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Abstract— The goal of this paper is to present a way to per-
form visual servoing tasks from color attributes. This approach
can be seen as an extension of our previous papers based on
the luminance [1], [2]. Indeed, as we did for the luminance,
color attributes are directly used in the control law avoiding
therefore any complex images processing as features extraction
or matching. We propose in this paper several potential color
features and then a way to select a priori the best choice among
them with respect to the scene being observed. Experimental
results validate as well the interest of using color attributes as
visual features as our selection process.

I. INTRODUCTION

Visual servoing is a widely used technique in robot control

[3]. It is based on visual features extracted from a vision

sensor. More precisely, the control law is designed so that

the visual features s extracted from the current image at

the current pose r, reach a desired value s
∗ acquired at the

desired pose r
∗ leading to a correct realization of the task.

The control principle relies on the regulation to zero of the

following error vector e = s − s
∗. To design this control

law, the knowledge of the interaction matrix Ls is usually

required. For eye-in-hand systems, it links the time variation

of s to the camera instantaneous velocity v:

ṡ = Ls v (1)

with v = (v,ω) where v is the linear velocity and ω is the

angular velocity.

In this approach, the choice of the visual features as well as

its related interaction matrix play an essential role [3]. Most

often, geometric visual features as points, straight lines, pose

or homography are chosen to control the robot. However, we

recently introduced non geometric visual features [1], [2].

Indeed, this new approach is very interesting since it strongly

limits the image processing. More precisely, it avoids the

robust extraction, matching (between x(rk) and x(r∗), where

x denotes the visual measurements required to design and

compute s) and real-time spatio-temporal tracking (between

x(rk−1) and x(rk)) which are well known to be difficult

tasks. Supplementary advantages are that this approach is not

sensitive to partial occlusions and to coarse approximations

of the depths required to compute the interaction matrix. In

these papers, instead of using geometric visual features we

directly used the luminance. In that case, the visual feature

vector s is nothing but the image itself while s
∗ is the desired

image. The error e is then simply the difference between the

current and desired images. The main issue of these works
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was to exhibit the analytical form of the interaction matrix

related to the luminance. This was therefore a very different

approach than previous works based on luminance [4]–[7]

(see [1] for more details).

In this paper we investigate the use of color images instead

of using the luminance as we did before. Indeed, using

color attributes are more discriminant than using simply the

luminance since two image points with a same luminance

value can be differentiated from their color attributes. That is

why color is widely used in image processing as for example

in image segmentation. In contrast, to our knowledge, color

has not been used in visual servoing. Of course, it has been

used in robot control to segment the object of interest and

then to apply the control law (see for example [8]). However,

let us point out that our approach is radically different. Our

goal is to use features based on the R, G and B components

of the image directly in the control law. As we did for the

luminance, we also here want to avoid any complex image

processing as features extraction and matching. Another

contribution of this work is to propose a criterion able to

select good attributes from a set of interesting potential color

attributes. As we shall see, this way to proceed allows to

greatly improves the behavior of the control law, especially

the 3D trajectory of the camera.

This paper is organized as follows. First, we recall in

Section II the way we used the luminance in our previous

works [1]. Then, we present in Section III potential color

attributes and compute their related interaction matrix. In

Section IV, a way to select them is discussed. Experimental

results on positioning tasks are shown in Section V.

II. LUMINANCE AS A VISUAL FEATURE

To make the paper more readable, before investigated color

visual features, we first recall how the luminance has been

used in [1].

In this work, we have considered the luminance I of each

point of the image. Thus, we have

s(r) = I(r) = (I1•, I2•, · · · , IN•) (2)

where Ik• is the k-th line of the image. I(r) is then a vector

of size N × M where N × M is the size of the image.

The main problem with such visual features is, of course,

to derive the analytical form of the interaction matrix related

to the luminance. It has been performed in [1] for Lambertian

scenes while the general case has been performed in [2].

However, for the sake of clarity, we only present here the

former case.

