
UAV Intelligent Path Planning for Wilderness Search and Rescue

Lanny Lin
Computer Science Department

Brigham Young University
lanny.lin@byu.edu

Michael A. Goodrich
Computer Science Department

Brigham Young University
mike@cs.byu.edu

Abstract— In the priority search phase1 of Wilderness Search
and Rescue, a probability distribution map is created. Areas
with higher probabilities are searched first in order to find
the missing person in the shortest expected time. When using
a UAV to support search, the onboard video camera should
cover as much of the important areas as possible within a
set time. We explore several algorithms (with and without
set destination) and describe some novel techniques in solving
this problem and compare their performances against typical
WiSAR scenarios. This problem is NP-hard, but our algorithms
yield high quality solutions that approximate the optimal
solution, making efficient use of the limited UAV flying time.

I. INTRODUCTION

The use of mini-UAVs (Unmanned Aerial Vehicles) in
Wilderness Search and Rescue (WiSAR) has gained interest
for researchers and experienced advancement in recent years
due to its low cost, portability, and potential field use [6].
The UAV onboard video camera provides visual support,
enables search and rescue workers to systematically survey
large areas of importance in real time [6, 17], and increases
the workers’ awareness of the environment.

For WiSAR, as time progresses, the survivability of the
missing person decreases and the effective search radius
increases by approximately 3km/hour [19, 22]. Therefore,
search efficiency can dramatically affect the outcome of
the search and rescue. In the prioritized search phase, the
incident commander creates a probability distribution map
for finding the missing person based upon terrain features,
profile of the missing person, weather conditions, and sub-
jective judgment of expert searchers. Such maps can also be
created systematically by utilizing geographical information
available to the public via the Internet [4, 13, 21]. UAVs have
limited flying time, and in most cases, it is not long enough
for the onboard video camera to cover the entire search area.
For these reasons, the important question is this: given a
probability distribution map, a starting point, an ending point
(optional), and specified flying time, what is the best path that
enables the UAV onboard video camera to “cover” as much
of the probability distribution as possible?

Characteristics such as possibly repeated visits and proba-
bility cumulation make this a more challenging problem than
standard Orienteering Problem (OP) and coverage problem.
Contributions of this paper include novel path planning tech-
niques (“global warming effect”, path crossover/mutation),

1Four qualitatively different types of search strategies are used in WiSAR:
hasty search, constraining search, priority search, and exhaustive search.
See [6] for more details.

additional specified-destination constraint while accumulat-
ing probability, a solid validation of the algorithms’ perfor-
mance, and applying algorithms to a practical, real-world ap-
plication. Experimental results from this paper are conducted
in simulation and not on-board a real UAV.

II. PROBLEM FORMULATION

We model this problem as a discretized combinatorial op-
timization problem with respect to probability accumulated
in the 2D space for UAVs that use gimbaled cameras. Using
Koopman’s search metric of the instantaneous probability of
detection by one glimpse [10], we assume the observer has
a 100% target detection rate. This means that as the UAV
camera footprint moves along the probability distribution
map, it collects (“zeros out”) all the probability along the
way and accumulates the probability. A good analogy would
be thinking of the UAV as a vacuum cleaner sucking up
probabilities with 100% efficiency.

In WiSAR operations, a UAV maintains an altitude of
approximately 60m above ground and travels at roughly 12–
13m/s [6]. With this height, the onboard camera footprint
size comes to about 32m×24m. The batteries on the UAV
can keep it airborne for approximately 1–2 hours depending
on weather conditions. We assume that the UAV will always
maintain the same height of 60m above ground (through
Height-Above-Ground automation) and travel at the constant
speed of 12m/s, and use 24m×24m as the effective camera
footprint size. Given these parameters, a 60×60 probability
grid, where each probability node is 24m×24m, represents
an area of 2.0736km2 that will take the UAV 2 hours to cover
entirely. In our path planning, we restrict the direction a UAV
can travel to only North, South, West and East (making only
90 degree turns), and it takes the UAV 2 seconds (1 time step)
to travel from one node to its direct 4-connected neighbor.
In real flights, a UAV can approximate a 90 degree turn
(covering 3 nodes) in 4 seconds, so this model is close to
UAV’s capabilities. Also during roll or yaw, the gimbaled
camera can rotate to remain aiming straight down, enabling
the 90 degree turn of the camera footprint.

