
Grammatical Evolution of a Robot Controller

Robert Burbidge, Joanne H. Walker and Myra S. Wilson

Abstract— An autonomous mobile robot requires an onboard
controller that allows it to perform its tasks for long periods
in isolation. One possibility is for the robot to adapt to its
environment using some form of artificial intelligence. Evolu-
tionary techniques such as genetic programming (GP) offer
the possibility of automatically programming the controller
based on the robot’s experience of the world. Grammatical
evolution (GE) is a recent evolutionary algorithm that has been
successfully applied to various problems, particularly those
for which GP has been successful. We present a method for
applying GE to autonomous robot control and evaluate it in
simulation for the Khepera robot.

I. INTRODUCTION

An autonomous, mobile robot is a mechanical device with

an onboard controller, sensors to observe the world and

actuators to move around it; together with a power source

[1]. In this work we take the mechanical architecture as

given (although this could be evolved [2, Section 11.3]) and

aim to optimize the controller. We consider a small, mobile

robot with two wheels and various sensors together with an

onboard, programmable micro-controller.

Software and hardware comprise the controller. There have

been some attempts to use electronic hardware that can

adapt to changes in the environment (e.g. [3]), although the

hardware is in general fixed. The software can either be

optimized in the lab, or during the lifetime of the robot, or

both [4]. We initially consider the case where the controller

is optimized in the lab in simulation. Prospects for ongoing

adaptation during the lifetime of the robot are discussed in

Section V-B.

The last two decades have seen a shift in robot control

from an engineering perspective to a behavioral perspective

[5] and more recently to adaptive and evolutionary per-

spectives [2]. Genetic programming (GP) was first applied

to simulated robot control in 1994 [6]. The GP system

evolved LISP S-expressions that executed a limited set of

movements in order to push a box to the edge of an arena.

The robot was provided with sonar (i.e. distance sensors)

together with detectors that indicated whether the robot had

bumped into something, or become stuck. This approach

contrasted with an approach based on reinforcement learning

[7]. It was argued that the GP was much closer to ‘automatic

programming’ than was the reinforcement learning approach.

The first attempt to control a real robot using GP evolved

low-level machine code [8], [9]. A linear GP (i.e. a variable

length genetic algorithm) was used to evolve a sequence

R. Burbidge, J.H. Walker* and M.S. Wilson are with the Department of
Computer Science, Aberystwyth University, Penglais, Aberystwyth, SY23
3DB, UK {rvb,jnw,mxw}@aber.ac.uk

*Corresponding author.

of instructions that took eight active infra-red (i.e. distance)

sensors as input and gave motor speeds for each wheel as

output. The task was the now-standard one of obstacle avoid-

ance. Significant in these papers was the use of ‘probabilistic

sampling’ in the fitness function in order to reduce training

time. The evolution was further speeded up by a factor of

40 by using a GP to model the environment using symbolic

regression [10], [11].

Grammatical evolution (GE), a technique related to GP

(see Section II), was first applied to robot control in 1999

[12]. There has been little subsequent work on the use of

GE for the automatic programming of robots [13], [14]. GE

has not been fully evaluated for robot control but has been

successfully applied to other noisy, dynamic optimization

problems such as adaptive trading [15, ch. 14]. In this paper,

we demonstrate the applicability of GE to robot control.

In Section III, we present a grammar for the automatic

programming of robots. This is inspired by previous work

in evolutionary robotics [10]. In Section IV, we describe the

experimental conditions, define an objective function for a

goal-finding task and present the results. We close with some

conclusions and suggestions for further work.

II. BACKGROUND

Grammatical Evolution (GE) is a method for evolving

computer programs in any language. The genotype is a

binary string and the phenotype is syntactically correct code.

The genotype is composed of 8-bit sequences coding for

pseudo-random integers in 0–255. The mapping from these

integers to compilable code is achieved through a set of

production rules in a generative grammar. A generative

grammar is a meta-syntax for a formal language, which in

the context of GE is a programming language such as C. An

example is given below in Section III.

This is in contrast to genetic programming (GP) [16] in

which the genotype is a LISP S-expression so that there is

little distinction between the genotype and the phenotype.

