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Abstract—Stability problems associated with haptics and
robot control with obstacle avoidance are analyzed. Obstacle
avoidance algorithms are revised to accomplish stable redesign
using absolute stability and passivity theory. A modification of
potential functions for haptic rendering and obstacle avoidance
allowing stable operation for high stiffness is proposed. The
modification leads to velocity-dependent potential-like repulsive
stable haptic force interaction with obstacles. Using strictly
positive real re-design, stable force interaction can be provided
also for high stiffness of manipulated objects or obstacles.
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I. INTRODUCTION

Recent progress in haptics aims to provide an artificial

sense of touch to a human operator interaction in virtual en-

vironments, teleoperation, robot-assisted surgery. Beside the

desired mechanical characteristics such as stiffness, damping,

bandwidth and other aspects of impedance matching and hap-

tic fidelity, there are important stability problems in the bi-

directional force propagation and the control loops providing

stable and safe interaction for the human user [1], [2], [3],

[4]. An important part of the stability analysis is the physical

dissipation provided by the haptic device and the control, as it

plays a key role in the design process. Among various means

to characterize stability limitation in analysis and design,

impedance control has received significant attention [5], [6].

In order to characterize the dynamic range of achievable

impedances, Colgate and Brown introduced the notion ’z-

width’ [7]. Research directed towards passivity analysis has

pointed out various stability limitations and sources thereof

such as discretization, teleoperation latencies and stiff inter-

action with environmental forces [8], [1], [2], [3], [4], [9]. A

survey paper on bilateral teleoperation applicable to master-

slave haptics was published by Hokayem and Spong [10] and

stability properties of bilateral teleoperation with constant

time delays were considered in [11].

Early contributions to robotic obstacle avoidance using arti-

fial potential function was made by Khatib [12], and Brock

and Khatib [13]. In the application of stable trajectory-

controlled robots in work-space interactive dynamics such
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as force control and obstacle avoidance, new stability prob-

lems appear. Potential functions Uo(x) resulting in repulse

action forces Fo with high stiffness may result in oscillating

responses or unstable robot-obstacle interaction.

Uo(x), Fo = −
∂Uo

∂x
(1)

Robot control may be decomposed into kinematics, trajectory

planning, trajectory control and work-space control involving

force interaction and obstacle avoidance. A large body of

literature exists on robot kinematics, dynamics and control,

see the books of Spong and Vidyasagar [14]; Sciavicco and

Siciliano [15]; Murray et al. [16]; Craig [17] for further

references. Haptic devices consisting of an m-DOF master

and an m-DOF slave device may be modeled as

ρ(M1(q1)q̇1 +C1(q1, q̇1)q̇1 +G1(q1)) = ρ(τ1− JT1 (q1)F1)

M2(q2)q̇2 +C2(q2, q̇2)q̇2 +G2(q2) = τ2− JT2 (q2)F2 (2)

where ρ is a user-specified power-scaling factor, (q1,q2),
(τ1,τ2), (F1,F2) are the configuration coordinates, the applied
forces or control variables, and the environmental forces,

respectively [1].

A configuration-space dynamic model summarizing Eqs. (2)

for n = 2m and also relevant for a serial robot is

M(q)q̈+C(q, q̇)q̇+G(q) = τ − JT (q)F, τ,q ∈ R
n (3)

where the position coordinates q∈ R
n with associated veloc-

ities q̇ ∈ R
n are controlled with the applied torques τ ∈ R

n;

M(q) being the inertia matrix; C(q, q̇)q̇ the Coriolis and

centripetal forces; G(q) gravitation forces and τ the vector

of joint torques.

In this paper, a stability-oriented re-design of obstacle avoid-

ance using potential action will be made. We will derive the

condition that the robot or haptic device must satisfy in order

to achieve passivity of the haptic display in force interaction

with an obstacle. After the modeling preliminaries providing

scope for stability analysis, a precise problem formulation

follows.

II. MODELING—PRELIMINARIES

Introduce the potential energy U (q) of the haptic device

(or robot), the kinetic energy T (q, q̇) and the Lagrangian

L (q, q̇) = T (q, q̇)−U (q), (4)

Equations of motions are provided by the Euler-Lagrange

equations [18]

d

dt
(

∂L

∂ q̇
)−

∂L

∂q
= τ (5)

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 3238



A configuration-space dynamic model of for a serial robot

M(q)q̈+C(q, q̇)q̇+G(q) = τ − JT (q)F, τ,q ∈ R
n (6)

where the position coordinates q∈ R
n with associated veloc-

ities q̇ ∈ R
n are controlled with the applied torques τ ∈ R

n;

M(q) being the inertia matrix; C(q, q̇)q̇ the Coriolis and

centripetal forces; G(q) gravitation forces and τ the vector

of joint torques.