Using i for the row number and j for the column number,
each probability node (cell in grid) can be written as Nij

where 0≤i, j<60. The value of each Nij is the total volume
of probability within the grid cell and thus

n−1∑
i=0

n−1∑
j=0

Nij = 1, (1)

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 709

where n=60. Let T be the total number of time steps allowed
for the UAV (specified flying time). Let P be the set of all
possible paths for the UAV on the probability grid for T time
steps. Each path, pk∈P , can be represented by a sequence of
probability nodes {N0, N1, N2, ..., NT } consisting of T+1
nodes. If the UAV is allowed to visit a node more than once,
then the same node can be in a different part of the sequence.

If we use a binary variable xij to represent whether
Nij∈pk, xij becomes a function of path pk:

xij(pk) =
{

1, Nij ∈ pk

0, otherwise (2)

The number of unique nodes visited is less than or equal to
the length of the path:

n−1∑
i=0

n−1∑
j=0

xi,j(pk) ≤ T + 1, (3)

and the total probability accumulated, PCpk
, if the UAV

follows path pk is

PCpk
=

n−1∑
i=0

n−1∑
j=0

xij(pk)Nij . (4)

The optimal path p∗∈P is defined such that
∀pk∈P, PCp∗≥PCpk

, and our goal is to find or approximate
the path p∗, which produces the maximum cumulative
probabilities within reasonable computation time.

III. RELATED WORK

Many algorithms have been used for UAV path plan-
ning such as Voronoi Diagram with Eppstein’s k-best
paths algorithm [1], A* [17], LRTA* [9], and Probability
Roadmaps [16]. These papers focus on obstacle avoidance
and sensing multiple targets.

For path planning in searching for a target, some re-
searchers propose to use a probabilistic model and try to
maximize accumulated probability along the path. In [8],
Hansen et al. propose three search strategies: greedy, contour,
and composite search, using a probability grid. In a series
of papers (e.g. [2, 3]), Bourgault et al. describe a Bayesian
framework for trajectory planning to maximize the chances
of finding the target given restricted time using one or mul-
tiple UAVs and human systems. However, the solution uses
a very simple 1-step lookahead approach which generates
paths far from optimal and difficult to improve upon. Both
papers do not consider the possible set destination constraint
and also lack solid validation of the path efficiency.

If we disallow visiting the same node more than once,
this problem falls within a variation of the Traveling
Salesman Problem (TSP) called the Orienteering Problem
(OP) [18] or the Prize-Collecting Traveling Salesman Prob-
lem (PCTSP) [7], both of which are NP-Hard [20]. Many
exact solving methods for the OP have been developed ([5,
11, 18]. These exact methods can find optimal solutions
to small OP problems, but for large-scale OP problems,
approximation heuristic approaches are preferred. Mittenthal
and Noon [15] present a heuristic approach that inserts or
deletes a city from the subset-tour. Tasgetiren and Smith

propose a Genetic Algorithm in [23] that encodes tours
using a sequence of points and uses a penalty function to
help search infeasible regions. Liang and Smith present an
Ant Colony Optimization approach that uses an unusual
sequenced local search and a distance-based penalty function
in [12]. These algorithms work well with OP problems of
small number of nodes (21–100 nodes) but can be slow with
large number of nodes. They also don’t allow repeated visits.

IV. PATH PLANNING ALGORITHMS

Because none of the path-planning algorithms we dis-
cussed above work well under our model of the problem, we
developed a set of algorithms based on the following ideas:
Local Hill Climbing (LHC), Convolution, and Evolutionary
Algorithms (EA). We also verify the paths generated to
ensure the UAV is not flying backward or going outside of
the allowed search area.

A. Algorithms without a Set Destination
In situations where the operator does not have a preference

for where the path should end, the following algorithms were
built and evaluated.

1) Complete-coverage Algorithm (CC): The algorithm
plans flight paths by following a lawnmower pattern. It first
identifies the smallest m×n bounding rectangle that contains
all the non-zero probability nodes. If the starting location
is inside the pattern, the algorithm simply generates a path
following the pattern. Otherwise, it first plans a shortest path
to the edge of the bounding rectangle. When allowed flight
time is large enough, this algorithm is guaranteed to collect
all the probabilities.