In GP there is a one-to-one mapping from genotype to

phenotype.

GE employs a generative grammar in Backus Naur Form

(BNF). A BNF grammar is composed of a set of terminals

which are items in the language, a set of non-terminals, and

a set of production rules that map non-terminals to terminals

together with a start symbol which is a non-terminal. The

production rules are repeatedly applied to the start symbol

until there are no remaining non-terminals. The result is a

list of terminals, i.e. items from the language, that form

syntactically correct code.

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 357

The first step in GE is thus to decide upon a language

and define a BNF for that language. One possibility is

to define a domain specific language (DSL). This is an

approach often taken in genetic programming (GP), e.g. for a

symbolic regression problem the items of the DSL could be

{+,−,×, /, sin, cos, exp, log, x}. The input to the program

is x and the program implements a function of x.

GE was introduced in [17] in which a BNF grammar is

given for the above DSL for a symbolic regression problem

described in [16]. Since the genotype is a binary string there

is no need for problem specific genetic operators, and GE

employs the standard operators of variable-length genetic

algorithms (GAs). For an introduction to GAs see [18].

GE has been applied to symbolic regression, finding

trigonometric identities, and symbolic integration [19]; to the

Santa Fe Trail problem [20], [21]; and to the generation of

caching algorithms in C [22]. Steady state selection1 was

found to outperform generational selection2 on these and

other problems by increasing the likelihood of finding a

solution in a given number of generations.

In several cases, GE has outperformed GP in terms of the

probability of finding a solution [20] and generalization [22].

As noted above (Section I), there have been few applications

of GE to robot control, although this is an area in which GP

has been successfully applied [6], [8], [9], [10], [11], [23],

[24]. Note that [24] used a graph grammar to grow neural

networks for robot control and as such is a precursor to the

GE approach.

III. GRAMMATICAL EVOLUTION FOR ROBOT CONTROL

One of the advantages of GE over GP is that the population

is simple to initialize and few constraints need be imposed

on the genetic operators of crossover and mutation [25, p.

57]. The obverse of this is that the inductive bias is in the

grammar; the population may evolve in an unexpected way.

Nevertheless, given this feature of GE it is simple to specify

grammars that mimic other evolutionary learning systems.

One successful application of GP to control of a Khepera

robot generated programs for a register machine [10]. An

example individual program written as a C program follows.

m[1]=s[13] >> s[10];

r[3]=s[11] - +0x3a2;

m[1]=s[9] | s[15];

r[8]=s[9] ˆ r[19];

m[1]=s[8] - r[5];

m[0]=r[10] << r[2];

m[0]=s[10] << r[16];

m[1]=r[21] >> r[6];

m[0]=r[0] << s[11];

m[1]=r[6] << r[0];

r[7]=r[21] >> r[2];

m[0]=r[12] << +0xd3f;

m[1]=s[13] << r[7];

1Steady state selection involves evaluating only a subset of the population
of potential solutions each generation.

2Generational selection involves evaluating the entire population each
generation.

Each individual is composed of simple register instructions

operating on input sensors si, registers ri and 13-bit integer

constants (represented in hex). The output is the motor speed

values m0,m1. The program is treated as the genotype of a

linear GP.

In the GE approach, the phenotype is the same but the

genotype is a binary string. The mapping from genotype

to phenotype is achieved by the grammar. A grammar that

generates programs for a register machine is given below3.

<code> ::= <line><code> | <line>

<line> ::= <lhs>=<rhs>;\n

<lhs> ::= <var> | <motor>

<motor> ::= m[0] | m[1]

<var> ::= r[0]|r[1]|...|r[13]

<rhs> ::= <arg1> <op> <arg2>

<arg1> ::= <var> | <sensor>

<sensor> ::= s[0]|s[1]|...|s[15]

<arg2> ::= <const> | <var> | <sensor>

<const> ::= <pm>0x<hex><hex><hex>

<pm> ::= +|-

<hex> ::= 0|1|...|f

<op> ::= + | - | *
| & | BITOR | ˆ | << | >>

The binary genotype is mapped to an integer string,

n1, n2, . . ., in analogy with transcription of DNA to RNA.