The basic hypothesis assumes the temporal constancy of

the brightness for a physical point between two successive
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images. Therefore, assuming that the image point x has

a displacement dx in the time interval dt, the previous

hypothesis leads to

I(x + dx, t + dt) = I(x, t). (3)

Written with a differential form, a first order Taylor series

expansion of this equation around x gives

∇I⊤ẋ + İ = 0. (4)

with İ = ∂I/∂t. It becomes then straightforward to compute

the interaction matrix LI related to I by plugging the

interaction matrix Lx related to x into (4). We obtain

İ = −∇I⊤Lxv. (5)

Finally, if we introduce the interaction matrices Lx and Ly

related to the coordinates x and y of x, we obtain

LI = − (∇Ix Lx + ∇IyLy) (6)

where ∇Ix and ∇Iy are the components along x and y of

the image gradient ∇I . Let us point out that it is actually

the only image processing step necessary to implement this

approach.

III. POTENTIAL COLOR VISUAL FEATURES

Instead of considering the luminance, we consider here

color attributes. Similarly to the previous section, the simpler

visual features could be one of the three R, G, B components

of the color vector C = (R,G,B). Note that another

choices could be any combinations of 2 of these color

planes or even all the three components. In these cases, the

interaction matrix is simply the one obtained by stacking all

the interaction matrices related to the color planes that have

been chosen. Note also that the interaction matrix related

to one color plane is obtained from (6) when I has to be

substituted by R, G, or B. However, more complex visual

features can be used as non-linear functions of C. Interesting

non-linear functions are color invariants [9]. Indeed, such

functions are invariant to any changes in the scene geometry

(that is the relative positions observer / lighting source /

surface being observed). They are also invariant to intensity

changes of the lighting.

Assuming a white lighting, two classes of color invariants

exist: invariants dedicated to Lambertian materials and invari-

ants dedicated to specular materials (see for example [10]).

For Lambertian materials, the following invariants are de-

fined [9]:

Lϕ
i =

ϕ

Ni

(7)

where ϕ ∈ {R,G,B} and i = 1 or 2. N1 is defined as

N1 = R + G + B (8)

while N2 is defined as

N2 =
√

R2 + G2 + B2. (9)

This invariants are known as L1 or L2 invariants since they

performed a L1 or L2 normalization of the (color) image.

For specular materials, the following invariants, known as

l1l2l3, are used [10]:




l1 = (R − G)2/N3

l2 = (R − B)2/N3

l3 = (G − B)2/N3

(10)

where N3 = (R−G)2+(R−B)2+(G−B)2. Note that this

invariant is also normalized. However, this latter invariant

may be very noisy or even undefined at any point where the

color is not saturated 1. That is for the set of points belonging

to the achromatic axis (the grey points). In contrast, this

problem occurs with the L1 invariants only for R ≈ G ≈
B ≈ 0. That is for black points only.

In addition, let us point out that the components of all

of these invariants (7) or (10) are not independent, given

two of them the third one can be computed; therefore two

components are sufficient to describe completely the color at

a point x. That is why we never combine all the components

of a normalized invariant.

To derive a control law directly based on one of a

component of (7) or (10), or on different combinations of

two of their components, the related interaction matrix has

to be determined. This computation is, however, simple.

Considering a component Iinv of an invariant given by (7) or

(10), the temporal luminance constancy hypothesis (3) holds,

leading similarly as (6) to

LIinv
= −∇Iinv

⊤
Lx. (11)

Note that the spatial gradient of Iinv can be easily computed

from (7) or (10) from the spatial gradients of R, G and B.

For example, considering (7), we simply have

LL
ϕ

i
= − 1

Ni

(∇ϕ − Lϕ
i ∇Ni)

⊤
Lx. (12)

Recall that to remove the temporal luminance constancy

hypothesis the approach described in [2] has to be used

leading, of course, to a different and more complicated

expression than (11).

A more complicated problem is rather to choose the best

color attributes to use from a given color image of the scene

being observed. For example, let us consider the simple case

where an image only contains the blue and green colors, it

is obvious that using the R color plane as the only visual

features will lead to a bad behavior of the control law. This

problem is the subject of the next section.