The end-effector coordinates x are a function of the robot

configuration coordinates q

x(t) = f (q), ẋ = J(q)q̇, J(q) =
∂ f (q)

∂q
(7)

One purpose of robot motion control is to maintain a

prescribed motion by means of compensating corrective

torques τ . The applied forces τ may be decomposed into the

trajectory control torques τR, force actuation τF , and obstacle

avoidance τo

τ = τR + τF + τo (8)

Control of the robot manipulator in operational space with a

force F requires actuation of the

τF = JT (q)F, x(t) = f (q), ẋ = J(q)q̇, J(q) =
∂ f (q)

∂q
(9)

A. Obstacle Avoidance

Using an artificial potential, Khatib [12] demonstrated that

robot end-effector collision avoidance can be accomplished

by means of

Uo(x) =Uo( f (q)), Fo = −
∂Uo

∂x
(10)

where Fo represents a repulsive force created by the artificial

potential Uo.

B. Stability of Trajectory Control

In order to maintain a trajectory qr, a variety of stable

trajectory control exists including ’computed torque’ state

feedback of the error q̃

τR = C(q, q̇)q̇+G(q)−M(q)KV
˙̃q−M(q)KPq̃+M(q)q̈r (11)

In the case of trajectory control without force interaction

with the environment—i.e., F = 0—the closed-loop system

of Eqs. (11) and (6) exhibits the error dynamics

M(q)( ¨̃q+KV
˙̃q+KPq̃) = 0 (12)

( ¨̃q+KV
˙̃q+KPq̃) = 0, M(q) > 0, ∀q (13)

with error dynamics on state-space form

d

dt

[
˙̃q

q̃

]
=

[
−KV −KP

I 0

][
˙̃q

q̃

]
(14)

Introduction of state-space notation for error dynamics

ξ =

[
˙̃q

q̃

]
∈ R

2n, ξ̇ = Aξ , A =

[
−KV −KP

I 0

]
(15)

Σ

q

Robot

Control

z
ττo

JT

−
∂Uo

∂ z

Fig. 1. Robot force control and error dynamics

Assuming a Lyapunov function V (ξ ) proving stability for

unconstrained motion of the computed torque solutions

V0(ξ ) = ξ TPξ ,
dV0(ξ )

dξ
= −ξ TQξ < 0, ‖ξ‖ 6= 0 (16)

−Q = PA+ATP, (17)

Other Lyapunov-based designs with Lyapunov functions and

proof of asymptotic stability can be found in [19], [20], [21].

C. Passivity

Using the Hamiltonian

H = T (q, q̇)+U (q) =
1

2
q̇TM(q)q̇+U (q) (18)

Ortega and Spong (1989) demonstrated passivity to hold for

the robot dynamics from input τ to velocity q̇ [21], [22],

[23], [24].
∫ t f

t0

q̇T τdt =

∫ t f

t0

dH = H (t f )−H (t0) ≥−H (t0) (19)

No similar property holds for the map from input τ to

position q.

D. Stability of Force Control and Obstacle Avoidance

In order to maintain a trajectory in the case of obstacle

avoidance where the end-effector will fail to reach f (qr), yet
with influence from dynamics and trajectory control

Uo(x) =Uo( f (q)), Fo = −
∂Uo

∂x
(20)

with error dynamics

M(q)( ¨̃q+KV
˙̃q+KPq̃) = τo (21)

( ¨̃q+KV
˙̃q+KPq̃) = M−1(q)τo, M(q) > 0 (22)

or

d

dt

[
˙̃q

q̃

]
=

[
−KV −KP

I 0

][
˙̃q

q̃

]
+

[
M−1(q)

0

]
τo (23)

τo = −JTFo = −JT (q)
∂Uo

∂x
(24)

As Eq. (24) represents a feedback loop applied to the

unconstrained system, the artificial potential action may
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cause high-gain feedback exceeding the gain margin of the

unconstrained system with impending instability. Unless the

subsystem of Eq. (23) is strictly positive real (SPR), however,

the gain margin has a finite upper limit [26], [27], [28], [29].

