
  

  

Abstract — The ability of mobile robots to quickly and 

accurately analyze their dynamics is critical to their safety and 

efficient operation. In field conditions, significant uncertainty is 

associated with terrain and/or vehicle parameter estimates, and 

this must be considered in an analysis of robot motion. Here a 

Multi-Element generalized Polynomial Chaos (MEgPC) 

approach is presented that explicitly considers vehicle parameter 

uncertainty for long term estimation of robot dynamics. It is 

shown to be an improvement over the generalized Askey 

polynomial chaos framework as well as the standard Monte 

Carlo scheme, and can be used for efficient, accurate prediction 

of robot dynamics. 

I. INTRODUCTION 

basic requirement for mobile robot systems operating in 

unstructured environments is the ability to rapidly and 

accurately predict their movement over rugged terrain. Most 

methods for analysis of robot dynamics rely on deterministic 

analysis that assumes accurate knowledge of vehicle and 

terrain parameters. In field conditions, however, mobile 

robots frequently have access to only sparse and uncertain 

terrain parameter estimates drawn from sensors such as 

LIDAR and vision. Moreover, robot parameters may be 

uncertain and/or time-varying due to, for example, fuel 

consumption and mechanical wear. There has also been little 

research that explicitly addresses the challenge of modeling 

robot motion over a given terrain region while considering 

these parametric uncertainties.  

 Numerous techniques can be employed to estimate the 

output(s) for processes that are subject to uncertainty, 

including interval mathematics, probabilistic methods, and 

fuzzy set theory, among others [1]-[3]. A traditional method 

for estimating the probability density function of a system’s 

output response while considering uncertainty is the Monte 

Carlo method [4], [5]. This approach involves sampling 

values for each uncertain parameter from its uncertainty range 

(weighted by its probability of occurrence), followed by 

model simulation using this parameter set, then repeating this 

process many times to obtain the probability distribution of an 

output metric. A large number of simulation runs is generally 

required to obtain reasonable results, leading to a (usually) 

high computational cost. While structured sampling 

techniques such as Latin hypercube sampling and importance 

sampling can be used to improve computational efficiency, 

the gains may be modest for complex problems [6], [7].  
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 More recent approaches include the polynomial chaos 

approach (based on Wiener’s theory of homogeneous chaos), 

and the stochastic response surface method (SRSM) [8][9]. 

Previous work by the authors has also focused on stochastic 

performance prediction of mobile robot mobility using SRSM 

[10], which has been shown to be more robust than the 

generalized polynomial chaos (gPC) method [9]. 

 While gPC has been successfully applied to various 

problems, it has been shown to perform inadequately for 

problems concerning discontinuities induced by random 

inputs, and for long-term integration. In [11], the method has 

been successfully applied to approximate the solution of a 

stochastic ODE while showing exponential convergence; 

however, it has been shown that those optimal results hold 

only for short times [12]. For long-term integration, therefore, 

the gPC approximation to the analytical solution for a fixed 

polynomial degree q fails, resulting in increased error levels. 

These problems can be overcome through implementation of 

the Multi-Element generalized Polynomial Chaos (MEgPC) 

framework, which involves a decomposition of the random 

space, to yield more consistent results [12]. In this paper, an 

MEgPC approach to robot dynamic analysis is presented. 

This paper is organized as follows. In Section 2, the gPC 

and MEgPC methods are briefly introduced. The latter 

approach is then applied to a simple stochastic system in 

Section 3 and its behavior is analyzed. This is followed by its 

application to robot models in Section 4. The effect of robot 

parameter uncertainty is studied and simulation results are 

compared for Monte Carlo, gPC and MEgPC approaches. It 

can be seen that efficient statistical mobility prediction can be 

achieved using the proposed techniques, and for long-term 

prediction, the MEgPC approach yields more accurate results 

compared to the gPC method. 

II. UNCERTAINTY ANALYSIS TECHNIQUES 

1. Generalized Polynomial Chaos 

The gPC method involves representing inputs and outputs 

of a system under consideration via series approximations 

using standard random variables, thereby resulting in a 

computationally efficient means for uncertainty propagation 

through complex numerical models. 