IV. SELECTION OF VISUAL FEATURES

The answer to that question must be seen from the visual

servoing problem, that is which color attributes will lead

to a better behavior of the control law ? that essentially

means a convergence from a larger domain and a better 3D

camera trajectory. Usually, the condition number (CN) of

the interaction matrix is used as a criterion able to compare

visual features [11], [12]. Using the L2 norm, it writes as

CNs =
max σi

min σi

(13)

1The color at a given image point is not saturated if R ≈ G ≈ B.
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with i = 1, · · · , 6 for a 6 ddl robot. The vector σ is obtained

from the singular value decomposition of the interaction

matrix related to s. A low value of this criterion leads to

a better behavior of the closed-loop system with respect to

the noise. It means that for small changes in the pose or in

the interaction matrix, changes in the visual features remain

small too.

Let us introduce another criterion. To do that, contrary to

the seminal paper [13] where the control law was designed

so that a desired behavior was required for e, we propose to

see the design of the control law as an optimization problem

as proposed in [1], [14], [15]. In this case, the goal is to

minimize the following cost function (see Section I).

C(r) =
1

2
‖e(r)‖2

. (14)

Of course, the graal would be to find some visual features

so that C(r) would be an hypersphere. Indeed, only a global

minimum would exist and a simple steepest descent method

would ensure to reach this minimum. Therefore, we are

interested in studying the Hessian of (14). It is given by

∇2C(r) =

(
∂s

∂r

)⊤(
∂s

∂r

)
+

i=dim s∑

i=1

∇2si

(
si(r) − si(r

∗)
)
.

(15)

However, this expression is far too complex to derive some

useful results. Thus, we study it around the desired position

r
∗, leading to

∇2C(r∗) =

(
∂s

∂r

)⊤(
∂s

∂r

)
. (16)

Moreover, since we have ṡ =
∂s

∂r
ṙ = Lsv, we are interested

in practice in the following matrix

H
∗ = Ls

∗

⊤
Ls

∗ . (17)

This matrix allows us to estimate the cost function around

r
∗. Indeed, a first order Taylor series expansion of the visual

features s(r) around r
∗ gives

s(r) = s(r∗) + Ls
∗∆r (18)

where ∆r denotes the relative pose between r and r
∗. There-

fore, by plugging (18) into (14), we obtain an approximation

of the cost function in a neighborhood of r
∗

Ĉ(r) =
1

2
∆r

⊤
H

∗
∆r. (19)

Consequently, another criterion to select visual features

is to choose them so that the eigenvalues of H
∗ are the

most similar as possible, therefore we introduce the following

criterion

cs =
max λi

min λi

(20)

where the λi’s are the eigenvalues of H
∗. Of course, the

optimal choice for s occurs when cs = 1 since in that case

the cost function is an hypersphere. In contrast, if cs is

a high value, then the shape of the cost function presents

a narrow valley, which is well known to be a complex

optimization problem. Therefore, dedicated control laws have

to be designed as the one we have proposed in [1].

The problem is now to compare the criterion given by (13)

and the one given by (20). First, let us write the interaction

matrix from its singular value decomposition:

Ls = UΣV
⊤ (21)

where Σ is a diagonal matrix which diagonal is σ. By

multiplying each side of (21) by Ls
∗

⊤, this relation becomes

Ls
∗

⊤
Ls

∗ = VΣ
2
V

⊤. (22)

However, since Ls
∗

⊤
Ls

∗ is a symmetric matrix, it is diago-

nalizable as

Ls
∗

⊤
Ls = WΛW

⊤. (23)

where W is an orthonormal matrix. Consequently, we have

Λ = Σ
2 leading finally from the definitions of CNs and cs

to

CNs =
√

cs. (24)

This last relation means that the condition number is

not only an interesting criterion related to robustness and

sensitivity to noise but also related to the shape of the cost

function at the desired position.