E. Problem Formulation

The stability problem in case of an artificial potential field

Uo(x) =
1

2
(x− xo)

TKo(x− xo) (25)

located at an obstacle centered at xo (or qo in configuration-

space coordinates) will give the repulsive force

Fo = −
∂Uo

∂x
= −Ko(x− xo) (26)

Stability analysis will exhibit closed-loop system properties

with a stability problem reducing to the ’absolute stability’

problem—cf., as proposed by Lur’e and Postnikov [31],

Popov [28], [32], Yakubovich [27], Kalman [26]; the circle

theorem [30], [29], [25]—analyzed using the circle criterion

or the Popov criterion by means of the Lur’e-Lyapunov

function

V (x,z) = xTPx+2η

∫ z

0
ψT (ζ )κdζ , P > 0, η > 0 (27)

with

κψ(z) =
∂Uo

∂x
= K(x− xo), z = (x− xo) = f (q)− f (qo) (28)

A standard result from absolute stability theory is that a

stability margin to the interaction stiffness K of arbitrary

magnitude is accomplished only for positive real input-

output error dynamics of Eq. (22)—cf., [33], [34]. Apart

from divergent instability, stability problems such as limit

cycles may result from choices of too large repulsive stiffness

matrices K. Thus, a potential function for a stiff rigid-body

obstacle may violate the limited stability margin resulting

from non-SPR error dynamics (Fig. 1).

As a result, it remains an open problem how to design

or modify a repulsive artificial potential and its algorithmic

organization such that a high stability margin will result, a

problem which now is to be addressed.

III. MAIN RESULT

As the artificial potential may be designed without explicit

physical interpretation, we can modify the input as well as

the potential function. A straightforward modification is to

choose a variable z permitting a block decomposition into

one strictly positive real (SPR) block which is strictly passive

and one passive high-gain block (Fig. 2) permitting stable

interconnection.

Uo(z) =
1

2
(z− zo)

TKo(z− zo) (29)

z = D ˙̃q+Kq̃ (30)

Z(s) = (s2I+ sKV +KP)
−1(Ds+K) (31)

Fo = −
∂Uo(z)

∂ z
= −Ko(z− zo) (32)

with D chosen in such a way that the transfer function Z(s)
be strictly positive real (SPR)—i.e., in such a way that the

Σ
z

M−1(q)

τo Ds+K

s2I+ sKV +KP

−JT (q)
∂Uo(z)

∂ z

Fig. 2. Haptic force control and positive real error dynamics

Nyquist curve is to the right of the imaginary axis in the

complex s−plane. For values KV , KP such that Z(s) is stable,
it is always possible to choose K > 0 and a sufficiently large

D> 0 such that Z(s) be SPR. In the context of control design

for high gain margin, Molander and Willems [34] showed

that one suitable SPR choice is

0 = PA0+AT
0P+Q−PBBTP, (33)

A = A0−BBTP (34)

PA+ATP = −Q−PBBTP, C = BTP (35)

Q = QT > 0, P = PT > 0 (36)

As a result, the stability margin is increased and larger values

of the repulsive stiffness Ko may be chosen.

Introduce the haptic interaction acceleration

αo = M−1(q)τo = M−1(q)JT (q)
∂Uo(z)

∂ z
(37)

Consider the Lyapunov function (or storage function)

V (ξ ,z) =
1

2
ξ TPξ + ηUo(z), η = constant (38)

=
1

2
ξ TPξ + η

∫ z

0

∂Uo(ζ )

∂ζ
dζ (39)

PA+ATP = −Q−PBBTP, Q > 0, P = PT > 0 (40)

with the derivative (for proof—see Appendix)

dV(ξ ,z)

dt
=

[
ξ
αo

]
Q

[
ξ
αo

]
< 0, ‖

[
ξ
αo

]
‖ 6= 0 (41)

0 > Q =

[
PA+ATP PB−ηATCTKT

o

BTP−ηKoCA −η(KoCB+BTCTKT
o )

]

The SPR choice C = BTP gives z =Cξ and asymptotically

stable control with the Lyapunov function derivative

dV (ξ ,z)

dt
=

[
ξ
αo

]
Q1

[
ξ
αo

]
≤ 0 (42)

Q1 =

[
−Q−PBBTP CT −ηATCTKT

o

C−ηKoCA −2BTPB

]
< 0 (43)

for Q > 0 chosen sufficiently large.