The phenotype is generated by starting with the first non-

terminal, <code>, and replacing it with one of the options

on the RHS of the production rule. Suppose the integer

sequence is (14, 131, 36, 89, 191, 20, 65, 2, 238). For each

non-terminal we look up the corresponding production rule

and count the number of options on the RHS. If there is

only one option, the LHS non-terminal is replaced by the

RHS. If there are r > 1 options then we take the next

integer, ni, and calculate ni mod r to select an option

to replace the RHS. Since n1 mod 2 = 0, <code>

becomes <line><code>. The non-terminal <line> be-

comes <lhs>=<rhs>. n2 mod 2 = 1, so that <lhs>

becomes <motor>. Then we have n3 mod 2 = 0, so

that <motor> becomes m[0], which is a terminal, i.e. an

element of the final program. This example and the next few

steps are shown below.

start: <code>

n1%2: <line><code>

<lhs>=<rhs>;\n<code>

n2%2: <motor>=<rhs>;\n<code>

n3%2: m[0]=<rhs>;\n<code>

m[0]=<arg1> <op> <arg2>;\n<code>

n4%2: m[0]=<sensor> <op> <arg2>;\n<code>

n5%8: m[0]=s[7] <op> <arg2>;\n<code>

n6%8: m[0]=s[7] & <arg2>;\n<code>

n7%3: m[0]=s[7] & <sensor>;\n<code>

n8%8: m[0]=s[7] & s[2];\n<code>

...

3BITOR is a macro for the C operator ‘|’, to avoid confusion with ‘|’ as
a separator in the grammar.

358

where % is the mod operator. This process continues until

there are no non-terminals remaining. Header and footer code

are added and the result is a compilable C function mapping

sensors to motors that can be used to control the robot.

The mapping of integers to production rules and the

generation of terminals is analogous to the translation of

RNA into amino acids and proteins. The resulting program,

i.e. the phenotype, is then compiled and used to control

the robot for a given task. A fitness score is calculated and

ascribed to the genotype for evolutionary optimization.

It is possible for an individual to run out of genes in the

mapping process. In this case the genotype is wrapped, i.e.

we go back to the beginning of the integer sequence and scan

through again. If there are still non-terminals remaining then

the phenotype is invalid and the genotype is given a fitness

of −∞.

IV. EXPERIMENTS

A genetic algorithm (GA) is used to optimize the phe-

notype. The phenotype is used to control a Khepera robot

in simulation. The task is to navigate toward a point light

source whilst avoiding obstacles. The various components

are described in more detail below.

A. Genetic Algorithm

The genotype is evolved using the genetic operators of

single-point crossover, with probability 0.9, and bitwise

mutation, with probability 0.01. The population size is fixed

at 500. A steady state GA is used as is common for GE.

Each generation, four individuals are selected uniformly at

random without replacement. These are evaluated on the

robot and the best two are chosen as parents to produce

two children. The children replace the worst two of the

four. This is the same as in [10]. The maximum number

of generations is 3500, giving 1400 evaluations in total. The

GA is implemented using GAlib 2.4.6 [26].

The genotypes are mapped to phenotypes using the gram-

mar above, modified to ensure the phenotypes are sufficiently

complex. Specifically, we set the maximum number of reg-

ister instructions to 256 as in [10]. The GE is implemented

with libGE 0.26 [27] using the in-built sensible initialization.

B. Khepera

The Khepera is a standard, autonomous, miniature robot

[28]. It is circular with a diameter of 5.5 cm and a height

of 3 cm. It has two wheels whose speed and direction can

be set independently. The maximum speed for each wheel

is 127 rad s−1. There are eight active infra-red sensors (see

Fig. 1) that can detect objects and measure distances up to

about 5 cm away. The IR sensors also detect ambient light

up to around 25 cm away for a 1 W source. Multiplicative

noise of 10% is added to the sensor readings to provide a

more realistic simulation.

The environment for the Khepera is a 1 m2 arena with

ambient overhead lighting and a number of obstacles. The

obstacles are 5 cm × 5cm and are randomly positioned in

the arena. The number of obstacles for a particular trial

Fig. 1. Position of the infra-red sensors on the Khepera.