In this approach, the same set of random variables that is 

used to represent input stochasticity is used for representation 

of the output(s). For uniformly distributed random inputs, an 

equivalent reduced model for the output can be expressed in 

the form of a series expansion consisting of multi-dimensional 

Legendre polynomials of uniform random variables, as: 

A Multi-Element Generalized Polynomial Chaos Approach to 

Analysis of Mobile Robot Dynamics under Uncertainty 

Gaurav Kewlani, Karl Iagnemma 

A 

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 1177



  

1

1 1 1 2 1 2

1 1 2

0 1 2

1 1 1

( ) ( , ) ...
in n

i i i i i i

i i i

y a a aξ ξ ξ
= = =

= + Γ + Γ +∑ ∑ ∑    (1) 

where y refers to an output metric, ξi1, ξi2,… are i.i.d. uniform 

random variables, Γq(ξi1, ξi2,…, ξiq) is the Legendre 

polynomial of degree q and ai1, a i1i2,… are the corresponding 

coefficients.  

For notational simplicity, the series can be written as: 
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where the series is truncated to a finite number of terms and 

there exists a correspondence between Γq(ξi1, ξi2,…, ξiq) and 

Ф(ξ), and their corresponding coefficients.  

The unknown coefficients can be determined by projecting 

each state variable onto the polynomial chaos basis (i.e. the 

Galerkin projection method) [11]. Another approach that is 

computationally more efficient is the probabilistic collocation 

method, where coefficient values are estimated from a limited 

number of model simulations, to generate the approximate 

reduced model [13]. If the governing equations are highly 

complex, the simplicity of the latter framework results in a 

faster algorithm, particularly for high dimensional problems. 

A. Algorithmic Implementation 

A summary of the gPC procedure, as applied to robotic 

dynamic analysis, is presented here. Further details can be 

found in [11]. 

a) Represent uncertain input parameters in terms of 

standard random variables. An uncertain terrain and/or 

vehicle parameter Xj can thus be written as: 

j j j jX µ σ ξ= +  (3) 

where µj is the mean, σj is a constant (represents standard 

deviation when Xj is normally distributed) and ξj is a uniformly 

distributed random variable. 

b) Express the model output (y) under consideration in 

terms of the same set of random variables as: 
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While for uniform random variables Legendre polynomials 

are used, different orthogonal polynomial basis functions are 

used for other types of probability distributions [10]. 

c) Estimate the unknown coefficients of the approximating 

series expansion. This is accomplished by computing the 

model output at a set of collocation points [9][13]. This results 

in a set of equations that can then be used to obtain the 

coefficient values. In the current analysis, the efficient 

collocation method (ECM) [9], is used. 

d) Once the reduced order model is formulated (using 

orthonormal basis functions), the mean and variance can be 

directly obtained [14] as: 

0
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 The advantage of the gPC technique is that the number of 

model simulations is greatly reduced relative to more 

conventional methods, thereby reducing computational cost. 

However, the technique is known to fail for long-term 

integration, losing its optimal convergence behavior and 

developing large error levels [12]. This behavior can be 

somewhat mitigated by increasing the expansion order, 

however, this approach is undesirable for several reasons. 

First, gPC computational cost generally increases with 

increasing polynomial order. More importantly, increasing the 

polynomial order only postpones error growth. For a fixed 

polynomial degree, error levels will become increasingly 

large over time. The MEgPC technique, however, has been 

shown to solve these long-term integration issues faced in the 

gPC framework [12]. This is briefly discussed below. 

2. Multi-Element Generalized Polynomial Chaos 

In [12], it has been shown that if the domain of random 

inputs is subdivided into multiple elements, the accuracy of 

stochastic solutions can be improved, especially for cases with 

discontinuities in stochastic solutions or for problems 

involving long-term integration. As a result, integration error 

at each time step can be reduced and the domain of solutions’ 

discontinuity can be approximated more accurately within a 

smaller decomposed domain. Further, a (relatively) lower 

order polynomial can be used in each random element since 

the local degree of perturbation has been scaled down, thereby 

enhancing the accuracy of solutions for long term integration.  

Thus, while the range of application of gPC is limited (since 

the polynomial order can not be increased arbitrarily high in 

practice), using MEgPC allows this range to be extended. 

A. Decomposition of the Random Space 

 Let ξ = [ξ1, ξ2, … ξn] denote an n dimensional random input 

vector, where ξi is an independent, identically distributed 

uniform random variable, U[−1,1]. Next, decompose the 

domain of the random input into N non-intersecting elements. 