Design of Strictly Positive Real Obstacle Avoidance

Let the computed-torque open-loop dynamics be decribed

by

A0 =

[
0 0

In 0

]
, B =

[
In
0

]
, E =

[
0

In

]
, (44)
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and solve the Riccati equation

0 = PA0 +AT
0P+Q−PBBTP, C = BTP (45)

D = KV = BTPB, (46)

K = KP = BTPE, (47)

Example and Simulation Experiments

Consider the 1DOF mechanical system

mq̈ = τ +F, F = 0 (48)

τR = −mKV
˙̃q−mKPq̃+mq̈r (49)

τo = −
∂Uo(z)

∂ z
(50)

τ = τR + τo (51)

with the state-space representation

dξ

dt
=

[
−KV −KP

I 0

]
, ξ =

[
˙̃q

q̃

]
∈ R

2 (52)

z = Cξ =
[
D K

]
ξ (53)

Consider the Lyapunov function (or storage function)

V (ξ ,z) =
1

2
ξ TPξ + ηUo(z) (54)

=
1

2
ξ TPξ + η

∫ z

0

∂Uo(ζ )

∂ζ
dζ (55)

PA+ATP = −Q−PBBTP, Q > 0, P > 0 (56)

with the derivative of Eq. (41). For ηKo = I, the SPR choice

C= BTP gives z=Cξ and asymptotically stable control with

the Lyapunov function derivative

dV (ξ ,z)

dt
=

1

2

[
ξ
τo

][
−Q−PBBTP (I−AT )CT

C(I−A) −2BTPB

][
ξ
τo

]
≤ 0

for Q > 0 chosen sufficient large.

Simulation examples with control force and obstacle avoid-

ance force τo for m = 1, Ko = 1000, KV = 4, KP = 4, K = 1

are found in Fig. 3 (D= 0) and Fig. 4 (D= 0.2), respectively.
Note that the elimination of the oscillating behavior as a

result of the modified artificial potential using an impedance

variable. For SPR haptic potential design, simulation exam-

ples of with control force and obstacle avoidance force τo
for m= 1, Q = 4I, Ko = 10000, ηKo = 1, D= KV = 5.2362,
K =KP = 3.2362, are found in Fig. 5. Note the elimination of

the oscillating behavior as a result of the modified artificial

potential using an SPR impedance variable with solution

P =

[
5.2360 3.2360
3.2360 6.4721

]
> 0, (57)

C = BTP =
[
5.2360 3.2360

]
(58)

Q =

[
PA+ATP PB−ATCT

BTP−CA −(CB+BTCT )

]
(59)

=



−48.36 −27.42 2.00
−27.42 −20.94 3.24
2.00 3.24 −10.47


 < 0,

σ(Q) =
[
−65.5143 −10.6925 −3.5690

]
(60)

IV. DISCUSSION

Design of haptic systems with real or virtual haptic ob-

stacle avoidance that guarantee stable interaction with stiff

environments is a challenging task. Virtual environments are

typically highly nonlinear resulting in nonpassive closed-

loop systems. In this paper, we investigate how nonlinear

mass-spring-damper virtual environments can be designed to

guarantee the absence of oscillations and other undesired be-

havior for the human operator. In particular, implementation

of the mass-spring-damper virtual environment is considered,

revealing new results with regard to the allowable local

stiffness.

In the context of haptics, there is a large literature recogniz-

ing the relevance of passivity and dissipation as a means of

stability analysis and design [8], [3], [1], [4], [2]. Passivity

theory also permits structural analytical approaches such as

port-Hamiltonian analysis [24]. Complete stability analysis

can be approached in operational space or in configuration

space, using discrete-time or continuous-time analysis [9].

To the purpose of stable re-design of robotic obstacle avoid-

ance and using a strictly positive real re-design, a successful

revision of the artificial potential function was made. A

major modification is that the potential function is a function

of an impedance variable instead of a position variable,

thus allowing strictly positive real (SPR) error dynamics.

In turn, the Popov criterion (or the circle criterion) permits

’absolute stability’—i.e., stability assured by the storage

function (or Lyapunov function) of Eq. (38) with passivity

of the interconnected haptic system. The significance of

the SPR modification is demonstrated in the example with

simulation experiments in Figs. 3-4.