Fig. 2. The Khepera Robot in its environment.

is ∼ Binomial(40, 0.5). The robot starts in a corner with

a random orientation. The robot and its environment are

simulated in 3-d with Webots 6.0.1 [29] (see Fig. 2). Note

that these are the same experimental conditions as the ‘10%

general world’ used in [4] and [30].

C. Find Light Task

The objective of the find light task is to navigate from the

corner of the arena to the centre, where there is a point light,

whilst avoiding obstacles. A trial lasts for 1000 steps or until

the robot finds the light or stops moving, if this is sooner. A

step is 64 ms as this is the minimum time for a detectable

change in the sensor values. The fitness has two components:

one to reward finding the light and one to penalize collisions.

The ambient light sensors, lsi, return values in [0, 511]
with a value of around 450 in the dark and 0 directly at the

359

light. The reward, r(ls), is the decrease in the average light

reading,
∑

lsi/8, over a trial. The reward takes values in

[−511, 511].
Although it is possible to detect a collision in simulation,

this is not possible for the physical robot and so the number

of collisions was not used in the fitness function. Instead,

in each time step the robot is penalized for being close

to an obstacle, with the penalty increasing exponentially

with proximity. The distance sensors, dsi, return values

in [0, 1023] with a higher value indicating proximity. The

formula used is:

p(ds) =

∑

steps

exp
(

max dsi

1023

)

−1

e−1

1000
× 511.

This takes values in [0, 511] and is subtracted from the

reward.

The overall fitness is:

f(ls, ds) = αr(ls) − p(ds),

where α is a prior weight for maximizing the reward over

minimizing the penalty; we use α = 4 in the experiments

reported here. The fitness thus takes values in [−2555, 2044]
with 0 representing a trial where the robot moves from

darkness to the light without coming close to any obstacles.

Owing to the ambient light, the value of
∑

lsi/8 is around

270 at the start of the trial and this is thus the maximum

possible r(ls). The highest attainable fitness under these

experimental conditions is thus around 1080.

There is no explicit pressure to move fast, in a straight

line, or to minimize the number of steps to find the light

(although there is an implicit pressure in the penalty for the

last of these). Note also that there is a reward for partial task

completion.

D. Results

Each generation, four individuals are given a fitness. The

population size is 500 and we use generation equivalent

to mean 500 genotype evaluations. Overall, about 8% of

phenotypes are invalid and these are not evaluated on the

robot. The following analysis excludes these. All results

presented are the average of two independent runs.

The best fitness each generation equivalent is always

greater than 1080, indicating that the robot had no collisions

and terminated at the goal. In 500 random trials there will be

one that is easy and good performance on one trial does not

imply good performance on other trials. The mean fitness

is a better indicator of robust learning. The mean fitness is

shown in Fig. 3. The fitness increases in the early stages then

levels off. The fitness is very noisy since the environment is

dynamic. Similar results were reported in [30] and [4] for

the same problem, albeit with a different fitness function.

It is possible that the initial population became overfitted

to the environments seen in the early stages and was then

not able to generalize to the wide range of environments sub-

sequently seen. This illustrates the usefulness of simulation

when evaluating an algorithm for robot control.

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25

Generation equivalent

F
it

n
es

s

Fig. 3. The mean fitness per generation equivalent.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 500 1000 1500 2000 2500
Generations

P
ro

p
o
rt

io
n
 o

f
g
o
al

s
fo

u
n
d

Fig. 4. The cumulative proportion of successful trials per generation,
smoothed with a cubic spline.

The fitness is only a proxy for the ultimate objective,

which is to find the light. If all of the light sensors return

0 then the robot has reached the goal. The cumulative

proportion of successful trials increased from 5.5% to 12.5%

during the run.

Observation of the robot showed that on a number of oc-

casions the robot moved very close to the light then stopped

without all light sensors returning 0. Such a robot gets a high

fitness so there is little incentive to fine-tune the position to

be exactly above the light. If we include these trials then

the cumulative proportion of successful trials increases from

14% to 26%. Almost all of this improvement is in the early

stages of the evolution, see Fig. 4. Since only four of 500

individuals are evaluated each generation, the early stages are

mostly random search. There is continuing improvement up

to around 2500 generations (i.e. 20 generation equivalents),

after which there is no further improvement.