The domain of each element is contained within a hypercube, 

[a
k
1, b

k
1) × [a

k
2, b

k
2) × … × [a

k
n, b

k
n), where a and b denote the 

lower and upper bounds of the local random variables.  

Then, define a local random vector within each element as 

ζ
k
 = [ζ

k
1, ζ

k
2, … ζ

k
n], and subsequently map it to a new random 

vector in [-1,1]
n
: ξ

k
 = gk(ζ

k
) = [ξ

k
1, ξ

k
2, … ξ

k
n]. This mapping is 

governed by the following relationship: 
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k i i
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Consequently, the gPC framework can be used locally to 

solve a system of differential equations, with the random 

inputs as ξ
k
 instead of ζ

k
, to take advantage of orthogonality 

and related efficiencies by employing Legendre Chaos. The 

global mean and variance can then be reconstructed once local 

approximations of the mean and the variance are obtained. 

B. Algorithmic Implementation 

Decomposition of the random space can  be done a priori, 

or adaptively. In the adaptive scenario, splitting of the random 

space occurs only when the local decay rate of the error of the 

gPC approximation ηk (see Equation 12) exceeds a threshold 
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value. The general procedure is briefly discussed below. Refer 

to [12] for further details. 

Let the gPC expansion in random element k be given as: 
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The approximated global mean and variance can then be 

written as: 
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where the local variance estimated by polynomial chaos 

(using orthonormal basis functions) is obtained as: 
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To include adaptive decomposition of the random space, 

first define ηk as: 
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Then, split a random element if the following criterion is 

satisfied: 

1,      0 1k kVαη θ α≥ < <  (13) 

where θ1 is a suitable threshold parameter and α is a constant. 

Another parameter θ2 may be used to choose the more 

sensitive random dimensions for decomposition, as in [12]. 

A critical numerical implementation involves assigning the 

initial condition after splitting the random dimension into 

multiple elements. This can be accomplished as follows: 

First, represent the polynomial expansion of the current 

random field as: 

0
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Next, let the expansion in the next level be denoted as: 
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To calculate the Nq+1 coefficients in this new 

representation, choose an equal number of uniform grid points 

in [-1,1]
n
, and solve the following linear system: 
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where Φij = Φi(ξj). 

III. APPLICATION TO A SIMPLE STOCHASTIC SYSTEM AND 

STUDY OF CONVERGENCE 

 Consider a simple stochastic system: a first order linear 

ODE, described as: 

dy
ky

dt
= −   with yt=0 = y0 = 1 (17) 

Here, the decay rate coefficient k is considered to be a 

random variable, 
_

kk k σ ξ= + , with a constant mean (
_

k  = 1) 

and standard deviation (σk = 1), and ξ is a standard uniform 

random variable. While the deterministic solution y(t) for the 

ODE above is 
_

k t

oy e
− , the mean of the stochastic solutions is 

given by: 
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To study the rate of convergence, define the error as an L2 

norm difference between the estimated result and the 

reference solution, normalized by the L2 norm of the latter. 

This relative error measurement for the mean is expressed as: 

2

2

|| ( ) ( ) ||
( )

|| ( ) ||

exact
mean

exact

y t y t
t

y t
ε

−
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where ( ) [ ( )]y t E y t=  

 Next, the convergence behavior of MEgPC is analyzed, 

with varying values of the polynomial order P and number of 

elements N. For this analysis, the adaptive criterion is not 

applied, and instead the random space is decomposed 

according to the number of elements desired. The error in the 

mean is calculated at t = 4 s, and the results are similar to those 

obtained in [12]. 

 
Fig. 1. Error convergence of MEgPC 

 In Figure 1, exponential convergence of MEgPC for 

various mesh sizes is shown. It can be observed that as the 

number of elements increases, not only does the error 

decrease, but the rate of convergence is higher as well. 

 
Fig. 2. Error convergence for MEgPC 

In Figure 2, algebraic convergence of MEgPC in terms of 

the random element N is shown. A sufficiently large algebraic 
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index of convergence is seen, which indicates that random 

elements can influence the accuracy dramatically. 

Next, the time evolution of the error for gPC and adaptive 

MEgPC approaches are compared at t=4s (with parameters P 

= 4, θ1=0.001, α=0.5). It can be seen that when the error of 

gPC crosses the threshold limit, it triggers decomposition of 

the random space and the accuracy is significantly improved. 