V. EXPERIMENTAL RESULTS

In all the experiments reported here, the camera is

mounted on a 6 degrees of freedom gantry robot. Control

law is computed on a Core 2 Duo 3Gz PC running Linux.

Image are acquired at 66Hz using an IEEE 1394 camera

with a resolution of 320×240. Moreover, we used specular

and planar objects (some posters) as shown on Fig. 1. The

experiments consist in achieving positioning tasks by visual

servoing using the following control law

v = −λ (H + µdiag(H))
−1

Ls

⊤ (s(r) − s(r∗)) (25)

with H = Ls

⊤
Ls and where λ and µ are positive scalars

(see [1] where the way to set these parameters is described).

For all the experiments the desired positions was so that

objects and CCD planes are parallel. We compared the use

of the following different sets of visual features from the

values of the criterion (24):

set 1: the color planes R, G, B or the luminance;

set 2: all the combinations of the color planes R, G or B;

set 3: one component of each invariants;

set 4: the combinations of two components of a given

invariant.

For the first experiment, the initial pose was rinit =
(14 cm, -18 cm, 2.5 cm, -16◦, -10◦, -1.3◦). The initial

and desired images are reported respectively on Fig. 2a and

Fig. 1a. The worse results have been obtained when using

the l1l2l3 invariant as well for the set of visual features 3 as

for the set of visual features 4. In those cases, the condition

numbers were very bad, between 195 and 274. Therefore,

either the control law diverged or converged very slowly.

The control law also diverged when using the luminance

(the condition number was 148). Better results were obtained

5440



(a) (b)

Fig. 1. Desired image for the objects used in the experiments. (a) First
and second experiment. (b) Third and fourth experiment.

using the sets of visual features 1 or 2 (the condition numbers

were around 140). However, the best results were obtained

for the sets of visual features 3 or 4 when using either the L1

or the L2 invariants as can be seen on Fig. 3. More precisely,

Fig. 3a depicts the behavior of the different normalized cost

functions (a cost function evaluated at time k divided by

the cost function evaluated at the first frame) while Fig. 3b

depicts the trajectories of the camera in a fixed frame. As can

be seen using a L1 or L2 invariant leads to a better trajectory

than when using visual features from the set 1, it also leads to

better decreases of cost functions. Fig. 3 also shows that the

differences between the L1 and L2 invariants are very low

(for both the condition numbers were very similar, around

105). These results validate that a bad condition number leads

to a bad behavior of the convergence of the control law (a

slow convergence or even a divergence) and to a bad 3D

trajectory of the camera. This also validates that the condition

number is also related to the form of the cost function.

The second experiment still concerns the same object, only

the initial pose has been changed. Thus, the desired image

is still the one reported on Fig. 1a. The initial image is

represented on Fig. 2b. For this experiment we had rinit =
(4.3 cm, -18 cm, 0 cm, -16◦, 2.5◦, -12.5◦). As during the

first experiment, using visual features from first and second

sets of visual features leads to either a divergence, a slow

convergence or a bad camera trajectory. For example, using

the R or B color plane in the first experiment yields a

very slow convergence (not described in Fig. 3) while in the

second experiment their use leads to a divergence. It is also

the case for the G color plane where as well during the first

as during the second experiment a bad behavior have been

obtained. Besides, here again using the luminance failed.

Moreover, as during the first experiment, the best results have

been obtained using either the invariants L1 or L2 (those

based on l1l2l3 failed); in addition, since the values of their

criterion are similar, a similar behavior with respect to the

convergence of the control law or with respect to the camera

trajectory is observed.

Fig. 5 reports the L1 and L2 invariants at the desired

position for the experiments 1 and 2. As can be seen, the

differences between a Lϕ
1

and Lϕ
2

are small. Moreover,

except considering ϕ = B, these images are quite similar.