The number of collisions per minute decreases gradually

throughout a run as shown in Fig. 5. This is the number

of collisions incurred by the robot for all phenotypes that

are evaluated. The performance of the best phenotypes is

discussed below.

360

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120 140

Time (hours)

C
o
ll

is
io

n
s

p
er

 m
in

u
te

Fig. 5. The number of collisions per minute during the life of the robot.

E. Bloat

The average length of the genotype increases linearly

during a run, a phenomenon known as bloat in the GP

community [25, p. 101]. However, GE has an advantage over

GP in that the size of the phenotype depends also on the

grammar used. In our case, the phenotype is constrained to

be exactly 256 register instructions. The grammar could be

defined to allow variable length phenotypes and designed

such that long phenotypes are rare.

Alternatively, the genotypic bloat in GE can be reduced

by only applying the crossover operator within the effective

part of the genotype, or by pruning the genotype [17].

F. Generalization

Although the results so far look promising there is no

reason to believe that the evolutionary search is better than

random (a point often overlooked). If a phenotype performs

well in one trial it will be selected and possibly reevaluated

later in the run, in a different environment. If the search is

better than random then the phenotype should perform well

in subsequent trials.

In Fig. 6, the number of collisions per phenotype is plotted

as a function of the number of times the phenotype was se-

lected. The more frequently selected phenotypes incur fewer

collisions. The average number of collisions for phenotypes

that were selected at least six times is half the overall

average.

Similarly, the proportion of successful trials for pheno-

types that were only selected once is 5%. The proportion of

successful trials for phenotypes that were selected at least

six times is 41%. This shows that the evolved controllers are

able to generalize to new environments.

G. Discussion

The optimal controller is one that will navigate toward

the light without collision for any initial conditions. Since

it is not possible to evaluate the controller in all possible

scenarios we must sample the problem space. Previous

work on similar problems [31], [4] evaluated the controller

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 2 4 6 8 10 12 14 16

Frequency of selection

C
o
ll

is
io

n
s

Fig. 6. The number of collisions per phenotype as a function of the number
of times the phenotype was selected. A phenotype lives for up to 64 s.

over three trials of 3000 steps. At the opposite extreme

to this, [10] used each individual to control the robot for

one time-step of 300 ms (although for a simpler task). The

approach taken here falls between these two. Morevoer, the

reward component of our fitness function focusses on task

completion rather rather than the ambient light during the

robot’s lifetime and is thus implicit rather than explicit [2,

p. 66].

The optimization problem tackled here is harder than in

previous work. The space of possible phenotypes to search

over is the same as in [10]. The behavior required is more

complex in that the robot must find the goal whilst avoiding

obstacles, whereas in [10] only obstacle avoidance was

required. Moreover, the environment is more cluttered in the

work presented here.

A similar optimization problem was tackled in [31] and

[4]. The controller was a problem-specific behavior-based

schema with only five parameters to be optimized. A direct

comparison with those works is not possible, but the results

achieved with GE are qualitatively the same and were

achieved in the same amount of computational time. The

advantage of the GE approach is that it is not necessary to

design a problem-specific controller.

V. CONCLUSIONS AND FURTHER WORK

In the following we summarize the main points of the

paper and suggest some directions for further work.

A. Conclusions

Evolutionary optimization and learning has been success-

fully applied to robot control. One such technique is genetic

programming (GP). Grammatical evolution (GE) is similar

to GP in that the phenotype is a computer program. It differs

in that the genotype is a binary string. Since GP has been

successfully applied to robot control and GE has been shown

to be a useful alternative to GP in several problem domains

it is natural to evaluate GE for robot control.

We have presented a BNF grammar that generates C code

for robot control and used a GA to search the space of such

361

programs. We have demonstrated the applicability of GE to

robot control on a simple goal-finding task in simulation.

Compared to random controllers, the evolved controllers

incur fewer collisions, have greater success in navigating to

the goal, and generalize better to new environments.

