarogonas and Karl H. Johansson. On the stability of
distance-based formation control. Proccedings of the 2008 Conference
on Decision and Control, pages 1200–1205, 2008.

[3] D.V. Dimarogonas and K.J. Kyriakopoulos. Inverse agreement al-
gorithms with application to swarm dispersion for multiple nonholo-
nomic agents. Proccedings of the 2008 IEEE International Conference

on Robotics and Automation, pages 367–393, 2008.
[4] A. Jadbabaie H.G. Tanner and G. J. Pappas. Stable flocking of mobile

agents. Proccedings of the 2003 IEEE Conference on Decision and

Control, pages 2010–2021, 2003.

−80 −60 −40 −20 0 20 40 60 80

−60

−40

−20

0

20

40

60

Fig. 6. T=0

−80 −60 −40 −20 0 20 40 60 80

−60

−40

−20

0

20

40

60

Fig. 7. T=15

−80 −60 −40 −20 0 20 40 60 80

−60

−40

−20

0

20

40

60

Fig. 8. T=35.

−80 −60 −40 −20 0 20 40 60 80

−60

−40

−20

0

20

40

60

Fig. 9. T=55

−80 −60 −40 −20 0 20 40 60 80

−60

−40

−20

0

20

40

60

Fig. 10. T=75.

−80 −60 −40 −20 0 20 40 60 80

−60

−40

−20

0

20

40

60

Fig. 11. T=95

−80 −60 −40 −20 0 20 40 60 80

−60

−40

−20

0

20

40

60

Fig. 12. T=115.

−80 −60 −40 −20 0 20 40 60 80

−60

−40

−20

0

20

40

60

Fig. 13. T=200

[5] Grigoris Lionis and Kostas Kyriakopoulos. Pwm control for a micro-
robot moving on a discrete curvature trajectory set. Proccedings of

the 2007 IEEE International Conference on Robotics and Automation,
pages 2324–2329, 2007.

[6] Grigoris Lionis and Kostas J. Kyriakopoulos. Iswarm
D6.3 Technical Report. Internal Project Puplication, March 2007.

[7] G. J. Pappas P. Tabuada and P. Lima. Motion feasibility of multi-
agent formations. IEEE Transactions on Robotics, 21:387–392, 2003.

[8] Stephen L. Smith and Francesco Bullo. Target assignment for robotic
networks:asymptotic performance under limited communication. Proc-

cedings of the American Control Conference, pages 1155–1160, 2007.
[9] Herbert Tanner. On the controllability of nearest neighbor interconnec-

tions. Proccedings of the 2004 Conference on Decision and Control,
pages 2010–2015, 2004.

[10] M. M. Zavlanos and G. J. Pappas. Distributed formation control with
permutation symmetries. Proccedings of the 2007 IEEE Conference

on Decision and Control, pages 2894–2899, 2007.

3761