Indeed, for ϕ = B, the images are dark which means that

these invariants are not discriminant at all. That explains why

(a) (b)

Fig. 2. Initial images. (a) For the first experiment. (b) For the second
experiment.
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Fig. 3. First experiment : comparison of potential color visual features. (a)

Normalized cost functions ‖ ek ‖2/‖ ek=0 ‖2 vs frame iteration (denoted
by k). (b) Trajectories of the camera in a fixed frame.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  100  200  300  400  500  600  700

G

L
R

1

L
G

1

L
RG

1

L
R

2

L
G

2

L
GB

2

(a)

 0.2

 0.25

 0.3

 0.35

 0.4  0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3

 0.08

 0.06

 0.04

 0.02

 0

G

L
R

1

L
G

1

L
RG

1

L
R

2

L
G

2

L
GB

2

(b)

Fig. 4. Second experiment : comparison of potential color visual features.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Images of the Lϕ
i invariants for the first object. (a) LR

1
. (b) LR

2
.

(c) LG
1

. (d) LG
2

. (e) LB
1

. (f) LB
2

.

we obtained among the Lϕ
i invariants the worse value for the

criterion (120). For ϕ = B, the control law has converged

very slowly during the first experiment and has diverged

during the second one.

The third experiment concerned a different object. The

initial and desired images are reported respectively on Fig. 6a

and Fig. 1b. The initial pose was the same as for the

first experiment. As for the previous experiments, the l1l2l3
invariants have very bad values for their criterion (around

114) and consequently have failed. The sets of visual features

1 and 2, and the luminance, have also some bad values, but

slight better (around 109). Thus, as can be seen on Fig. 7,

using the R color plane or the luminance have led to a

slow convergence and to a bad camera trajectory, but they

have converged. As previously, Fig. 8 reports the L1 and L2

invariants at the desired position for the experiments 3 and

4. As can be seen, these images are much more different

than for the first and second experiments, especially for LR
1

and LR
2

, the LR
2

image is reacher than the LR
1

one. It is also

confirmed by the value of the criterion, respectively 105 and

96. Therefore, as expected, using LR
1

leads to a divergence

while LR
2

leads to a convergence. On the other hand, as

can be observed on Fig. 8c and d, these images are quite

homogeneous and thus these invariants are not interesting

(recall that the interaction matrix requires non null values

for the spatial image gradients, see (11)). This is validated

(a) (b)

Fig. 6. Initial images. (a) For the third experiment. (b) For the fourth
experiment.
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Fig. 7. Third experiment : comparison of potential color visual features.

by bad criterion values (around 107), thus these invariants

have led to a divergence. In contrast, using LB
i has led to a

convergence (the criterion value was 103).

The fourth experiment concerned the same object as for

the third experiment but the initial pose was the one of the

second experiment. This experiment validates the results of

the third experiment, the visual features with a bad criterion

value have also led to a divergence or to a bad camera

trajectory during this experiment (see Fig. 9).

Remark 1: The reader may wonder why we do not present

any experiment concerning robustness against changes in

the scene geometry as mentioned in section III. In fact,

the L1 and L2 invariants only perform on true Lambertian

materials (such as cloths for example) and are not robust

at all (concerning changes in the geometry) if the object is

not Lambertian as the objects we used in our experiments.

In addition, we have tried to use invariants to specular

objects (the l1l2l3 ones), but these invariants have a very

bad criterion value and, consequently, have always led to a

bad behavior of the control law.

Remark 2: Even if none result are given here, as in [1], using
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Images of the Lϕ
i invariants for the second object. (a) LR

1
. (b)

LR
2

. (c) LG
1

. (d) LG
2

. (e) LB
1

. (f) LB
2

.

color attributes with a low criterion value also leads to a very

low positioning error (typically 0.1 mm for the translations

and 0.01◦ for the rotations). It is because s − s
∗ is very

sensitive to the pose r. Such visual features also lead to an

approach that is not sensitive to partial occlusions (this nice

behavior is due to the high redundancy of the visual features

we use) and also not sensitive to coarse approximations of

the depths required to compute the interaction matrix.