2) Local Hill Climbing Algorithms (LHC): This is a
greedy algorithm that always follows the direction with the
highest value. A direct implementation of LHC does not
work well with a multi-modal probability distribution map
because the path generated stays with one mode until it
has covered it completely before moving on to another. To
address this problem, we use a global warming metaphor
where the “ocean surface” represents all the zero-valued
nodes and the “islands” represent the probability modes; see
Fig. 1. We subtract a constant C from all nodes but keep
all node values non-negative, where C= max (Nij)/l, and l
defines how fine grained the search should be:

N ′ij ←
{

Nij − C, Nij > C
0, otherwise (5)

When the ocean surface rises C each time, the volume of
islands above water decreases, and if the ocean surface rises
l times, all islands will be below water. In our experiments
we set l=40 and use the LHC algorithm to generate 40 paths:
one before the ocean surface rises and one for each time the
ocean surface rises (before water covers everything). We then
recompute the probability accumulated for these 40 paths
using the original probability grid and return the best path.
This global warming technique allows the LHC algorithm
to break out of one mode before completely covering that
mode and move toward another. In case of a tie as to where
to go next, we use two methods as the tie-breaker: LHC-GW-
CONV uses a convolution kernel (with small, medium and

710

Fig. 1. Global Warming Effect

Fig. 2. An example of single-
point path crossover (Upper
row: the parents. Lower row:
the children)

Fig. 3. An example of
double-point path crossover
(Upper row: the parents.
Lower row: the children)

large sizes) to determine which neighbor is more promising,
and LHC-GW-PF uses Potential Fields (PF) with various
discounting factors to determine where to go next.

3) Evolutionary Algorithms: We developed two Evolu-
tionary Algorithms: EA-Dir and EA-Path. Both use the
probability accumulated for each path as the fitness function
and employ the proportional selection method [14]. The
difference between the two algorithms lies in the path
representation during crossover.

With the EA-Dir algorithm, a path is encoded as a string
of directions consisting of North, East, South, and West in
the crossover phase (e.g. “NNWEE...”). Because the paths
generated using single-point crossover [14] have a very high
probability of being invalid (flying out of the map), we only
use double-point crossover [14] and restrict the mid-section
to a fixed 5-direction string.

With the EA-Path algorithm, a path is encoded as a
sequence of node positions. If the two parent paths share
only one common node, then single-point crossover is used;
if they share two common nodes in the same order, then
double-point crossover is used; otherwise, the two parent
paths are discarded and the process starts over. For the single-
point crossover method the two parent paths are crossed at
the common node; see Fig. 2. For double-point crossover
method, the first common node and the second common node
in the parent paths mark the middle sections to be swapped;
see Fig. 3. Both techniques could result in one longer path
and one shorter path. The longer path is truncated back to
the original path length and the shorter path is extended by
performing crossover again and then truncating.

Two types of mutation methods [14] are used for flight
path evolution; see Fig. 4. They follow a greedy approach
with the hope that small positive changes to the path will
lead to larger positive changes to the path. First we randomly
select a node in the flight path and see if the next two nodes
along the path would form an L shape with this node or a
straight line (these are the only two possibilities). In the first
case, method 1 (“flip”) is used and the algorithm replaces
the middle node with the node that mirrors the middle node

Fig. 4. Examples of mutations
in EA-DIR and EA-Path algo-
rithms. (Upper row: method 1.
Lower row: method 2)

Fig. 5. Examples of muta-
tions in EA-Path E algorithm.
(Upper row: method 2. Lower
row: method 3)

if we connect the first node and the third node with a line.
This is like flipping a section of the path. In the second case,
method 2 (“pull”) is used and the algorithm inserts two nodes
into the path on one side of the line next to the first and the
second nodes. This effectively extends the path by two nodes,
so we simply truncate the last two nodes from the path. This
is like pulling a string from the middle when the beginning
end of the string is fixed. Which side to select for insertion
depends on whether the new path is a valid path. If both
sides allow valid paths, then the algorithm prefers inserting
nodes that are not already in the path. Random selection is
the last tie-breaker. If all four nodes on either side of the line
are already included in the path, then a new mutation point
is randomly selected and the same procedure repeats.

We use an initial population of 100 paths including various
paths generated using other algorithms and 95 randomly
generated paths. LHC-GW-PF is not used because it is too
slow. Other parameters include replacement rate at 30% and
mutation rate at 50%. The best three paths are always kept in
each iteration. The algorithm runs for at least 500 iterations
and stops if either the best path does not improve after 200
iterations or if the algorithm has completed 1000 iterations.