 
Fig. 3 Evolution of error for gPC and adaptive MEgPC 

IV. APPLICATION TO MOBILE ROBOT DYNAMICS ANALYSIS 

The MEgPC approach is here applied to the analysis of 

dynamic mechanical systems. We first study a two degree of 

freedom quarter-car model under uncertainty and then extend 

the analysis to include a three degree of freedom robot model 

traversing uneven terrain. While the exact stochastic solutions 

may be easy to obtain for simple systems, they may be difficult 

to obtain for large and complex systems such as those 

considered in the following analysis. For such scenarios, the 

exact solution can be replaced by a reference solution 

obtained from a Monte Carlo analysis. 

1. Analysis of a Quarter-Car Model 

Here a 2 DOF quarter car model of a vehicle suspension is 

considered (see Figure 4). The sprung mass, ms, and the 

unsprung mass, mu, are connected by a nonlinear spring of 

stiffness ks, and a linear damper with damping coefficient c. 

The input is applied through a forcing function z(t), to mu, 

through a linear spring ku. This represents the interaction of 

the quarter car system with the terrain. The governing 

equations for the quarter car system are given as: 
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31
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32
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= − + − + −ɺ ɺ  (21) 

 The displacements of the two masses under parametric 

uncertainty are analyzed, using the gPC and MEgPC 

approaches, and compared to results from a baseline Monte 

Carlo analysis with random sampling (SMC). 

 
Fig. 4. Quarter-car model 

Parametric uncertainty arises in the suspension stiffness. 

We consider the two springs to have uncertain spring constant 

values, uniformly distributed about a mean stiffness value. 

This can be represented as: 

1s ss k kk µ ξ σ= +  (22) 

2u uu k kk µ ξ σ= +  (23) 

Displacements are then expressed as a series expansion of 

Legendre polynomials of standard uniform random variables 

ξ1 and ξ2, and the system is analyzed for various terrain inputs. 

In general, the state may be expressed as: 
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where [ ]1 2,ξ ξξ =ξ =ξ =ξ =  

Stiffness parameter values used in this analysis are shown in 

Table 1. 
TABLE 1 

UNCERTAIN PARAMETERS IN QUARTER CAR MODEL 

PARAMETER µ σ 

ks 400 N/m3 40 N/m3 

ku 2000 N/m 200 N/m 

A. Simulation Results 

For a step input (which models traversal over a bump), it is 

observed that parametric uncertainty causes significant 

variation in the resulting output of the sprung mass 

displacement (see Figure 5), thus indicating the importance of 

considering uncertainty during dynamic analysis. 

The time profile obtained for the standard deviation of the 

displacement for the sprung mass is shown in Figure 6, for the 

gPC, MEgPC (P = 3, θ1=0.001, α=0.5) and SMC methods. 

We observe that, even for relatively short times, there is 

substantial difference between the predicted variance from the 

two techniques, with MEgPC yielding more precise results 

than gPC when compared to the baseline SMC analysis. 

Relative computation times for the different methods are 

shown in Table 2. 
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Fig. 5. Sprung mass displacement 

 
Fig. 6. Standard deviation of sprung mass displacement  

TABLE 2 

COMPUTATION TIME 

METHOD TIME TAKEN (s) 

SMC (2000 runs) 5296.2 s 

gPC 27.59 s 

MEgPC 43.74 s 

Next, the system is analyzed for a sinusoidal terrain input. 

As expected, inconsistency is found in the predictions made 

using the gPC approach (see Figure 7). This is, however, not 

the case with the MEgPC approach, which exhibits only a 

small bounded error over time. 

 
Fig. 7. Standard deviation of sprung mass displacement 

2. Analysis of Dubins Vehicle 

 Here a three degree of freedom robot model (see Figure 8) 

is considered that includes lateral acceleration, yaw and roll 

dynamics, as in [15].The roll and yaw moments of inertia are 

represented by Ixx and Izz respectively, m is the total vehicle 

mass, ms is the sprung mass, V is the longitudinal velocity of 

the vehicle and δ represents the front wheel steering angle. 