B. Further Work

Up to now, we have been vague as to what ‘autonomous’

means. The controller presented here requires access to a file

store and a C compiler. It could be immediately ported to a

physical Khepera provided the optimization and compilation

was done on a computer attached to the Khepera by a serial

tether. To use it as is on a truly autonomous robot would

require the robot to have its own OS, for example the Pioneer

robot. In any case, the controllers found by the algorithm in

simulation should be evaluated on a physical robot since this

is how they will be used.

The compilation and system calls are computationally

intensive. Alternative approaches include (i) using an inter-

preted language such as LISP, (ii) directly evolving machine

code as in [10], and (iii) using TinyCC which is a fast

compiler with a backend to compile and execute evolved

code.

We have only evaluated one grammar, producing a pro-

gram of register instructions that is difficult to interpret. It

is simple to write grammars for other control architectures,

such as neural networks or behavior-based schemas. The

inductive bias induced by the grammar is an interesting

avenue for further work.

We can easily take advantage of the portability of GE

by applying the algorithm presented here to other tasks in

other environments for other robots with little change in the

grammar and no modifications to the code.

REFERENCES

[1] U. Nehmzow, Mobile Robotics: A Practical Introduction. Springer,
2000.

[2] S. Nolfi and D. Floreano, Evolutionary Robotics: The Biology, Intelli-

gence, and Technology of Self-Organizing Machines. The MIT Press,
2000.

[3] D. Keymeulen, M. Iwata, Y. Kuniyoshi, and T. Higuchi, “Comparison
between an off-line model-free and an on-line model-based evolution
applied to a robotics navigation system using evolvable hardware,” in
Proceedings of the Sixth International Conference on Artificial Life,
C. Adami, R. Belew, H. Kitano, and C. Taylor, Eds. 26–29 June,
Los Angeles, USA: The MIT Press, 1998, pp. 109–209.

[4] J. H. Walker, S. M. Garrett, and M. S. Wilson, “The balance between
initial training and lifelong adaptation in evolving robot controllers,”
IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cy-

bernetics, vol. 36, no. 2, pp. 423–432, April 2006.

[5] R. C. Arkin, Behavior-Based Robotics. The MIT Press, 1998.

[6] J. Koza and J. Rice, “Automatic programming of robots using genetic
programming,” in Proceedings of the Tenth National Conference on

Artifical Intelligence. 12–16 July, San Jose, CA, USA: AAAI Press
/ MIT Press, 1992, pp. 194–201.

[7] S. Mahadevan and J. Connell, “Automatic programming of behaviour-
based robots using reinforcement learning,” in Proceedings of the

Ninth National Conference on Artificial Intelligence, vol. 2. 15–
19 July, Anaheim, CA, USA: AAAI Press / MIT Press, 1991, pp.
768–773.

[8] P. Nordin and W. Banzhaf, “Genetic programming controlling a
miniature robot,” in Working Notes of the AAAI-95 Fall Symposium on

Genetic Programming, J. Koza and E. Siegel, Eds. MIT, Cambridge,
MA, USA: AAAI Press / MIT Press, 1995, pp. 61–67.

[9] ——, “An on-line method to evolve behaviour and to control a
miniature robot in real time with genetic programming,” Adaptive

Behaviour, vol. 5, no. 2, pp. 107–140, 1997.
[10] ——, “Real time control of a Khepera robot using genetic program-

ming,” Cybernetics and Control, vol. 26, no. 3, pp. 533–561, 1997.
[11] P. Nordin, W. Banzhaf, and M. Brameier, “Evolution of a world

model for a miniature robot using genetic programming,” Robotics

and Autonomous Systems, vol. 25, pp. 105–116, 1998.
[12] M. O’Neill and C. Ryan, “Steps towards Khepera dance improvisa-

tion,” in Proceedings of the First International Khepera Workshop,
A. Löffler, F. Mondada, and U. Rückert, Eds. 10–11 December,
Paderborn, Germany: HNI-Verlagsschriftenreihe, 1999.

[13] M. O’Neill, J. Collins, and C. Ryan, “Automatic generation of robot
behaviours using grammatical evolution,” in Proceedings of the Fifth

International Symposium on Artificial Life and Robotics (AROB),
M. Sugisaka and H. Tanaka, Eds. 26–28 January, Oita, Japan: AROB,
2000, pp. 351–354.