B. Algorithms with a Set Destination

In WiSAR, an operator might prefer the path to end
at a specific destination node to support UAV retrieval,
persistent visualization of a specific region at a specific time,
or planning multiple path segments that make up a longer
path. The following algorithms are modified versions from
the previous section to handle the additional requirement. We
simply add “ E” to the algorithm names to distinguish them.

1) Complete-coverage Algorithm (CC E): This algorithm
is identical to the CC algorithm up to the time when the
remaining flight time is just enough to fly the UAV to the
end node, then it flies toward the end node using the LHC-
GW-CONV E algorithm (discussed shortly).

2) Local Hill Climbing Algorithms: The LHC-GW-
CONV E and LHC-GW-PF E algorithms have an additional
constraint where nodes that prevent the path from reaching
the end node within the remaining time will not be selected.

3) Evolutionary Algorithm: The direction representation
of a path does not work with a set destination, so the EA-
Path E algorithm also uses a sequence of node positions to
encode the path. Here we increased mutation rate to 90%
to force more exploration of the state space. The initial

711

population of 100 paths includes various paths generated
using other algorithms as seeds (both from start node to end
node and reversed) and 90 randomly generated paths.

The EA-Path E algorithm uses both single-point and
double-point crossover. The difference is that when the
child path is too long, the algorithm truncates the path
to the original path length, then backtracks the path until
the distance between the end of the child path and the
desired end node matches the remaining time. The LHC-
GW-CONV E algorithm is then used to complete the path
with the desired end node. If the child path is too short, the
LHC-GW-CONV E algorithm is used to complete the path.

The EA-Path E algorithm uses three types of mutation
methods. First, we randomly select a node in the path and
see if the next two nodes along the path would form an
L shape with this node or a straight line. In the first case,
method 1 (“flip”) is used (identical to the one used in the
EA-Path algorithm); see Fig. 4. If the nodes form a straight
line, then method 2 (“pull”) or 3 (“shake”) is selected with
equal probabilities; see Fig. 5.

Mutation method 2 (“pull”) is a modified version from
the EA-Path algorithm. This method does not truncate two
nodes at the end of the path; instead, it deletes two nodes in
the middle of the path. This is like pulling a string from the
middle when both ends of the string are fixed.

Mutation method 3 (“shake”) works by first marking a
small mid-section in the path (to keep it short, we set it to
6 nodes). We first randomly select a node in the path, then
traverse the path and find the fifth node down the path. If
the path between these two nodes is not a straight line, the
method replaces the mid-section with random flying while
maintaining the same length for the mid-section. This is
similar to shaking a chain where the beginning and ending
points remain fixed but the middle section shifts.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Performance Metrics

We use Efficiency , EfficiencyLB and Running Time as
metrics to measure the performance of the algorithms, where
Efficiency is calculated if we know what’s the best possible
and EfficiencyLB is used as an estimation when we have
no way of calculating the best possible. Sorting all the
probability nodes by their values in descending order would
generate a list {N1, N2, N3, ..., N3600}. For the best possible
path p∗, the probability accumulated PCp∗ is constrained by
a theoretical upper bound B:

PCp∗ ≤
T+1−d∑

n=1

Nn = B, (6)

where d is the distance from the start node to the closest non-
zero valued node. Then for any path pk, we define Efficiency
and EfficiencyLB as the following:

Efficiency =
PCpk

PCp∗
(7)

EfficiencyLB =
PCpk

B
(8)

Fig. 6. Top row: 2D representations of unimodal, bimodal, and bimodal
with overlap probability distribution maps. Middle row: Simplified versions
of the three types of maps. Bottom row: Best paths found for each map.

PCpk
can be calculated using (4). Efficiency can be cal-

culated when PCp∗ is known and EfficiencyLB can be
calculated anytime. Clearly, EfficiencyLB ≤ Efficiency .

For example, a path with 95% Efficiency means the
amount of probability accumulated following this path
is 95% of the maximum possible. A path with 85%
EfficiencyLB means the probability accumulated is 85% of
the maximum amount possible if the UAV can teleport from
node to node, and the true Efficiency could be much higher.

All experiments are run on a Dual-core AMD 3800+ PC
with 1GB of memory. For each algorithm, running time is
recorded so we can compare algorithm speed.