The linearized equations for this model are given as: 

2 2

2
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f s s s
io o

xx xx

C G m hM m ghGC KG G
T

mV mV mV mVI mVI mV
β β ψ δ ϕ = − + − + + + + + 
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2 2 2 2

, , , 1 /( ),
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f r r r f f f f r r s xxC C C K C l C l D C l C l G m h mI= + = − = + = +

 ( )2
1 /

o

xx xx s sI I m h m m= + − . 

Here Cf and Cr are the cornering stiffness values of the 

lumped front and rear wheels, g is the gravitational 

acceleration, lf and lr are, respectively, the distances of the 

front and rear axles from the center of gravity, and Ti is the 

terrain force acting at each wheel. 

 

Fig. 8.  Robot model for mobility analysis under uncertainty 

The suspension moment is given as: 

( ) ( ) ( ) ( )
s f f r r f f r r

M k k b bϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ=− − − − − − − −ɺ ɺ ɺ ɺ  (30) 

where kf and kr are the stiffness values, bf and br are the 

damping rates of the front and rear axles and fϕ and rϕ  are 

the terrain roll angles. In these equations, lateral components 

of the terrain contact forces as well as the roll angles and rates 

due to the sloped terrain have been included. Details on 

calculating their values can be found in [15]. 

For measuring robot stability, a rollover coefficient is 

defined as in [16]. Using the principle of balance of moments 

and vertical forces, the rollover metric for the linear model 

under consideration is given as: 

( )2
( ) ( )s

a

w

m
R h h v h

mgy
β ψ ϕ= + + −ɺ ɺ ɺɺ

 (31) 

where ha is the height of the roll axis above the ground and yw 

is the track width. This may further be expressed in terms of 

the state space variables from the equations of motion above. 

For this metric, |R|>1 indicates vehicle wheel liftoff and thus 

impending rollover. 

In this analysis, the double-lane-change steering maneuver 

is considered as input and the roll angle evolution under 

vehicle parameter uncertainty is studied using the gPC, 

MEgPC (P = 3, θ1=0.05, α=0.5) and SMC approaches, for 

motion over uneven terrain (represented using a combination 

of trigonometric functions). Here, roll stiffness parameters are 
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represented as polynomial chaos expansions, using Legendre 

polynomials of standard uniform random variables ξ1 and ξ2.  

The front and rear axle roll stiffness values are considered to 

be uniformly distributed about their mean values. This is 

represented as: 

1f ff k kk µ ξ σ= +  (32) 

2r rr k kk µ ξ σ= +  (33) 

For the MEgPC approach, the state variables can be 

represented as: 

,

0

( , ) ( ) ( ) ,    1  7
P

i i j j

j

X t X t i to
=

= Φ =∑ξ ξξ ξξ ξξ ξ  (34) 

where [ ]1 2,ξ ξξ =ξ =ξ =ξ = . 

The roll stiffness parameter values considered in the study 

are shown in Table 3. 
TABLE 3 

UNCERTAIN VEHICLE PARAMETERS IN ROLLOVER ANALYSIS 

PARAMETER µ (Nm/rad) σ (Nm/rad) 

kf 30×103 4×103 

kr 30×103 4×103 

A. Simulation Results 

Using the expansions in (34), a spectral stochastic analysis 

[16] is performed to obtain the time evolution of the roll angle 

standard deviation. It can be seen that the prediction from the 

gPC approach differs substantially from the MEgPC and SMC 

results. 

 
Fig. 9. Prediction of standard deviation of roll angle 

Next, the time evolution of the standard deviation of R is 

studied for a sinusoidal input (see Figure 10). It can again be 

observed that there is significant difference in the predictions, 

for the two polynomial chaos-based techniques. 

 
Fig. 10. Prediction of standard deviation of rollover metric 

Relative computation times for the methods are shown 

below in Table 4. 
TABLE 4 

COMPUTATION TIME 

METHOD TIME TAKEN (s) 

SMC (2000 runs) 7076.2 s 

gPC 35.83 s 

MEgPC 192.38 s 

V. CONCLUSION 

 This paper has presented an approach to mobile robot 

dynamics prediction based on the MEgPC framework, while 

explicitly considering uncertainty in robot parameter 

estimates.  Simulation results show that the method represents 

a significant improvement over the Monte Carlo technique in 

terms of computational cost, and over the gPC method in 

terms of accuracy of long-term predictions. The approach can 

be applied to various applications, such as mobility prediction 

and path planning under uncertainty. 
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