[14] ——, “Automatic programming of robots,” in Proceedings of the

11th Irish conference on Artificial Intelligence and Cognitive Science

(AICS2000), 23–25 August, Galway, Ireland, 2000.
[15] A. Brabazon and M. O’Neill, Eds., Biologically Inspired Algorithms

for Financial Modelling. Springer, 2006.
[16] J. Koza, Genetic Programming: On the Programming of Computers

by means of Natural Selection. John Wiley & Sons, 1992.
[17] C. Ryan, J. Collins, and M. O’Neill, “Grammatical evolution: evolving

programs for an arbitrary language,” in Genetic Programming, First

European Workshop, EuroGP’98, ser. Lecture Notes in Computer
Science, W. Banzhaf, R. Poli, M. Schoenauer, and T. C. Fogarty, Eds.,
vol. 1391. 14–15 April, Paris, France: Springer, 1998, pp. 83–95.

[18] M. Mitchell, An Introduction to Genetic Algorithms. The MIT Press,
1998.

[19] M. O’Neill and C. Ryan, “Grammatical evolution: a steady state
approach,” in Proceedings of the Second International Workshop on

Frontiers in Evolutionary Algorithms, 1998, pp. 419–423.
[20] ——, “Automatic generation of high level functions using evolutionary

algorithms,” in Proceedings of SCASE 1999, Soft Computing and

Software Engineering Workshop, Limerick, Ireland, 1998.
[21] ——, “Evolving multi-line compilable C programs,” in [32], pp. 83–

92.
[22] ——, “Automatic generation of caching algorithms,” in Evolutionary

Algorithms in Engineering and Computer Science, K. Miettinen,
P. Neittaanmäki, M. Mäkelä, and J. Périaux, Eds. 30 May–3 June,
Jyväskylä, Finland: Wiley, 1999, pp. 127–134.

[23] G. Adorni, S. Cagnoni, and M. Mordonini, “Genetic programming of
a goal-keeper control strategy for the RoboCup middle size competi-
tion,” in [32], pp. 109–119.

[24] F. Gruau, “Automatic definition of modular neural networks,” Adaptive

Behavior, vol. 3, no. 2, pp. 151–183, 1994.
[25] R. Poli, W. B. Langdon, and N. F. McPhee, A field guide to genetic

programming. Published via http://lulu.com and freely avail-
able at http://www.gp-field-guide.org.uk, 2008, (With
contributions by J. R. Koza).

[26] GAlib, a C++ Library of Genetic Algorithm Components, written by
Matthew Wall at MIT. [Online]. Available: http://lancet.mit.edu/ga/

[27] libGE, a Grammatical Evolution Library, written by Miguel Nicolau
and Darwin Slattery at the University of Limerick. [Online].
Available: http://bds.ul.ie/libGE/

[28] F. Mondada, E. Franzi, and P. Ienne, “Mobile robot miniaturisa-
tion: a tool for investigation in control algorithms,” in Proceedings

of the Third International Symposium on Experimental Robotics,
T. Yoshikawa and F. Miyazaki, Eds., Kyoto, Japan, 1993.

[29] Webots, commercial Mobile Robot Simulation Software, from
Cyberbotics Ltd. [Online]. Available: http://www.cyberbotics.com

[30] S. Darby, J. H. Walker, and M. S. Wilson, “Transfer of evolutionary
methods between robots,” in Proceedings of Towards Autonomous

Robotic Systems 2007, M. S. Wilson, F. Labrosse, U. Nehmzow,
C. Melhuish, and M. Witkowski, Eds. University of Wales, Aberys-
twyth, 2007, pp. 62–69.

[31] A. Ram, R. Arkin, G. Boone, and M. Pearce, “Using genetic algo-
rithms to learn reactive control parameters for autonomous robotic
navigation,” Adaptive Behavior, vol. 2, no. 3, pp. 277–304, 1994.

[32] R. Poli, P. Nordin, W. Langdon, and T. Fogarty, Eds., Genetic

Programming, Second European Workshop, EuroGP’99, ser. Lecture
Notes in Computer Science, vol. 1598. 26–27 May, Goteborg,
Sweden: Springer, 1999.

362