B. Typical WiSAR Scenarios
In our experiments, we focus on probability distribution

maps of three abstract but representative WiSAR scenarios:
unimodal, bimodal, and bimodal with overlap. The top row
of Fig. 6 shows the 2D representations where each pixel
is a probability node; the lighter the pixel, the higher the
probability value. The middle row shows three simplified
versions of the distributions, which can be used to manually
identify the best path possible for each map and compute
PCp∗ . Then we can measure the true Efficiency of paths
generated. The blue arrows on the maps mark the starting
node (possible location for a WiSAR command center) and
the red dots mark the ending node (intentionally selected at
a different region from the starting nodes). The bottom row
shows the best paths generated for the real maps at T=900.

C. Experimental Results and Analysis
For each distribution type (real and simplified maps) we

ran each algorithm (with or without set destination) using
T=120, 300, and 900 (4, 10, and 30 minutes). Because
of random factors, we ran each experiment 10 times and
calculated mean and standard deviation of the results. Due
to space limitation, only a subset of the experimental results
are presented (e.g. Table I, II and Figure 7–9).

For all the experiments we performed, algorithm running
time exhibited the same trend: from the fastest to the
slowest we have LHC-GW-CONV(E), EA(E) and LHC-
GW-PF(E). For example, with the simplified unimodal
map, the LHC-GW-PF algorithm ran for 9.419, 41.952

712

(%) Simplified (Efficiency) Real (EfficiencyLB)
T 120 300 900 120 300 900
LHC-GW-CONV 88.89 96.80 98.35 81.64 93.97 97.75
LHC-GW-PF 96.63 96.70 96.07 90.28 92.43 96.67
EA-Dir 98.59 97.31 98.80 90.62 94.96 97.96
EA-Path 98.66 98.09 99.07 91.18 95.71 98.02

TABLE I
ALGORITHM EFFICIENCY COMPARISON FOR BIMODAL DISTRIBUTION

(seconds) Simplified Real
T 120 300 900 120 300 900
LHC-GW-CONV 0.90 2.26 7.35 0.52 1.16 5.66
LHC-GW-PF 9.44 29.11 131.35 2.61 8.64 92.38
EA-Dir 9.36 15.56 41.71 10.97 16.69 35.11
EA-Path 10.63 22.89 66.31 12.61 21.20 53.73

TABLE II
ALGORITHM SPEED COMPARISON FOR BIMODAL DISTRIBUTION

and 164.383 seconds for T=120, 300 and 900 respectively.
Because the EA(E) algorithms use the path generated from
other algorithms as seeds in the initial population, they are
generally slower. However, most of the running time is spent
generating the initial population and the evolutionary part of
these algorithms only takes a fraction of a second. LHC-
GW-PF(E) algorithms are always the slowest, and that is
why we do not include them as seeds in the EA algorithms.
For the group of algorithms with set destination, we perform
path planning both from the starting node to the ending
node and also from the ending node to the starting node
(then reverse the path), and then select the better one; we
include both runs when we record the algorithm running
time. Therefore, the “ E” algorithms always take more time
to complete compared to the version before modification.

For the simplified unimodal map, the LHC-GW-
CONV(E) algorithms are the clear winners in each respec-
tive group if we consider both the Efficiency and the running
time. For the group of algorithms without set destination, all
algorithms gave above 99.5% Efficiency . The LHC-GW-
CONV algorithm is always the fastest (e.g. 6.483 seconds
for T=900) and achieved 100% Efficiency in all cases.
The EA-Dir and EA-Path algorithms also achieved 100%
Efficiency , but at a much slower speed (e.g. 62.236 seconds
for T=900 with EA-Path). For the group of algorithms with
set destination, the LHC-GW-CONV E algorithm is also
the fastest (e.g. 14.173 seconds for T=900) and achieved
99.955% or higher Efficiency in all cases. Although the EA-
Path E algorithm achieved slightly better Efficiency (less
than 0.1% improvements), it did so at the cost of more
running time (e.g. 78.334 seconds for T=900).

For the simplified bimodal map, the LHC-GW-CONV(E)
algorithms did not always perform well because it doesn’t
handle the space between the two modes very well, especially
for very short flight time. Fig. 7 shows the Efficiency
comparison of the group of algorithms without set desti-
nation. The LHC-GW-PF(E) algorithms still achieved 96%
and above Efficiencies , but they are also the slowest. The
EA(E) algorithms are more attractive in this case because
they achieved the best Efficiencies (98.095%+ for EA and
97.857%+ for EA E) very quickly.