VI. CONCLUSION

It has been shown it this paper that using color attributes

greatly improved simply the use of the luminance. As in the

luminance case, the complex problems of features extraction

and matching are avoided. However, this paper have also

shown that a selection of these color attributes is required

since their values highly influence the convergence of the

control law and the 3D camera trajectory. Especially, the

visual features obtained from the L1 and L2 invariants have

led to the best behaviors.

REFERENCES

[1] C. Collewet, E. Marchand, and F. Chaumette, “Visual servoing set
free from image processing,” in IEEE Int. Conf. on Robotics and

Automation, ICRA’08, Pasadena, California, May 2008, pp. 81–86.

[2] C. Collewet and E. Marchand, “Photometry-based visual servoing
using light reflexion models,” in IEEE Int. Conf. on Robotics and

Automation, ICRA’09, Kobe, Japan, May 2009.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  200  400  600  800  1000  1200  1400  1600

R

L
B

1

L
GB

1

L
R

2

Lum

(a)

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.45
 0.4

 0.35
 0.3

 0.25
 0.2

 0.15
 0.1

 0.3

 0.2

 0.1

 0

R

L
B

1

L
GB

1

L
R

2

Lum

(b)

Fig. 9. Fourth experiment : comparison of potential color visual features.

[3] F. Chaumette and S. Hutchinson, “Visual servo control, Part I: Basic
approaches,” IEEE Robotics and Automation Magazine, vol. 13, no. 4,
pp. 82–90, December 2006.

[4] K. Deguchi, “A direct interpretation of dynamic images with camera
and object motions for vision guided robot control,” Int. Journal of

Computer Vision, vol. 37, no. 1, pp. 7–20, June 2000.
[5] S. Nayar, S. Nene, and H. Murase, “Subspace methods for robot

vision,” IEEE Trans. on Robotics, vol. 12, no. 5, pp. 750–758, October
1996.

[6] V. Kallem, M. Dewan, J. Swensen, G. Hager, and N. Cowan, “Kernel-
based visual servoing,” in IEEE/RSJ Int. Conf. on Intelligent Robots

and System, IROS’07, San Diego, USA, October 2007.
[7] G. Silveira and E. Malis, “Direct visual servoing with respect to rigid

objects,” in IEEE/RSJ Int. Conf. on Intelligent Robots and System,

IROS’07, San Diego, USA, October 2007, pp. 1963–1968.
[8] G. De Cubber, S. Berrabah, and H. Sahli, “Color-based visual servoing

under varying illumination conditions,” Robotics and Autonomous

Systems, vol. 47, no. 4, pp. 225–249, 2004.
[9] G. Healey, “Segmenting images using normalized color,” IEEE Trans.

on Systems, Man, and Cybernetics, vol. 22, no. 1, pp. 64–73, Jan/Feb
1992.

[10] T. Gevers and A. Smeulders, “Object recognition based on photometric
color invariants,” in Scandinavian Conference on Image Analysis,
Lappeenranta, Finland, June 1997.

[11] J. Feddema, C. Lee, and O. Mitchell, “Automatic selection of image
features for visual servoing of a robot manipulator,” in IEEE Int. Conf.

on Robotics and Automation, ICRA’89, vol. 2, Scottsdale, Arizona,
May 1989, pp. 832–837.

[12] F. Chaumette, “Image moments: a general and useful set of features
for visual servoing,” IEEE Trans. on Robotics, vol. 20, no. 4, pp.
713–723, August 2004.

[13] B. Espiau, F. Chaumette, and P. Rives, “A new approach to visual
servoing in robotics,” IEEE Trans. on Robotics and Automation, vol. 8,
no. 3, pp. 313–326, June 1992.

[14] K. Miura, J. Gangloff, and M. De Mathelin, “Robust and uncali-
brated visual servoing without Jacobian using a simplex method,”
in IEEE/RSJ Int. Conf. on Intelligent Robots and System, IROS’02,
Lausanne, Switzerland, October 2002.

[15] E. Malis, “Improving vision-based control using efficient second-
order minimization techniques,” in IEEE Int. Conf. on Robotics and

Automation, ICRA’04, vol. 2, New Orleans, April 2004, pp. 1843–
1848.

5443