As the modified potential function involving an impedance

variable prompts state feedback, both velocity and position

coordinates should be available to measurement. In cases

without full state measurement, state estimation is necessary

and for stable operation such estimation design must be

included in the stability analysis. Only special cases permit

separation properties—i.e., where separate designs of state

estimation and control do not challenge stability [37]. State

estimation applied to the absolute stability problem and

compatible with passivity design was provided in [29], [25].

The modification based on the circle criterion or Popov

criterion leads to a velocity-dependent potential-like repulse

force action. In Eq. (30), the linear combination z of signals

is reminiscent of impedance control as introduced by Hogan

[5], [6].

In addition to the scope for better and stable haptics, we

expect that this contribution will be used in general-purpose

force control combining with sensor fusion and motion

control [38], [39], [40], [41], [42], [43], [44].

An aspect not elaborated here is the stability in the context

of communication delays—e.g., communication delays in

teleoperation [10].
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Fig. 3. Haptic obstacle repulsion using artifical potential based on position
(deflection) only with stiffness Ko = 1000 and D = 0. Note the oscillatory
force behavior.
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Fig. 4. Haptic obstacle repulsion using artifical potential based on
impedance variable with stiffness Ko = 1000 and D = 0.2. Note the stable
force and velocity behaviors.

A potential application can be found in surgical robotics

with haptic interfaces including both interaction of obstacle

avoidance and virtual obstacle repulsion.

V. CONCLUSIONS

To the purpose of stable re-design of haptic obstacle

avoidance and using a strictly positive real (SPR) re-design,

a successful passivity-based revision of the artificial potential

function was made.
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APPENDIX—STABILITY

Let the obstacle avoidance acceleration be

α(z,q) = M−1(q)JT (q)
∂Uo(z)

∂ z
(61)

The closed-loop system represented by Fig. 2 for τR = τF = 0

ẋ = Ax−Bαo(z,q), B =

[
In
0

]
(62)

z = Cx =
[
D K

]
x, CB = D (63)

According to the conditions of the Popov criterion [28],

[36], [25], the closed-loop system dynamics with feedback

interconnection are described by
[
ẋ

−ż

]
=

[
A B

−CA −CB

][
x

−αo(z)

]
, (64)

0 ≤ −αT
o (z)(αo(z)−κz) (65)
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Fig. 5. Haptic repulsion using a artifical potential of an obstacle based
on strictly positive real position design with stiffness Ko = 10000 and D =
5.2362, K = 3.2362. Note the stable velocity, impact and force behaviors.

The Lyapunov function candidate V and its derivative are

V = V (x,z) = xTPx+2η

∫ z

0
αT
o (ζ )κdζ , (66)

η ≥ 0, κ > 0, κ ∈ R
m×m (67)

dV

dt
= xTPẋ+ ẋTPx+2ηαT

o (z)κ ż (68)

= xT (PA+ATP)x−2xTPBαo(z) (69)

+ 2ηαT
o (z)κC(Ax−Bαo(z)) (70)

dV

dt
=

[
x

−αo(z)

]T
Q

[
x

−αo(z)

]
(71)

Q =

[
PA+ATP PB−ηATCTκT

BTP−ηκCA −η(κCB+BTCTκT )

]
< 0 (72)

Under the choice

κ > M−1(q)JT (q)Ko (73)

a quadratic constraint holds so that

αT
o (z)(αo(z)−κz)≤ 0 (74)

A sufficient condition for asymptotic stability is the existence

of a solution to PoAP+A T
P Po =−Q ≤ 0, Q11 > 0 which

renders dV/dt negative definite for ‖x‖ 6= 0 and guarantees

existence of a Lyapunov function V [28], [36], [25]. In

summary, for

AP =

[
A B

−ηκCA−κC −ηκCB− Im

]
(75)

a sufficient condition for asymptotic stability is the existence

of a solution to the Lyapunov equation

PoAP +A
T
P Po = −Q ≤ 0, (76)

Po > 0, Q =

[
Q11 Q12

QT
12 Q22

]
≥ 0, Q11 > 0 (77)

which renders dV/dt < 0 for ‖x‖ 6= 0 and guarantees exis-

tence of a Lyapunov function V (storage function) showing

asymptotic stability and passivity. �
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