For the simplified bimodal with overlap map, the EA(E)
algorithms achieved the best Efficiencies (98.302%+ for
EA and 98.653%+ for EA E), but the LHC-GW-CONV(E)

Fig. 7. Efficiency comparison for group of algorithms without set
destination for simplified bimodal map

Fig. 8. Efficiency comparison for group of algorithms with set destination
for simplified bimodal with overlap map

algorithms were able to achieve equivalent or slightly lower
Efficiencies (97.391%+ for LHC-GW-CONV and 98.429%+
for LHC-GW-CONV E) with much less time (8.283 seconds
and 16.296 seconds for T=900 respectively). Fig. 8 shows
the Efficiency comparison of the group of algorithms with
set destination.

For each of the three real distribution maps (unimodal,
bimodal, and bimodal with overlap), since PCp∗ is unknown,
we can only calculate EfficiencyLB . We observed that
the EfficiencyLB for each real map is very close to the
EfficiencyLB for each of the counterpart simplified maps,
and we hypothesize that the Efficiency for each real map
should also be close to the Efficiency for each of the
counterpart simplified maps. Fig. 9 shows an example of the
EA-Path algorithm performance for the real and simplified
bimodal with overlap map. The columns in the front row are
EfficiencyLB values and the columns in the back row are
Efficiency values. Based on this graph, we estimate that the
Efficiency values for the real map here are above 97% for
all T values.

To further evaluate our algorithms, we tested our algo-
rithms on a more complex multimodal distribution map gen-

Fig. 9. EA-Path performance for the real and simplified bimodal with
overlap map

713

Fig. 10. More complex multimodal probability distribution map

erated by mixing multiple Gaussian distributions with vari-
ous standard deviations; see Fig. 10. The LHC-GW-CONV
algorithm achieved 97.206% EfficiencyLB in 5.516 seconds
and the EA-Path algorithm achieved 97.609% EfficiencyLB

in 63.984 seconds. Note here that the Efficiency percentiles
can only be better.

In every experiment, the EA(E) algorithms always
achieved the best Efficiency and EfficiencyLB . Therefore,
if the operator has some time for computation, they seem
to be attractive candidates. If the operator needs a path
generated quickly, the LHC-GW-CONV(E) algorithms can
be used. Although the LHC-GW-PF(E) algorithms do not
work as well with these three distribution maps, initial tests
on other distribution types such as sparse map and small-
multimodal map suggest that they could perform better than
other algorithms.

VI. CONCLUSION AND FUTURE WORK

We model the UAV path planning problem in WiSAR
as a discretized combinatorial optimization problem and
design two groups of algorithms for path planning with
or without a set destination using algorithms based on
Local Hill Climbing, and Evolutionary Algorithms using
novel techniques such as “global warming effect” and path
crossover/mutation. We evaluate the performances of these
algorithms on six (3 simplified, 3 “real”) representations
of typical WiSAR probability distribution maps, unimodal,
bimodal, and bimodal with overlap, with various flight times
and use the simplified maps to validate true efficiencies in
real maps. Experimental results show that our algorithms
can generate good paths with high Efficiency or estimated
Efficiency that approximate the optimal solution within
reasonable computation time. Specifically, the LHC-GW-
CONV(E) algorithms should be used for unimodal maps,
and if a few minutes computation time is available, because
the EA(E) algorithms always keep the best path found from
seed algorithms, they can always find a path with the highest
Efficiency compared with other algorithms experimented.

Experimenting with more types of distribution maps,
designing a more advanced global warming search model,
allowing 8-connected path planning, and dealing with dy-
namic distribution maps that change over time are all natural
extensions for future work. Specifically, the set of algorithms
with set destinations enables us to further investigate how the
path planning task can be segmented so human operators can
plan more strategically while the algorithms plan tactically,
and what interface can make this an intuitive, smooth, and
effective task for the UAV operator in WiSAR operations.

VII. ACKNOWLEDGEMENTS

This work was partially supported by the National Science
Foundation under grant number 0534736 and by a grant from
the Army Research Laboratory. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the sponsoring organizations.

REFERENCES

[1] R. Beard, D. Kingston, M. Quigley, D. Snyder, R. Christiansen,
W. Johnson, T. McLain, and M. A. Goodrich. Autonomous vehicle
technologies for small fixed wing UAVs. Journal of Aerospace Com-
puting, Information, and Communication 2005, 2(1):92–108, January
2005.

[2] F. Bourgault, A. Chokshi, and M. Compbell. Human-computer
augmented nodes for scalable mobile sensor networks. In Proceedings
of the SMC DHMS 2008, 2008.

[3] F. Bourgault, T. Furukawa, and H. F. Durrant-Whyte. Optimal search
for a lost target in a Bayesian world. In S. Yuta, H. Asama, S. Thrun,
E. Prassler, and T. Tsubouchi, editors, FSR, volume 24 of Springer
Tracts in Advanced Robotics, pages 209–222. Springer, 2003.

[4] D. Ferguson. GIS for wilderness search and rescue. In ESRI Federal
User Conference, February 2008.

[5] M. Fischetti. Solving the Orienteering Problem through branch-and-
cut. INFORMS Journal on Computing, 10(2):133–148, Feb 1998.

[6] M. A. Goodrich, B. S. Morse, D. Gerhardt, J. L. Cooper, M. Quigley,
J. A. Adams, and C. Humphrey. Supporting wilderness search and
rescue using a camera-equipped mini UAV. Journal of Field Robotics,
25(1-2):89–110, January 2008.

[7] G. Gutin and A. P. Punnen. The Traveling Salesman Problem and Its
Variations. Kluwer Academic Publishiers, 2002.

[8] S. R. Hansen, T. W. McLain, and M. A. Goodrich. Probabilistic
searching using a small Unmanned Aerial Vehicle. In AIAA In-
fotech@Aerospace, number AIAA-2007-2740, 2007.

[9] J. K. Howlett, T. W. McLain, and M. A. Goodrich. Learning Real-Time
A* path planner for Unmanned Air Vehicle target sensing. Journal
of Aerospace Computing, Information, and Communication, 3(3):108–
122, 2006.

[10] B. O. Koopman. Search and Screening: General Principles with
Historical Applications. Pergamon Press, 1980.

[11] G. Laporte and S. Martello. The selective Travelling Salesman
Problem. DISCRETE APPL. MATH., 26(2-3):193–207, 1990.

[12] Y.-C. Liang and A. E. Smith. An Ant Colony approach to the
Orienteering Problem. Journal of the Chinese Institute of Industrial
Engineers, 23(5):403–414, 2006.

[13] L. Lin and M. A. Goodrich. A Bayesian approach to modeling lost
person behaviors based on terrain features in wilderness search and
rescue. In Proceedings of the 18th BRIMS, Sundance, Utah, March
2009.

[14] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.
[15] J. Mittenthal and C. E. Noon. An insert/delete heuristic for the

Travelling Salesman Subset-Tour problem with one additional con-
straint. The Journal of the Operational Research Society, 43(3):277–
283, 1992.

[16] P. Pettersson and P. Doherty. Probabilistic roadmap based path plan-
ning for an autonomous unmanned helicopter. Journal of Intelligent
and Fuzzy Systems, 17(4):395–405, Sep 2006.

[17] M. Quigley, B. Barber, S. Griffiths, and M. A. Goodrich. Towards
real-world searching with fixed-wing mini-UAVs. In Proceedings of
IROS, 2005.

[18] R. Ramesh, Y.-S. Yoon, and M. H. Karwan. An optimal algorithm for
the Orienteering Tour Problem. ORSA Journal on Computing, 4(2),
Spring 1992.

[19] T. J. Setnicka and K. Andrasko. Wilderness Search and Rescue.
Appalachian Mountain Club, 1980.

[20] P. R. Sokkappa. The Cost-Constrained Traveling Salesman Problem.
Doctoral dissertation, University of California, October 1990.

[21] E. Soylemez and N. Usul. Utility of GIS in search and rescue
operations. In ESRI Users Group Conference, September 2006.

[22] W. G. Syrotuck. An Introduction to Land Search Probabilities and
Calculations. Barkleigh Productions, Mechanicsburg, PA, 2000.

[23] M. F. Tasgetiren and A. E. Smith. A Genetic Algorithm for the Ori-
enteering Problem. In Evolutionary Computation, 2000. Proceedings
of the 2000 Congress on, volume 2, pages 910–915, 2000.

714

